Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.297
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Ann Hematol ; 103(6): 1887-1896, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581547

RESUMEN

We evaluated the impact of the genotype on clinical and hematochemical features, hepatic and cardiac iron levels, and endocrine, hepatic, and cardiovascular complications in non-transfusion-dependent (NTD) ß-thalassemia intermedia (TI) patients. Sixty patients (39.09 ± 11.11 years, 29 females) consecutively enrolled in the Myocardial Iron Overload in Thalassemia project underwent Magnetic Resonance Imaging to quantify iron overload, biventricular function parameters, and atrial areas and to detect replacement myocardial fibrosis. Three groups of patients were identified: homozygous ß+ (N = 18), heterozygous ß0ß+ (N = 22), and homozygous ß0 (N = 20). The groups were homogeneous for sex, age, splenectomy, hematochemical parameters, chelation therapy, and iron levels. The homozygous ß° genotype was associated with significantly higher biventricular end-diastolic and end-systolic volume indexes and bi-atrial area indexes. No difference was detected in biventricular ejection fractions or myocardial fibrosis. Extramedullary hematopoiesis and leg ulcers were significantly more frequent in the homozygous ß° group compared to the homozygous ß+ group. No association was detected between genotype and liver cirrhosis, hypogonadism, hypothyroidism, osteoporosis, heart failure, arrhythmias, and pulmonary hypertension. Heart remodelling related to a high cardiac output state cardiomyopathy, extramedullary hematopoiesis, and leg ulcers were more pronounced in patients with the homozygous ß° genotype compared to the other genotypes analyzed. The knowledge of the genotype can assist in the clinical management of NTD ß-TI patients.


Asunto(s)
Genotipo , Sobrecarga de Hierro , Hierro , Talasemia beta , Humanos , Talasemia beta/genética , Talasemia beta/complicaciones , Femenino , Masculino , Adulto , Persona de Mediana Edad , Sobrecarga de Hierro/genética , Sobrecarga de Hierro/etiología , Hierro/metabolismo , Úlcera de la Pierna/etiología , Úlcera de la Pierna/genética , Hematopoyesis Extramedular/genética , Imagen por Resonancia Magnética , Miocardio/patología , Miocardio/metabolismo , Cirrosis Hepática/genética , Cirrosis Hepática/complicaciones , Homocigoto
2.
Aging (Albany NY) ; 16(8): 6937-6953, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38643461

RESUMEN

AIMS: This study aimed to evaluate the effects of VC on SIMI in rats. METHODS: In this study, the survival rate of high dose VC for SIMI was evaluated within 7 days. Rats were randomly assigned to three groups: Sham group, CLP group, and high dose VC (500 mg/kg i.v.) group. The animals in each group were treated with drugs for 1 day, 3 days or 5 days, respectively. Echocardiography, myocardial enzymes and HE were used to detect cardiac function. IL-1ß, IL-6, IL-10 and TNF-α) in serum were measured using ELISA kits. Western blot was used to detect proteins related to apoptosis, inflammation, autophagy, MAPK, NF-κB and PI3K/Akt/mTOR signaling pathways. RESULTS: High dose VC improved the survival rate of SIMI within 7 days. Echocardiography, HE staining and myocardial enzymes showed that high-dose VC relieved SIMI in rats in a time-dependent manner. And compared with CLP group, high-dose VC decreased the expressions of pro-apoptotic proteins, while increased the expression of anti-apoptotic protein. And compared with CLP group, high dose VC decreased phosphorylation levels of Erk1/2, P38, JNK, NF-κB and IKK α/ß in SIMI rats. High dose VC increased the expression of the protein Beclin-1 and LC3-II/LC3-I ratio, whereas decreased the expression of P62 in SIMI rats. Finally, high dose VC attenuated phosphorylation of PI3K, AKT and mTOR compared with the CLP group. SIGNIFICANCE: Our results showed that high dose VC has a good protective effect on SIMI after continuous treatment, which may be mediated by inhibiting apoptosis and inflammatory, and promoting autophagy through regulating MAPK, NF-κB and PI3K/AKT/mTOR pathway.


Asunto(s)
Apoptosis , Autofagia , FN-kappa B , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Ratas Sprague-Dawley , Sepsis , Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Apoptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Autofagia/efectos de los fármacos , FN-kappa B/metabolismo , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Sepsis/tratamiento farmacológico , Sepsis/complicaciones , Sepsis/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/administración & dosificación , Miocardio/metabolismo , Miocardio/patología
3.
Toxicon ; 242: 107693, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38519012

RESUMEN

Aconitine is the main active component of Aconitum plants. Although aconitine has effects that include strengthening the heart, analgesia, anti-tumor, and immune-regulating effects, aconitine has both efficacy and toxicity, especially cardiotoxicity. Severe effects can include arrhythmia and cardiac arrest, which limits the clinical application of aconitine-containing traditional Chinese medicine. Ginsenoside Rb1(Rb1) is mainly found in plants, such as ginseng and Panax notoginseng, and has cardiovascular-protective and anti-arrhythmia effects. This study aimed to investigate the detoxifying effects of Rb1 on aconitine cardiotoxicity and the electrophysiological effect of Rb1 on aconitine-induced arrhythmia in rats. Pathological analysis, myocardial enzymatic indexes, and Western blotting were used to investigate the ameliorating effect of Rb1 on aconitine cardiotoxicity. Optical mapping was used to evaluate the effect of Rb1 on action potential and calcium signaling after aconitine-induced arrhythmia. Rb1 inhibited pathological damage caused by aconitine, decreased myocardial enzyme levels, and restored the balance of apoptotic protein expression by reducing the expression of Bax and cleaved caspase 3 and increasing the expression of Bcl-2, thereby reducing myocardial damage caused by aconitine. Rb1 also reduced the increase in heart rate caused by aconitine, accelerated action potential conduction and calcium signaling, and reduced the dispersion of action potential and calcium signal conduction. Rb1 reduced the cardiotoxicity of aconitine by attenuating aconitine-induced myocardial injury and inhibiting the aconitine-induced retardation of ventricular action potential and calcium signaling in rats.


Asunto(s)
Aconitina , Señalización del Calcio , Cardiotoxicidad , Ginsenósidos , Animales , Ginsenósidos/farmacología , Aconitina/análogos & derivados , Cardiotoxicidad/prevención & control , Ratas , Señalización del Calcio/efectos de los fármacos , Masculino , Potenciales de Acción/efectos de los fármacos , Ratas Sprague-Dawley , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/prevención & control , Miocardio/metabolismo , Miocardio/patología
4.
Int J Pharm ; 655: 124047, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38531434

RESUMEN

In this study, nanoparticles loaded with active components from Polygonum orientale L. (PO), a traditional Chinese herb known for its anti-myocardial ischemic properties, were investigated for cardio-protective properties. Specifically, OVQ-Nanoparticles (OVQ-NPs) with Orientin (Ori), Vitexin (Vit), and Quercetin (Que) was obtained by double emulsion-solvent evaporation method. The OVQ-NPs exhibited a spherical shape, with a uniform size distribution of 136.77 ± 3.88 nm and a stable ζ-potential of -13.40 ± 2.24 mV. Notably, these nanoparticles exhibited a favorable sustained-release characteristic, resulting in an extended circulation time within the living organism. Consequently, the administration of these nanoparticles resulted in significant improvements in electrocardiograms and heart mass index of myocardial ischemic rats induced by isoproterenol, as well as decreased serum levels of CK, LDH, and AST. Furthermore, the results of histopathological examination, such as H&E staining and TUNEL staining, confirmed a reduced level of cardiac tissue pathology and apoptosis. Moreover, the quantification of biochemical indicators (SOD, MDA, GSH, NO, TNF-α, and IL-6) demonstrated that OVQ-NPs effectively mitigated myocardial ischemia by regulating oxidative stress and inflammatory pathways. In conclusion, OVQ-NPs demonstrate promising therapeutic potential as an intervention for myocardial ischemia, providing a new perspective on traditional Chinese medicine treatment in this area.


Asunto(s)
Enfermedad de la Arteria Coronaria , Isquemia Miocárdica , Polygonum , Ratas , Animales , Isoproterenol/uso terapéutico , Polygonum/química , Isquemia Miocárdica/inducido químicamente , Isquemia Miocárdica/tratamiento farmacológico , Isquemia Miocárdica/prevención & control , Miocardio/patología
5.
Chin J Integr Med ; 30(5): 398-407, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38386253

RESUMEN

OBJECTIVE: To investigate the pharmacological mechanism of Qili Qiangxin Capsule (QLQX) improvement of heart failure (HF) based on miR133a-endoplasmic reticulum stress (ERS) pathway. METHODS: A left coronary artery ligation-induced HF after myocardial infarction model was used in this study. Rats were randomly assigned to the sham group, the model group, the QLQX group [0.32 g/(kg·d)], and the captopril group [2.25 mg/(kg·d)], 15 rats per group, followed by 4 weeks of medication. Cardiac function such as left ventricular ejection fraction (EF), fractional shortening (FS), left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure (LVEDP), the maximal rate of increase of left ventricular pressure (+dp/dt max), and the maximal rate of decrease of left ventricular pressure (-dp/dt max) were monitored by echocardiography and hemodynamics. Hematoxylin and eosin (HE) and Masson stainings were used to visualize pathological changes in myocardial tissue. The mRNA expression of miR133a, glucose-regulated protein78 (GRP78), inositol-requiring enzyme 1 (IRE1), activating transcription factor 6 (ATF6), X-box binding protein1 (XBP1), C/EBP homologous protein (CHOP) and Caspase 12 were detected by RT-PCR. The protein expression of GRP78, p-IRE1/IRE1 ratio, cleaved-ATF6, XBP1-s (the spliced form of XBP1), CHOP and Caspase 12 were detected by Western blot. TdT-mediated dUTP nick-end labeling (TUNEL) staining was used to detect the rate of apoptosis. RESULTS: QLQX significantly improved cardiac function as evidenced by increased EF, FS, LVSP, +dp/dt max, -dp/dt max, and decreased LVEDP (P<0.05, P<0.01). HE staining showed that QLQX ameliorated cardiac pathologic damage to some extent. Masson staining indicated that QLQX significantly reduced collagen volume fraction in myocardial tissue (P<0.01). Results from RT-PCR and Western blot showed that QLQX significantly increased the expression of miR133a and inhibited the mRNA expressions of GRP78, IRE1, ATF6 and XBP1, as well as decreased the protein expressions of GRP78, cleaved-ATF6 and XBP1-s and decreased p-IRE1/IRE1 ratio (P<0.05, P<0.01). Further studies showed that QLQX significantly reduced the expression of CHOP and Caspase12, resulting in a significant reduction in apoptosis rate (P<0.05, P<0.01). CONCLUSION: The pharmacological mechanism of QLQX in improving HF is partly attributed to its regulatory effect on the miR133a-IRE1/XBP1 pathway.


Asunto(s)
Medicamentos Herbarios Chinos , Estrés del Retículo Endoplásmico , Insuficiencia Cardíaca , MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/genética , Masculino , Ratas Sprague-Dawley , Cápsulas , Factor de Transcripción Activador 6/metabolismo , Factor de Transcripción Activador 6/genética , Chaperón BiP del Retículo Endoplásmico , Apoptosis/efectos de los fármacos , Caspasa 12/metabolismo , Caspasa 12/genética , Miocardio/patología , Miocardio/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Ratas , Proteína 1 de Unión a la X-Box/metabolismo , Proteína 1 de Unión a la X-Box/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Infarto del Miocardio/genética , Infarto del Miocardio/fisiopatología
6.
JACC Clin Electrophysiol ; 10(4): 637-650, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38276927

RESUMEN

BACKGROUND: Voltage mapping to detect ventricular scar is important for guiding catheter ablation, but the field-of-view of unipolar, bipolar, conventional, and microelectrodes as it relates to the extent of viable myocardium (VM) is not well defined. OBJECTIVES: The purpose of this study was to evaluate electroanatomic voltage-mapping (EAVM) with different-size electrodes for identifying VM, validated against high-resolution ex-vivo cardiac magnetic resonance (HR-LGE-CMR). METHODS: A total of 9 swine with early-reperfusion myocardial infarction were mapped with the QDOT microcatheter. HR-LGE-CMR (0.3-mm slices) were merged with EAVM. At each EAVM point, the underlying VM in multisize transmural cylinders and spheres was quantified from ex vivo CMR and related to unipolar and bipolar voltages recorded from conventional and microelectrodes. RESULTS: In each swine, 220 mapping points (Q1, Q3: 216, 260 mapping points) were collected. Infarcts were heterogeneous and nontransmural. Unipolar and bipolar voltage increased with VM volumes from >175 mm3 up to >525 mm3 (equivalent to a 5-mm radius cylinder with height >6.69 mm). VM volumes in subendocardial cylinders with 1- or 3-mm depth correlated poorly with all voltages. Unipolar voltages recorded with conventional and microelectrodes were similar (difference 0.17 ± 2.66 mV) and correlated best to VM within a sphere of radius 10 and 8 mm, respectively. Distance-weighting did not improve the correlation. CONCLUSIONS: Voltage increases with transmural volume of VM but correlates poorly with small amounts of VM, which limits EAVM in defining heterogeneous scar. Microelectrodes cannot distinguish thin from thick areas of subendocardial VM. The field-of-view for unipolar recordings for microelectrodes and conventional electrodes appears to be 8 to 10 mm, respectively, and unexpectedly similar.


Asunto(s)
Infarto del Miocardio , Animales , Porcinos , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/fisiopatología , Imagen por Resonancia Magnética/métodos , Gadolinio , Técnicas Electrofisiológicas Cardíacas/instrumentación , Técnicas Electrofisiológicas Cardíacas/métodos , Microelectrodos , Electrodos , Miocardio/patología , Medios de Contraste
7.
BMC Cardiovasc Disord ; 24(1): 76, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38281937

RESUMEN

BACKGROUND: The protective effect of Coenzyme Q10 (CoQ10) on the cardiovascular system has been reported, however, whether it can promote early recovery of cardiac function and alleviate cardiac remodeling after myocardial infarction (MI) remains to be elucidated. Whether CoQ10 may regulate the macrophage-mediated pro-inflammatory response after MI and its potential mechanism are worth further exploration. METHODS: To determine the baseline plasma levels of CoQ10 by LC-MS/MS, healthy controls and MI patients (n = 11 each) with age- and gender-matched were randomly enrolled. Additional MI patients were consecutively enrolled and randomized into the blank control (n = 59) or CoQ10 group (n = 61). Follow-ups were performed at 1- and 3-month to assess cardiac function after percutaneous coronary intervention (PCI). In the animal study, mice were orally administered CoQ10/vehicle daily and were subjected to left anterior descending coronary artery (LAD) ligation or sham operation. Echocardiography and serum BNP measured by ELISA were analyzed to evaluate cardiac function. Masson staining and WGA staining were performed to analyze the myocardial fibrosis and cardiomyocyte hypertrophy, respectively. Immunofluorescence staining was performed to assess the infiltration of IL1ß/ROS-positive macrophages into the ischemic myocardium. Flow cytometry was employed to analyze the recruitment of myeloid immune cells to the ischemic myocardium post-MI. The expression of inflammatory indicators was assessed through RNA-seq, qPCR, and western blotting (WB). RESULTS: Compared to controls, MI patients showed a plasma deficiency of CoQ10 (0.76 ± 0.31 vs. 0.46 ± 0.10 µg/ml). CoQ10 supplementation significantly promoted the recovery of cardiac function in MI patients at 1 and 3 months after PCI. In mice study, compared to vehicle-treated MI mice, CoQ10-treated MI mice showed a favorable trend in survival rate (42.85% vs. 61.90%), as well as significantly alleviated cardiac dysfunction, myocardial fibrosis, and cardiac hypertrophy. Notably, CoQ10 administration significantly suppressed the recruitment of pro-inflammatory CCR2+ macrophages into infarct myocardium and their mediated inflammatory response, partially by attenuating the activation of the NLR family pyrin domain containing 3 (NLRP3)/Interleukin-1 beta (IL1ß) signaling pathway. CONCLUSIONS: These findings suggest that CoQ10 can significantly promote early recovery of cardiac function after MI. CoQ10 may function by inhibiting the recruitment of CCR2+ macrophages and suppressing the activation of the NLRP3/IL1ß pathway in macrophages. TRIAL REGISTRATION: Date of registration 09/04/2021 (number: ChiCTR2100045256).


Asunto(s)
Infarto del Miocardio , Intervención Coronaria Percutánea , Ubiquinona , Animales , Humanos , Ratones , Cromatografía Liquida , Modelos Animales de Enfermedad , Fibrosis , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Infarto del Miocardio/patología , Miocardio/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Espectrometría de Masas en Tándem , Ubiquinona/análogos & derivados , Ubiquinona/sangre , Remodelación Ventricular
8.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5838-5850, 2023 Nov.
Artículo en Chino | MEDLINE | ID: mdl-38114180

RESUMEN

Jiming Powder is a traditional ancient prescription with good therapeutic effect in the treatment of heart failure, but its mechanism lacks further exploration. In this study, a mouse model of coronary artery ligation was used to evaluate the effect and mechanism of Jiming Powder on myocardial fibrosis in mice with myocardial infarction. The study constructed a mouse model of heart failure after myocardial infarction using the method of left anterior descending coronary artery ligation. The efficacy of Jiming Powder was evaluated from multiple angles, including ultrasound imaging, hematoxylin-eosin(HE) staining, Masson staining, Sirius Red staining, and serum myocardial enzyme spectrum detection. Western blot analysis was performed to detect key proteins involved in ventricular remodeling, including transforming growth factor-ß1(TGF-ß1), α-smooth muscle actin(α-SMA), wingless-type MMTV integration site family member 3a(Wnt3a), ß-catenin, matrix metallopeptidase 2(MMP2), matrix metallopeptidase 3(MMP3), TIMP metallopeptidase inhibitor 1(TIMP1), and TIMP metallopeptidase inhibitor 2(TIMP2). The results showed that compared with the model group, the high and low-dose Jiming Powder significantly reduced the left ventricular internal diameter in systole(LVID;s) and diastole(LVID;d), increased the left ventricular ejection fraction(LVEF) and left ventricular fractional shortening(LVFS), effectively improved cardiac function in mice after myocardial infarction, and effectively reduced the levels of myocardial injury markers such as creatine kinase(CK), creatine kinase isoenzyme(CK-MB), and lactic dehydrogenase(LDH), thus protecting ischemic myocardium. HE staining showed that Jiming Powder could attenuate myocardial inflammatory cell infiltration after myocardial infarction. Masson and Sirius Red staining demonstrated that Jiming Powder effectively inhibited myocardial fibrosis, reduced the collagen Ⅰ/Ⅲ ratio in myocardial tissues, and improved collagen remodeling after myocardial infarction. Western blot results showed that Jiming Powder reduced the expression of TGF-ß1, α-SMA, Wnt3a, and ß-catenin, decreased the levels of MMP2, MMP3, and TIMP2, and increased the level of TIMP1, suggesting its role in inhibiting cardiac fibroblast transformation, reducing extracellular matrix metabolism in myocardial cells, and lowering collagen Ⅰ and α-SMA content, thus exerting an anti-myocardial fibrosis effect after myocardial infarction. This study revealed the role of Jiming Powder in improving ventricular remodeling and treating myocardial infarction, laying the foundation for further research on the pharmacological effect of Jiming Powder.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Ratones , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , beta Catenina/metabolismo , Metaloproteinasa 3 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz/uso terapéutico , Polvos , Remodelación Ventricular , Volumen Sistólico , Función Ventricular Izquierda , Infarto del Miocardio/tratamiento farmacológico , Miocardio/patología , Insuficiencia Cardíaca/metabolismo , Colágeno/metabolismo , Creatina Quinasa , Fibrosis
9.
Int Heart J ; 64(5): 910-917, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37778994

RESUMEN

As a kind of anthracycline, doxorubicin (DOX) is commonly used as an antitumor drug, but its clinical application has been greatly hindered due to its severe cardiotoxicity. Hence, in this study, we investigated the role of catalpol (CTP) and its effect on DOX-induced cardiotoxicity.The cardiac function of mice was evaluated by assessing lactate dehydrogenase, creatine kinase isoenzyme, heart weight to body weight, and heart weight/tibia length levels. Histopathological changes were observed using hematoxylin and eosin staining, and the terminal deoxynucleotidyl transferase dUTP nick end labeling assay was used to examine myocardial apoptosis. Superoxide dismutase (SOD) activity, glutathione (GSH), and malondialdehyde (MDA) levels were measured to confirm the changes in oxidative stress. Western blotting showed the levels of autophagy- and pathway-related proteins. Expression of autophagy marker LC3 was examined using immunofluorescence staining.CTP alleviated DOX-induced cardiac damage in mice. We further observed upregulated SOD and GSH levels, and downregulated MDA level after the CTP treatment in DOX-treated mice, indicating the protective role of CTP against oxidative injury. DOX-induced myocardial apoptosis was also inhibited by CTP treatment in mice. In addition, CTP decreased the levels of Beclin1 and LC3II/LC3I, increased the levels of P62, and activated the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway in DOX-treated mice.CTP ameliorated DOX-induced cardiotoxicity by inhibiting oxidative stress, myocardial apoptosis, and autophagy via the AKT-mTOR pathway.


Asunto(s)
Cardiotoxicidad , Proteínas Proto-Oncogénicas c-akt , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Cardiotoxicidad/etiología , Doxorrubicina/toxicidad , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/farmacología , Serina-Treonina Quinasas TOR/uso terapéutico , Miocardio/patología , Estrés Oxidativo , Autofagia , Superóxido Dismutasa/metabolismo , Apoptosis/fisiología , Miocitos Cardíacos/metabolismo , Mamíferos/metabolismo
10.
Biomed Pharmacother ; 168: 115669, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37820568

RESUMEN

Diabetic cardiomyopathy is a chronic cardiovascular complication caused by diabetes that is characterized by changes in myocardial structure and function, ultimately leading to heart failure and even death. Mitochondria serve as the provider of energy to cardiomyocytes, and mitochondrial dysfunction plays a central role in the development of diabetic cardiomyopathy. In response to a series of pathological changes caused by mitochondrial dysfunction, the mitochondrial quality control system is activated. The mitochondrial quality control system (including mitochondrial biogenesis, fusion and fission, and mitophagy) is core to maintaining the normal structure of mitochondria and performing their normal physiological functions. However, mitochondrial quality control is abnormal in diabetic cardiomyopathy, resulting in insufficient mitochondrial fusion and excessive fission within the cardiomyocyte, and fragmented mitochondria are not phagocytosed in a timely manner, accumulating within the cardiomyocyte resulting in cardiomyocyte injury. Currently, there is no specific therapy or prevention for diabetic cardiomyopathy, and glycemic control remains the mainstay. In this review, we first elucidate the pathogenesis of diabetic cardiomyopathy and explore the link between pathological mitochondrial quality control and the development of diabetic cardiomyopathy. Then, we summarize how clinically used hypoglycemic agents (including sodium-glucose cotransport protein 2 inhibitions, glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase-4 inhibitors, thiazolidinediones, metformin, and α-glucosidase inhibitors) exert cardioprotective effects to treat and prevent diabetic cardiomyopathy by targeting the mitochondrial quality control system. In addition, the mechanisms of complementary alternative therapies, such as active ingredients of traditional Chinese medicine, exercise, and lifestyle, targeting mitochondrial quality control for the treatment of diabetic cardiomyopathy are also added, which lays the foundation for the excavation of new diabetic cardioprotective drugs.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Humanos , Cardiomiopatías Diabéticas/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/metabolismo , Mitocondrias , Miocardio/patología , Miocitos Cardíacos , Diabetes Mellitus/tratamiento farmacológico
11.
J Ethnopharmacol ; 315: 116673, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37268257

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine theory believes that qi deficiency and blood stasis are the key pathogenesis of heart failure with preserved ejection fraction (HFpEF). As a representative prescription for replenishing qi and activating blood, QiShenYiQi dripping pills (QSYQ) has been used for treating heart diseases. However, the pharmacological mechanism of QSYQ in improving HFpEF is not well understood. AIM OF THE STUDY: The objective of the study is to investigate the cardioprotective effect and mechanism of QSYQ in HFpEF using the phenotypic dataset of HFpEF. MATERIALS AND METHODS: HFpEF mouse models established by feeding mice combined high-fat diet and Nω-nitro-L-arginine methyl ester drinking water were treated with QSYQ. To reveal causal genes, we performed a multi-omics study, including integrative analysis of transcriptomics, proteomics, and metabolomics data. Moreover, adeno-associated virus (AAV)-based PKG inhibition confirmed that QSYQ mediated myocardial remodeling through PKG. RESULTS: Computational systems pharmacological analysis based on human transcriptome data for HFpEF showed that QSYQ could potentially treat HFpEF through multiple signaling pathways. Subsequently, integrative analysis of transcriptome and proteome showed alterations in gene expression in HFpEF. QSYQ regulated genes involved in inflammation, energy metabolism, myocardial hypertrophy, myocardial fibrosis, and cGMP-PKG signaling pathway, confirming its function in the pathogenesis of HFpEF. Metabolomics analysis revealed fatty acid metabolism as the main mechanism by which QSYQ regulates HFpEF myocardial energy metabolism. Importantly, we found that the myocardial protective effect of QSYQ on HFpEF mice was attenuated after RNA interference-mediated knock-down of myocardial PKG. CONCLUSION: This study provides mechanistic insights into the pathogenesis of HFpEF and molecular mechanisms of QSYQ in HFpEF. We also identified the regulatory role of PKG in myocardial stiffness, making it an ideal therapeutic target for myocardial remodeling.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Ratones , Animales , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Volumen Sistólico , Multiómica , Miocardio/patología
12.
Sheng Li Xue Bao ; 75(2): 179-187, 2023 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-37089092

RESUMEN

The present study was aimed to investigate the role and mechanism of glutaminolysis of cardiac fibroblasts (CFs) in hypertension-induced myocardial fibrosis. C57BL/6J mice were administered with a chronic infusion of angiotensin II (Ang II, 1.6 mg/kg per d) with a micro-osmotic pump to induce myocardial fibrosis. Masson staining was used to evaluate myocardial fibrosis. The mice were intraperitoneally injected with BPTES (12.5 mg/kg), a glutaminase 1 (GLS1)-specific inhibitor, to inhibit glutaminolysis simultaneously. Immunohistochemistry and Western blot were used to detect protein expression levels of GLS1, Collagen I and Collagen III in cardiac tissue. Neonatal Sprague-Dawley (SD) rat CFs were treated with 4 mmol/L glutamine (Gln) or BPTES (5 µmol/L) with or without Ang II (0.4 µmol/L) stimulation. The CFs were also treated with 2 mmol/L α-ketoglutarate (α-KG) under the stimulation of Ang II and BPTES. Wound healing test and CCK-8 were used to detect CFs migration and proliferation respectively. RT-qPCR and Western blot were used to detect mRNA and protein expression levels of GLS1, Collagen I and Collagen III. The results showed that blood pressure, heart weight and myocardial fibrosis were increased in Ang II-treated mice, and GLS1 expression in cardiac tissue was also significantly up-regulated. Gln significantly promoted the proliferation, migration, mRNA and protein expression of GLS1, Collagen I and Collagen III in the CFs with or without Ang II stimulation, whereas BPTES significantly decreased the above indices in the CFs. α-KG supplementation reversed the inhibitory effect of BPTES on the CFs under Ang II stimulation. Furthermore, in vivo intraperitoneal injection of BPTES alleviated cardiac fibrosis of Ang II-treated mice. In conclusion, glutaminolysis plays an important role in the process of cardiac fibrosis induced by Ang II. Targeted inhibition of glutaminolysis may be a new strategy for the treatment of myocardial fibrosis.


Asunto(s)
Angiotensina II , Fibroblastos , Ratas , Ratones , Animales , Ratas Sprague-Dawley , Angiotensina II/farmacología , Ratones Endogámicos C57BL , Fibrosis , Colágeno/metabolismo , Colágeno/farmacología , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , ARN Mensajero/metabolismo , Miocardio/patología
13.
Chin J Integr Med ; 29(7): 600-607, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36971884

RESUMEN

OBJECTIVE: To investigate the protective mechanisms of Chinese medicine Shexiang Tongxin Dropping Pills (STDP) on heart failure (HF). METHODS: Isoproterenol (ISO)-induced HF rat model and angiotensin II (Ang II)-induced neonatal rat cardiac fibroblast (CFs) model were used in the present study. HF rats were treated with and without STDP (3 g/kg). RNA-seq was performed to identify differentially expressed genes (DEGs). Cardiac function was evaluated by echocardiography. Hematoxylin and eosin and Masson's stainings were taken to assess cardiac fibrosis. The levels of collagen I (Col I) and collagen III (Col III) were detected by immunohistochemical staining. CCK8 kit and transwell assay were implemented to test the CFs' proliferative and migratory activity, respectively. The protein expressions of α-smooth muscle actin (α-SMA), matrix metalloproteinase-2 (MMP-2), MMP-9, Col I, and Col III were detected by Western blotting. RESULTS: The results of RNA-seq analysis showed that STDP exerted its pharmacological effects on HF via multiple signaling pathways, such as the extracellular matrix (ECM)-receptor interaction, cell cycle, and B cell receptor interaction. Results from in vivo experiments demonstrated that STDP treatment reversed declines in cardiac function, inhibiting myocardial fibrosis, and reversing increases in Col I and Col III expression levels in the hearts of HF rats. Moreover, STDP (6, 9 mg/mL) inhibited the proliferation and migration of CFs exposed to Ang II in vitro (P<0.05). The activation of collagen synthesis and myofibroblast generation were markedly suppressed by STDP, also the synthesis of MMP-2 and MMP-9, as well as ECM components Col I, Col III, and α-SMA were decreased in Ang II-induced neonatal rats' CFs. CONCLUSIONS: STDP had anti-fibrotic effects in HF, which might be caused by the modulation of ECM-receptor interaction pathways. Through the management of cardiac fibrosis, STDP may be a compelling candidate for improving prognosis of HF.


Asunto(s)
Insuficiencia Cardíaca , Metaloproteinasa 2 de la Matriz , Ratas , Animales , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , RNA-Seq , Transcriptoma/genética , Insuficiencia Cardíaca/tratamiento farmacológico , Colágeno , Colágeno Tipo I/metabolismo , Fibrosis , Miocardio/patología
14.
Pharmacol Res ; 189: 106682, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36736970

RESUMEN

Myocardial ischemia/reperfusion (I/R) injury is the main cause of increasing postischemic heart failure and currently there is no definite treatment for myocardial I/R injury. It has been suggested that oxidative stress-induced mitochondrial dysfunction plays an important role in the pathological development of myocardial I/R. In this study, Yiqi Huoxue (YQHX) prescription, as a kind of Chinese herbal formula, was developed and shown to alleviate I/R injury. Network analysis combined with ultrahigh-performance liquid chromatography-high resolution mass spectrometry expounded the active components of YQHX and revealed the mitophagy-regulation mechanism of YQHX treating I/R injury. In vivo experiments confirmed YQHX significantly alleviated I/R myocardial injury and relieved oxidative stress. In vitro experiments validated that YQHX could relieve hypoxia/reoxygenation injury and attenuate oxidative stress via improving the structure and function of mitochondria, which was strongly related to regulating mitophagy. In summary, this study demonstrated that YQHX, which could alleviate I/R injury via targeting mitophagy, might be a potential therapeutic strategy for myocardial I/R injury.


Asunto(s)
Daño por Reperfusión Miocárdica , Humanos , Daño por Reperfusión Miocárdica/metabolismo , Mitofagia , Miocardio/patología , Estrés Oxidativo , Mitocondrias/patología
15.
JAMA Oncol ; 9(4): 552-555, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36729480

RESUMEN

Importance: Ibrutinib has been associated with serious cardiotoxic arrhythmias. In preclinical models, these events are paralleled or proceeded by diffuse myocardial injury (inflammation and fibrosis). Yet whether this is seen in patients or has implications for future cardiotoxic risk is unknown. Objective: To assess the incidence and outcomes of myocardial injury among patients with ibrutinib-related cardiotoxicity. Design, Setting, and Participants: This cohort study included consecutive patients treated with ibrutinib from 2012 to 2019, phenotyped using cardiovascular magnetic resonance (CMR) from a large US Comprehensive Cancer Center registry. Exposures: Ibrutinib treatment for cancer control. Main Outcomes and Measures: The primary outcome was the presence of late gadolinium enhancement (LGE) fibrosis. The secondary outcome was the occurrence of major adverse cardiac events (MACE), defined as atrial fibrillation, heart failure, symptomatic ventricular arrhythmias, and sudden death of probable or definite ibrutinib association after CMR. We also assessed parametric-mapping subclinical fibrosis (native-T1, extracellular volume fraction) and inflammation/edema (max-T2) measures. Cardiovascular magnetic resonance measures were compared with those obtained in similar consecutive patients with cancer without ibrutinib treatment (pretreatment controls). Observed measures were also compared with similar-aged broad population rates (general-population controls) and a broader pool of cardiovascular disease (CVD) risk-matched cancer controls. Multivariable regression was used to assess the association between CMR measures and MACE. Results: Overall, 49 patients treated with ibrutinib were identified, including 33 imaged after treatment initiation (mean [SD] age, 65 [10] years, 9 [27%] with hypertension, and 23 [69.7%] with index-arrhythmias); median duration of ibrutinib-use was 14 months. The mean (SD) pretreatment native T1 was 977.0 (73.0) ms, max-T2 56.5 (4.0) ms, and 4 (13.3%) had LGE. Posttreatment initiation, mean (SD) native T1 was 1033.7 (48.2) ms, max-T2 61.5 (4.8) ms, and 17 (54.8%) had LGE (P < .001, P = .01, and P < .001, respectively, pre- vs post-ibrutinib treatment). Native T12SDs was elevated in 9 (28.6%), and max-T22SDs in 21 (63.0%), respectively. Cardiovascular magnetic resonance measures were highest in those with suspected toxic effects (P = .01 and P = .01, respectively). There was no association between traditional CVD-risk or cancer-treatment status and abnormal CMR measures. Among those without traditional CVD, 16 (58.6%) had LGE vs 38 (13.3%) in matched-controls (relative-risk, 4.8; P < .001). Over a median follow-up of 19 months, 13 (39.4%) experienced MACE. In multivariable models inclusive of traditional CVD risk factors, LGE (hazard ratio [HR], 4.9; P = .04), and native-T12SDs (HR, 3.3; P = .05) associated with higher risks of MACE. Conclusions and Relevance: In this cohort study, myocardial injury was common in ibrutinib users, and its presence was associated with higher cardiotoxic risk.


Asunto(s)
Medios de Contraste , Miocardio , Humanos , Anciano , Miocardio/patología , Estudios de Cohortes , Cardiotoxicidad/etiología , Imagen por Resonancia Cinemagnética , Gadolinio , Imagen por Resonancia Magnética/métodos , Fibrosis , Inflamación , Valor Predictivo de las Pruebas , Función Ventricular Izquierda , Pronóstico , Volumen Sistólico
16.
Chin J Integr Med ; 29(2): 162-169, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35840854

RESUMEN

OBJECTIVE: To investigate the effect of electroacupuncture (EA) at Neiguan (PC 6) on myocardial fibrosis in spontaneously hypertensive rats (SHRs), and to explore the contribution of interleukin-1 ß (IL-1 ß), insulin-like growth factor 1 (IGF-1), and transforming growth factor ß 1 (TGF- ß 1) to the effects. METHODS: Nine 12-weeks-old Wistar Kyoto (WKY) male rats were employed as the normal group. Twenty-seven SHRs were equally randomized into SHR, SHR+EA, and SHR + sham groups. EA was applied at bilateral PC 6 once a day 30 min per day in 8 consecutive weeks. After 8-weeks EA treatment at PC 6, histopathologic changes of collagen type I (Col I), collagen type 1 (Col 1) and the levels of IGF-1, 1L-1 ß, TGF- ß 1, matrix metalloproteinase (MMP)-2 and MMP-9 were examined in myocardial tissure respectively. RESULTS: After 8-weeks EA treatment at PC 6, the enhanced myocardial fibrosis in SHRs were characterized by the increased mean fluorescence intensity of Col I and Col 1 in myocardium tissue (P<0.01). All these abnormal alterations above in SHR + EA group was significantly lower compared with the SHR group (P<0.01). Meanwhile, the increased levels of IL-1 ß, IGF-1, TGF-ß 1 in serum or myocardial tissue of SHRs, diminished MMP 9 mRNA expression in SHRs were also markedly inhibited after 8 weeks of EA treatment (P<0.05 or P<0.01). Furthermore, the contents of IL-1 ß, IGF-1, TGF-ß 1 in myocardial tissue were positively correlated with the systolic blood pressure and hydroxyproline respectively (P<0.01). CONCLUSION: EA at bilateral PC 6 could ameliorate cardiac fibrosis in SHRs, which might be mediated by regulation of 1L-1 ß/IGF-1-TGF- ß 1-MMP9 pathway.


Asunto(s)
Electroacupuntura , Hipertensión , Ratas , Animales , Masculino , Ratas Endogámicas WKY , Hipertensión/terapia , Factor I del Crecimiento Similar a la Insulina , Interleucina-1beta , Ratas Endogámicas SHR , Hipertensión Esencial , Miocardio/patología , Colágeno Tipo I , Fibrosis
17.
Phytother Res ; 37(2): 578-591, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36178264

RESUMEN

Chronic inflammation plays an important role in hypertensive heart failure. Suppressing angiotensin II (Ang II)-induced cardiac inflammation may contribute to the treatment of hypertension-associated heart failure. Sclareol, a natural product initially isolated from the leaves and flowers of Salvia sclarea, possesses antiinflammatory and immune-regulation activity in various systems. However, its effect on Ang II-induced cardiac remodeling remains unknown. In this study, we have explored the potential effects of sclareol on Ang II-induced heart failure. In vivo experiments were conducted in mice with Ang II-pump infusion for 28 days. Sclareol administration at 5 mg·kg-1 ·d-1 significantly reduced the expression of myocardial injury markers. Sclareol also exerts protective effects against Ang II-induced cardiac dysfunction in mice which is associated with alleviated cardiac inflammation and fibrosis. Transcriptome analysis revealed that inhibition of the Ang II-activated mitogen-activated protein kinase (MAPK) pathway contributed to the protective effect of sclareol. Sclareol inhibits Ang II-activated MAPKs pathway to reduce inflammatory response in mouse hearts and cultured cardiomyocytes. Blockage of MAPKs in cardiomyocytes abolished the antiinflammatory effects of sclareol. In conclusion, we show that sclareol protects hearts against Ang II-induced injuries through inhibiting MAPK-mediated inflammation, indicating the potential use of sclareol in the prevention of hypertensive heart failure.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión , Ratones , Animales , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Angiotensina II/efectos adversos , Remodelación Ventricular/fisiología , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/patología , Miocitos Cardíacos/metabolismo , Hipertensión/inducido químicamente , Hipertensión/tratamiento farmacológico , Fibrosis , Inflamación/tratamiento farmacológico , Inflamación/patología , Miocardio/patología , Ratones Endogámicos C57BL
18.
Artículo en Inglés | WPRIM | ID: wpr-971327

RESUMEN

OBJECTIVE@#To investigate the effect of electroacupuncture (EA) at Neiguan (PC 6) on myocardial fibrosis in spontaneously hypertensive rats (SHRs), and to explore the contribution of interleukin-1 β (IL-1 β), insulin-like growth factor 1 (IGF-1), and transforming growth factor β 1 (TGF- β 1) to the effects.@*METHODS@#Nine 12-weeks-old Wistar Kyoto (WKY) male rats were employed as the normal group. Twenty-seven SHRs were equally randomized into SHR, SHR+EA, and SHR + sham groups. EA was applied at bilateral PC 6 once a day 30 min per day in 8 consecutive weeks. After 8-weeks EA treatment at PC 6, histopathologic changes of collagen type I (Col I), collagen type 1 (Col 1) and the levels of IGF-1, 1L-1 β, TGF- β 1, matrix metalloproteinase (MMP)-2 and MMP-9 were examined in myocardial tissure respectively.@*RESULTS@#After 8-weeks EA treatment at PC 6, the enhanced myocardial fibrosis in SHRs were characterized by the increased mean fluorescence intensity of Col I and Col 1 in myocardium tissue (P<0.01). All these abnormal alterations above in SHR + EA group was significantly lower compared with the SHR group (P<0.01). Meanwhile, the increased levels of IL-1 β, IGF-1, TGF-β 1 in serum or myocardial tissue of SHRs, diminished MMP 9 mRNA expression in SHRs were also markedly inhibited after 8 weeks of EA treatment (P<0.05 or P<0.01). Furthermore, the contents of IL-1 β, IGF-1, TGF-β 1 in myocardial tissue were positively correlated with the systolic blood pressure and hydroxyproline respectively (P<0.01).@*CONCLUSION@#EA at bilateral PC 6 could ameliorate cardiac fibrosis in SHRs, which might be mediated by regulation of 1L-1 β/IGF-1-TGF- β 1-MMP9 pathway.


Asunto(s)
Ratas , Animales , Masculino , Ratas Endogámicas WKY , Electroacupuntura , Hipertensión/terapia , Factor I del Crecimiento Similar a la Insulina , Interleucina-1beta , Ratas Endogámicas SHR , Hipertensión Esencial , Miocardio/patología , Colágeno Tipo I , Fibrosis
19.
Acta Physiologica Sinica ; (6): 179-187, 2023.
Artículo en Chino | WPRIM | ID: wpr-980995

RESUMEN

The present study was aimed to investigate the role and mechanism of glutaminolysis of cardiac fibroblasts (CFs) in hypertension-induced myocardial fibrosis. C57BL/6J mice were administered with a chronic infusion of angiotensin II (Ang II, 1.6 mg/kg per d) with a micro-osmotic pump to induce myocardial fibrosis. Masson staining was used to evaluate myocardial fibrosis. The mice were intraperitoneally injected with BPTES (12.5 mg/kg), a glutaminase 1 (GLS1)-specific inhibitor, to inhibit glutaminolysis simultaneously. Immunohistochemistry and Western blot were used to detect protein expression levels of GLS1, Collagen I and Collagen III in cardiac tissue. Neonatal Sprague-Dawley (SD) rat CFs were treated with 4 mmol/L glutamine (Gln) or BPTES (5 μmol/L) with or without Ang II (0.4 μmol/L) stimulation. The CFs were also treated with 2 mmol/L α-ketoglutarate (α-KG) under the stimulation of Ang II and BPTES. Wound healing test and CCK-8 were used to detect CFs migration and proliferation respectively. RT-qPCR and Western blot were used to detect mRNA and protein expression levels of GLS1, Collagen I and Collagen III. The results showed that blood pressure, heart weight and myocardial fibrosis were increased in Ang II-treated mice, and GLS1 expression in cardiac tissue was also significantly up-regulated. Gln significantly promoted the proliferation, migration, mRNA and protein expression of GLS1, Collagen I and Collagen III in the CFs with or without Ang II stimulation, whereas BPTES significantly decreased the above indices in the CFs. α-KG supplementation reversed the inhibitory effect of BPTES on the CFs under Ang II stimulation. Furthermore, in vivo intraperitoneal injection of BPTES alleviated cardiac fibrosis of Ang II-treated mice. In conclusion, glutaminolysis plays an important role in the process of cardiac fibrosis induced by Ang II. Targeted inhibition of glutaminolysis may be a new strategy for the treatment of myocardial fibrosis.


Asunto(s)
Ratas , Ratones , Animales , Ratas Sprague-Dawley , Angiotensina II/farmacología , Fibroblastos , Ratones Endogámicos C57BL , Fibrosis , Colágeno/farmacología , Colágeno Tipo I/metabolismo , ARN Mensajero/metabolismo , Miocardio/patología
20.
Zhongguo Zhong Yao Za Zhi ; 47(21): 5916-5925, 2022 Nov.
Artículo en Chino | MEDLINE | ID: mdl-36472011

RESUMEN

This study established the EA.hy926 cell myocardial ischemia model to compare the effects of two Kaixin Powder prescriptions, Buxin Decoction(BXD) and Dingzhi Pills(DZP), at three dosages(500, 200, and 100 µg·mL~(-1)) on the cell viability. Further, the public databases(TCMSP, TCMID, SYMMAP, and STRING) and the network pharmacology methods such as KEGG pathway enrichment were employed to decipher the possible molecular mechanism of BXD in exerting the cardioprotective effect. The pharmacological effect of BXD was evaluated with the rat model of isoprenaline(ISO)-induced myocardial ischemia. The expression levels of proteins involved in the phosphatidylinositol-3-kinase/protein kinase B(PI3 K/AKT) signaling pathway were measured by Western blot. BXD significantly increased the viability of EA.hy926 cells, showing the performance superior to DZP. The network pharmacology analysis predicted that BXD might exert cardiac protection through the PI3 K/AKT signaling pathway. The in vivo experiment on rats showed that BXD treatment significantly increased the cardiac ejection fraction(EF), fractional shortening(FS), diastolic left ventricular anterior wall(LVAWd), systolic left ventricular anterior wall(LVAWs), and diastolic left ventricular posterior wall(LVPWd), significantly decreased the beat per minute(BPM) and diastolic left ventricular internal diameter(LVIDd), and significantly improved the ST segment in the electrocardiogram. The pathological results(Masson staining) showed that BXD restored the myocardial thickness, decreased the collagen fiber, increased the muscle fiber, and reduced the infarct area to alleviate myocardial ischemia. Furthermore, BXD lowered the serum levels of inflammatory cytokines [tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6)] and myocardial enzymes [creatine kinase(CK) and lactate dehydrogenase(LDH)], increased the p-AKT/AKT ratio, up-regulated the protein levels of PI3 K, NF-κB, IKK-α, and Bcl-xl, and down-regulated that of the apoptotic protein Bax. In conclusion, BXD may exert cardiac protection effect by regulating the PI3 K/AKT signaling pathway.


Asunto(s)
Isquemia Miocárdica , Proteínas Proto-Oncogénicas c-akt , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Polvos , Farmacología en Red , Transducción de Señal , Miocardio/patología , Creatina Quinasa , Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Prescripciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA