Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1286-1294, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621976

RESUMEN

This study explored the specific mechanism by which tetrahydropalmatine(THP) inhibited mitophagy through the UNC-51-like kinase 1(ULK1)/FUN14 domain containing 1(FUNDC1) pathway to reduce hypoxia/reoxygenation(H/R) injury in H9c2 cells. This study used H9c2 cells as the research object to construct a cardiomyocyte H/R injury model. First, a cell viability detection kit was used to detect cell viability, and a micro-method was used to detect lactate dehydrogenase(LDH) leakage to evaluate the protective effect of THP on H/R injury of H9c2 cells. In order to evaluate the protective effect of THP on mitochondria, the chemical fluorescence method was used to detect intracellular reactive oxygen species, intramitochondrial reactive oxygen species, mitochondrial membrane potential, and autophagosomes, and the luciferin method was used to detect intracellular adenosine 5'-triphosphate(ATP) content. Western blot was further used to detect the ratio of microtubule-associated protein 1 light chain 3(LC3) membrane type(LC3-Ⅱ) and slurry type(LC3-Ⅰ) and activated cleaved caspase-3 expression level. In addition, ULK1 expression level and its phosphorylation degree at Ser555 site, as well as the FUNDC1 expression level and its phosphorylation degree of Ser17 site were detected to explore its specific mechanism. The results showed that THP effectively reduced mitochondrial damage in H9c2 cells after H/R. THP protected mitochondria by reducing the level of reactive oxygen species in cells and mitochondria, increasing mitochondrial membrane potential, thereby increasing cellular ATP production, enhancing cellular activity, reducing cellular LDH leakage, and finally alleviating H/R damage in H9c2 cells. Further studies have found that THP could reduce the production of autophagosomes, reduce the LC3-Ⅱ/LC3-Ⅰ ratio, and lower the expression of the apoptosis-related protein, namely cleaved caspase-3, indicating that THP could reduce apoptosis by inhibiting autophagy. In-depth studies have found that THP could inhibit the activation of the ULK1/FUNDC1 pathway of mitophagy and the occurrence of mitophagy by reducing the phosphorylation degree of ULK1 at Ser555 and FUNDC1 at Ser17. The application of ULK1 agonist BL-918 reversely verified the effect of THP on reducing the phosphorylation of ULK1 and FUNDC1. In summary, THP inhibited mitophagy through the ULK1/FUNDC1 pathway to reduce H/R injury in H9c2 cells.


Asunto(s)
Alcaloides de Berberina , Hipoxia , Mitofagia , Fenilacetatos , Humanos , Mitofagia/fisiología , Caspasa 3 , Especies Reactivas de Oxígeno/metabolismo , Apoptosis , Adenosina Trifosfato/farmacología , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales
2.
Zhongguo Zhong Yao Za Zhi ; 49(1): 46-54, 2024 Jan.
Artículo en Chino | MEDLINE | ID: mdl-38403337

RESUMEN

Diabetes mellitus(DM) is a chronic endocrine disease characterized by hyperglycemia caused by carbohydrate or lipid metabolism disorders or insulin dysfunction. Hyperglycemia and long-term metabolic disorders in DM can damage tissues and organs throughout the body, leading to serious complications. Mitochondrial autophagy(mitophagy) is an important mitochondrial quality control process in cells and a special autophagy phenomenon, in which damaged or redundant mitochondria can be selectively removed by autophagic lysosome, which is crucial to maintain cell stability and survival under stress. Studies have confirmed that changes in autophagy play a role in the development and control of DM and its complications. Mitophagy has become a research hotspot in recent years and it is closely associated with the pathogenesis of a variety of diseases. Substantial evidence suggests that mitophagy plays a crucial role in regulating the metabolic homeostasis in the case of DM and its complications. Because the destructive great vessel complications and microvascular complications cause increased mortality, blindness, renal failure, and declined quality of life of DM patients, it is urgent to develop targeted therapies to intervene in DM and its complications. Traditional Chinese medicine(TCM), with a multi-component, multi-target, and multi-level action manner, can prevent the development of drug resistance and have significant therapeutic effects in the prevention and treatment of DM and its complications. Therefore, exploring the mechanisms of TCM in regulating mito-phagy may become a new method for treating DM and its complications. With focus on the roles and mechanisms of mitophagy in DM and its complications, this paper summarizes and prospects the research on the treatment of DM and its complications with TCM via re-gulating mitophagy, aiming to provide new ideas for the clinical practice.


Asunto(s)
Diabetes Mellitus , Hiperglucemia , Humanos , Mitofagia/fisiología , Medicina Tradicional China , Calidad de Vida , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/genética
3.
Phytother Res ; 37(8): 3602-3616, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37086359

RESUMEN

Kaempferol has been suggested to be an effective anticancer agent in several malignant tumors. However, its function and mechanisms in breast precancerous lesions remain largely elusive. Here, we showed that kaempferol induced excessive mitochondrial fission and mitochondrial damage with activated mitochondrial fission factor (MFF)-mediated dynamin-related protein (DRP) 1 mitochondrial translocation. As a result, the PTEN-induced putative kinase 1 (PINK1)/Parkin signaling pathway was activated, accompanied by excessive mitophagy and reduced mitochondrial mass in cells. We also revealed that kaempferol-induced lethal mitophagy contributed to inhibiting breast precancerous lesion growth in vitro and in vivo. Furthermore, we verified serine/threonine kinase 11 (STK11/LKB1)/AMP-activated protein kinase (AMPK) pathway deficiency in breast precancerous lesions. Moreover, LKB1/AMPK pathway reactivation by kaempferol was required for excessive mitochondrial fission and lethal mitophagy. Taken together, our findings shed new light on the molecular mechanisms related to breast cancer prevention by kaempferol and provide evidence for its potential clinical application.


Asunto(s)
Mitofagia , Lesiones Precancerosas , Humanos , Mitofagia/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Quempferoles/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Mitocondrias , Lesiones Precancerosas/metabolismo
4.
Phytother Res ; 37(8): 3342-3362, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36974424

RESUMEN

Chinese herb Radix sophorae tonkinensis extract oxymatrine shows anticancer effects. This study evaluated the role of oxymatrine in colorectal cancer (CRC) and the underlying molecular events in vitro and in vivo. CRC cells were treated with different doses of oxymatrine to assess cell viability, reactive oxygen species production, gene expression, and gene alterations. Meanwhile, mouse xenograft and liver metastasis models were used to assess the effects of oxymatrine using histology examination, transmission electron microscopy, and Western blot, respectively. Our results showed that oxymatrine treatment triggered CRC cell mitophagy to inhibit CRC cell growth, migration, invasion, and metastasis in vitro and in vivo. At the gene level, oxymatrine inhibited LRPPRC to promote Parkin translocation into the mitochondria and reduce the mitophagy-activated NLRP3 inflammasome. Thus, oxymatrine had an anticancer activity through LRPPRC inhibition, mitophagy induction, and NLRP3 inflammasome suppression in the CRC cell xenograft and liver metastasis models. In conclusion, the study demonstrates the oxymatrine anti- CRC activity through its unique role in regulating CRC cell mitophagy and NLRP3 inflammasome levels in vitro and in vivo.


Asunto(s)
Alcaloides , Neoplasias Colorrectales , Neoplasias Hepáticas , Humanos , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Mitofagia/fisiología , Alcaloides/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico
5.
Oxid Med Cell Longev ; 2022: 3617086, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36132224

RESUMEN

Heart failure occurs because of various cardiovascular pathologies, such as coronary artery disease or cardiorenal syndrome, eventually reaching end-stage disease. Various factors contribute to cardiac structural or functional changes that result in systolic or diastolic dysfunction. Several studies have confirmed that the key factor in heart failure progression is myocardial cell death, and mitophagy is the major mechanism regulating myocardial cell death in heart failure. The clinical mechanisms of heart failure are well understood in practice. However, the essential role of mitophagic regulation in heart failure has only recently received widespread attention. Receptor-mediated mitophagy is involved in various mitochondrial processes like oxidative stress injury, energy metabolism disorders, and calcium homeostasis, which are also the main causes of heart failure. Understanding of the diverse regulatory mechanisms in mitophagy and the complexity of its pathophysiology in heart failure remains incomplete. Related studies have found that various natural medicinal plants and active ingredients, such as flavonoids and saponins, can regulate mitophagy to a certain extent, improve myocardial function, and protect myocardial cells. This review comprehensively covers the relevant mechanisms of different types of mitophagy in regulating heart failure pathology and controlling mitochondrial adaptability to stress injury. Further, it explores the relationship between mitophagy and cardiac ejection dysfunction. Natural medicinal plant-targeted regulation strategies and scientific evidence on mitophagy were provided to elucidate current and potential strategies to apply mitophagy-targeted therapy for heart failure.


Asunto(s)
Insuficiencia Cardíaca , Plantas Medicinales , Saponinas , Calcio/metabolismo , Flavonoides/metabolismo , Insuficiencia Cardíaca/patología , Homeostasis , Mitofagia/fisiología , Miocitos Cardíacos/metabolismo
6.
Neurotox Res ; 40(5): 1191-1207, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35943706

RESUMEN

The aim of this study was to explore the influence of the neurotoxicity of nanoalumina on primarily cultured neurons. Normal control, particle size control, aluminum, micron-alumina, and nanoalumina at 50-nm and 13-nm particle sizes were included as subjects to evaluate the level of apoptosis, necrosis, and autophagy in primarily cultured neurons and further explore the mitophagy induced by nanoalumina. The results demonstrated that nanoalumina could induce neuronal cell apoptosis, necrosis, and autophagy, among which autophagy was the most notable. When the autophagy inhibitor was added to the nanoalumina-treated group, it significantly downregulated the protein expression levels of Beclin-1 and LC3II/LC3. Observation under a transmission electron microscope and a fluorescence microscope revealed mitophagy characteristics induced by nanoalumina. Additionally, the neurotoxicological effects induced by nanoalumina were more significant than those induced by aluminum and in a particle size-dependent manner.


Asunto(s)
Óxido de Aluminio , Mitofagia , Óxido de Aluminio/metabolismo , Óxido de Aluminio/toxicidad , Animales , Apoptosis , Autofagia , Beclina-1/metabolismo , Células Cultivadas , Mitofagia/fisiología , Necrosis/metabolismo , Neuronas , Ratas
7.
Zhongguo Zhong Yao Za Zhi ; 47(13): 3432-3438, 2022 Jul.
Artículo en Chino | MEDLINE | ID: mdl-35850793

RESUMEN

The prevalence of chronic kidney disease(CKD) increases year by year and has become a highly prevalent disease, seriously affecting the quality of life of patients and bringing heavy family burden. There are many diseases causing CKD, including va-rious primary and secondary glomerulonephritis, renal tubular injury, and renal vascular lesions. Although routine medical treatment for CKD can alleviate the clinical symptoms to a certain extent, it is sometimes difficult to prevent the progression of CKD. Traditional Chinese medicine(TCM) is advantageous in high safety, few adverse reactions, and definite clinical efficacy in the treatment of CKD. The active components contained can play a synergistic effect through multiple pathways and multiple targets to delay disease progression, but its mechanism of action has not been fully elucidated. As revealed by the literature in this field in China and abroad, abnormal mitophagy is a common feature of the pathogenesis of CKD of different types. In recent years, a large number of studies have proved that the regulation of mitophagy through the PINK1/Parkin signaling pathway and mitophagy receptor pathway could delay the progression of CKD and protect renal function. Therefore, the regulation of mitophagy by TCM in the prevention and treatment of CKD through related pathways has become a potential therapeutic target in recent years. This paper reviewed the research articles on the definite efficacy of TCM in preventing and treating CKD by regulating mitophagy through relevant pathways to provide new targets and stra-tegies for preventing and treating CKD and delaying their entry into end-stage renal diseases.


Asunto(s)
Mitofagia , Insuficiencia Renal Crónica , Humanos , Riñón/patología , Medicina Tradicional China , Mitofagia/fisiología , Calidad de Vida , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/prevención & control
8.
J Biochem Mol Toxicol ; 36(6): e23032, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35243728

RESUMEN

Recent studies have emphasized the role of mitochondria in renal function as well as in renal injury. Poor mitochondrial quality control mechanisms including mitochondrial fusion, fission and mitophagy are major contributors for progression of diabetic renal injury. The current study is aimed to evaluate the protective role of myo-inositol (MI) against diabetic nephropathy (DN) by utilizing high glucose exposed NRK 52E cell and streptozotocin (STZ) induced DN model. MI supplementation (at doses 37.5 and 75 mg/kg) ameliorated albuminuria and enhanced the renal function as indicated significant improvement in urinary creatinine and urea levels. On the other hand, the western blot analysis of both in vitro and in vivo studies has revealed poor mitophagy in renal cells which was reversed upon myo-inositol treatment. Apart from targeting the canonical PINK1/Parkin pathway, we also focused on the role mitophagy receptors prohibitin (PHB) and NIP3-like protein (NIX). A significant reduction in expression of NIX and PHB2 was observed in renal tissue of diabetic control rats and high glucose exposed NRK 52E cells. Myo-inositol treatment resulted in positive modulation of PINK1/Parkin pathway as well as PHB2 and NIX. Myo-inositol also enhanced the mitochondrial biogenesis in renal tissue of diabetic rat by upregulating Nrf2/SIRT1/PGC-1α axis. The current study thus underlines the renoprotective effect myo-inositol, upregulation of mitophagy proteins and mitochondrial biogenesis upon myo-inositol treatment.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Glucosa/farmacología , Inositol/farmacología , Mitofagia/fisiología , Proteínas Quinasas/metabolismo , Ratas , Ubiquitina-Proteína Ligasas/metabolismo
9.
Zhongguo Zhong Yao Za Zhi ; 47(2): 484-491, 2022 Jan.
Artículo en Chino | MEDLINE | ID: mdl-35178993

RESUMEN

Amyloid ß-protein(Aß) deposition in the brain is directly responsible for neuronal mitochondrial damage of Alzheimer's disease(AD) patients. Mitophagy, which removes damaged mitochondria, is a vital mode of neuron protection. Ginsenoside Rg_1(Rg_1), with neuroprotective effect, has displayed promising potential for AD treatment. However, the mechanism underlying the neuroprotective effect of Rg_1 has not been fully elucidated. The present study investigated the effects of ginsenoside Rg_(1 )on the autophagy of PC12 cells injured by Aß_(25-35) to gain insight into the neuroprotective mechanism of Rg_1. The autophagy inducer rapamycin and the autophagy inhi-bitor chloroquine were used to verify the correlation between the neuroprotective effect of Rg_1 and autophagy. The results showed that Rg_1 enhanced the viability and increased the mitochondrial membrane potential of Aß-injured PC12 cells, while these changes were blocked by chloroquine. Furthermore, Rg_(1 )treatment increased the LC3Ⅱ/Ⅰ protein ratio, promoted the depletion of p62 protein, up-regulated the protein levels of PINK1 and parkin, and reduced the amount of autophagy adaptor OPTN, which indicated the enhancement of autophagy. After the silencing of PINK1, a key regulatory site of mitophagy, Rg_1 could not increase the expression of PINK1 and parkin or the amount of NDP52, whereas it can still increase the LC3Ⅱ/Ⅰ protein ratio and promote the depletion of OPTN protein which indicated the enhancement of autophagy. Collectively, the results of this study imply that Rg_1 can promote autophagy of PC12 cells injured by Aß, and may reduce Aß-induced mitochondrial damage by promoting PINK1-dependent mitophagy, which may be one of the key mechanisms of its neuroprotective effect.


Asunto(s)
Ginsenósidos , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/toxicidad , Animales , Ginsenósidos/farmacología , Humanos , Mitofagia/fisiología , Células PC12 , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Ratas , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
10.
Mol Neurobiol ; 59(1): 535-555, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34725778

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder which leads to mental deterioration due to aberrant accretion of misfolded proteins in the brain. According to mitochondrial cascade hypothesis, mitochondrial dysfunction is majorly involved in the pathogenesis of AD. Many drugs targeting mitochondria to treat and prevent AD are in different phases of clinical trials for the evaluation of safety and efficacy as mitochondria are involved in various cellular and neuronal functions. Mitochondrial dynamics is regulated by fission and fusion processes mediated by dynamin-related protein (Drp1). Inner membrane fusion takes place by OPA1 and outer membrane fusion is facilitated by mitofusin1 and mitofusin2 (Mfn1/2). Excessive calcium release also impairs mitochondrial functions; to overcome this, calcium channel blockers like nilvadipine are used. Another process acting as a regulator of mitochondrial function is mitophagy which is involved in the removal of damaged and non-functional mitochondria however this process is also altered in AD due to mutations in Presenilin1 (PS1) and Amyloid Precursor Protein (APP) gene. Mitochondrial dynamics is altered in AD which led to the discovery of various fission protein (like Drp1) inhibitors and drugs that promote fusion. Modulations in AMPK, SIRT1 and Akt pathways can also come out to be better therapeutic strategies as these pathways regulate functions of mitochondria. Oxidative phosphorylation is major generator of Reactive Oxygen Species (ROS) leading to mitochondrial damage; therefore reduction in production of ROS by using antioxidants like MitoQ, Curcumin and Vitamin Eis quiteeffective.


Asunto(s)
Enfermedad de Alzheimer/terapia , Mitocondrias/metabolismo , Dinámicas Mitocondriales/fisiología , Mitofagia/fisiología , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Dinaminas/metabolismo , Humanos , Neuronas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
11.
Mol Immunol ; 142: 63-75, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34965485

RESUMEN

Severe acute pancreatitis (SAP) is complicated by systemic inflammatory response syndrome and multiple organ dysfunction, the disease will eventually result in death in almost half of the case. The spleen, as the largest immune organ adjacent to the pancreas, is prone to damage in SAP, thereby aggravating the damage of other organs and increasing mortality. However, to date, the research on the mechanism and treatment of spleen injury caused by SAP is still in its infancy. Herein, we investigated the mechanism of spleen injury, and explored the application potential of tuftsin for relieving spleen damage in SAP mice. Firstly, SAP mice model was constructed via the retrograde infusion of 3.5 % sodium taurocholate into the biliopancreatic duct. Then, we proved that the up-regulation of Toll-like receptor 4 (TLR4) in spleen would lead to the accumulation of reactive oxygen species (ROS) and mitochondrial dysfunction under SAP conditions. The splenic ROS and mitochondrial dysfunction could be improved by N-acetylcysteine (NAC) treatment or knocking out TLR4 in SAP mice. Meanwhile, we found that NAC treatment could also improve the autophagy of spleen tissue, suggesting that splenic ROS may affect impaired autophagy, causing the accumulation of damaged mitochondria, aggravating spleen damage. Furthermore, we verified the mechanism of spleen injury is caused by splenic ROS affecting PI3K/p-AKT/mTOR pathway-mediated autophagy. In addition, we detected the spleen injury caused by SAP could decrease the concentration of tuftsin in the serum of mice. Whereas, exogenous supplementation of tuftsin ameliorated the pathological damage, ROS accumulation, impaired autophagy, inflammation expression and apoptosis in damaged spleen. In summary, we verified the new mechanism of SAP-caused spleen damage that TLR4-induced ROS provoked mitophagy impairment and mitochondrial dysfunction in spleen via PI3K/p-AKT mTOR signaling, and the application potential of tuftsin in treating spleen injury, which might expand novel ideas and methods for the treatment of pancreatitis.


Asunto(s)
Mitofagia/fisiología , Pancreatitis/patología , Especies Reactivas de Oxígeno/metabolismo , Bazo/patología , Receptor Toll-Like 4/metabolismo , Acetilcisteína/farmacología , Animales , Apoptosis/fisiología , Factores Inmunológicos/uso terapéutico , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Mitocondrias/patología , Páncreas/patología , Pancreatitis/inducido químicamente , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Bazo/lesiones , Serina-Treonina Quinasas TOR/metabolismo , Ácido Taurocólico/toxicidad , Receptor Toll-Like 4/genética , Tuftsina/uso terapéutico
12.
Mol Med Rep ; 24(1)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33955500

RESUMEN

The acupuncture penetrating line of Baihui (GV20) to Qubin (GB7) spans the parietal, frontal and temporal lobes. The present study aimed to elucidate the mechanism by which electroacupuncture (EA) at GV20­GB7 regulates mitophagy in intracerebral hemorrhage (ICH) and whether it serves a neuroprotective role. A whole blood­induced ICH model was used. Mitophagy­regulating proteins, including BCL/adenovirus E1B 19 kDa­interacting protein 3 (BNIP3), PTEN­induced putative kinase 1 (PINK1), Parkin and apoptosis­associated proteins were detected by western blotting; autophagy following ICH was evaluated by immunofluorescent techniques; morphological characteristics of mitophagy were observed using transmission electron microscopy; and TUNEL assay was performed to determine the number of apoptotic cells. Immunohistochemistry was used to detect p53 expression. The protective role of EA (GV20­GB7) via enhanced mitophagy and suppressed apoptosis in ICH was further confirmed by decreased modified neurological severity score. The results showed that EA (GV20­GB7) treatment upregulated mitochondrial autophagy following ICH and inhibited apoptotic cell death. The mechanism underlying EA (GV20­GB7) treatment may involve inhibition of p53, an overlapping protein of autophagy and apoptosis. EA (GV20­GB7) treatment decreased neurobehavioral deficits following ICH but pretreatment with 3­methyladenine counteracted the beneficial effects of EA (GV20­GB7) treatment. In conclusion, EA (GV20­GB7) improved recovery from ICH by regulating the balance between mitophagy and apoptosis.


Asunto(s)
Hemorragia Cerebral/terapia , Electroacupuntura/métodos , Puntos de Acupuntura , Animales , Apoptosis/fisiología , Autofagia/fisiología , Caspasa 3/metabolismo , Hemorragia Cerebral/patología , Modelos Animales de Enfermedad , Masculino , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Mitofagia/fisiología , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas Sprague-Dawley , Índice de Severidad de la Enfermedad , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteína X Asociada a bcl-2/metabolismo
13.
Neuropeptides ; 87: 102134, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33639357

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disorder, characterized by the loss of dopaminergic neurons in the substantia nigra and the deposition of Lewy bodies. Mitochondrial dysfunction, oxidative stress, and autophagy dysfunction are involved in the pathogenesis of PD. Ghrelin is a brain-gut peptide that has been reported that protected against 1-methyl-4-phenyl-1,2,3,6- tetrahydropyran (MPTP)/MPP+-induced toxic effects. In the present work, human neuroblastoma SH-SY5Y cells were exposed to rotenone as a PD model to explore the underlying mechanism of ghrelin. We found that ghrelin inhibited rotenone-induced cytotoxicity, mitochondrial dysfunction, and apoptosis by improving cell viability, increasing the ratio of red/green of JC-1, inhibiting the production of reactive oxidative species (ROS), and regulating Bcl-2, Bax, Cytochrome c, caspase-9, and caspase-3 expression. Besides, ghrelin promoted mitophagy accompanied by up-regulating microtubule-associated protein 1 Light Chain 3B-II/I(LC3B-II/I) and Beclin1 but decreasing the expression of p62. Moreover, ghrelin promoted PINK1/Parkin mitochondrial translocation. Additionally, we investigated that ghrelin activated the AMPK/SIRT1/PGC1α pathway and pharmacological inhibition of AMPK and SIRT1 abolished the cytoprotection of ghrelin, decreased the level of mitophagy, and PINK1/Parkin mitochondrial translocation. Taken together, our findings suggested that mitophagy and AMPK/SIRT1/PGC1α pathways were related to the cytoprotection of ghrelin. These findings provided novel insights into the underlying mechanisms of ghrelin, further mechanistic studies on preclinical and clinical levels are required to be conducted with ghrelin to avail and foresee it as a potential agent in the treatment and management of PD.


Asunto(s)
Ghrelina/fisiología , Mitocondrias/efectos de los fármacos , Mitofagia/fisiología , Proteínas del Tejido Nervioso/fisiología , Rotenona/toxicidad , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/fisiología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Regulación de la Expresión Génica/efectos de los fármacos , Ghrelina/farmacología , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Neuroblastoma , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Parkinson , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/fisiología , Proteínas Quinasas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Especies Reactivas de Oxígeno , Rotenona/antagonistas & inhibidores , Sirtuina 1/antagonistas & inhibidores , Sirtuina 1/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , alfa-Sinucleína/biosíntesis , alfa-Sinucleína/genética
14.
Phytomedicine ; 81: 153415, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33285471

RESUMEN

BACKGROUND: Neuronal excitotoxicity induces a plethora of downstream signaling pathways, resulting in the calcium overload-induced excitotoxic cell death, a well-known phenomenon in cerebrovascular and neurodegenerative disorders. The naturally occurring phytosterol, stigmasterol (ST) is known for its potential role in cholesterol homeostasis and neuronal development. However, the ability of ST to protect against the induced excitotoxicity in hippocampal neurons has not been investigated yet. PURPOSE: The present study aimed to investigate whether ST could protect against hypoxia/reoxygenation (H/R)-induced excitotoxicity in hippocampal neurons. METHODS: After H/R, neurons were initially subjected to trypan blue exclusion assay for the assessment of cell viability. Live staining using fluorescence dyes namely JC-1 (5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide), DCFDA (2',7'-dichlorofluorescein diacetate) and FM1-43 (N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl) were used to measure MMP, ROS and synaptic vesicle pool size. Immunostaining was performed to analyze the expression levels of vesicular glutamate transporter 1 (VGLUT1), N-methyl-D-acetate receptor subunit 2B (GluN2B), LC3BII, p62, and PTEN induced protein kinase 1 (PINK1) in neuron after H/R. Western blotting was carried out to measure the protein expression of GluN2B. The molecular dynamics simulation was employed to elucidate the LXRß agonistic conformation of ST. RESULT: Pre-incubation of neuronal cultures with ST (20 µM) protected against excitotoxicity, and attenuated reactive oxygen species (ROS) generation, double-stranded DNA break, and mitochondrial membrane potential (MMP) loss. ST treatment also resulted in the downregulation of the expressions of VGLUT1 and GluN2B and the reduction of the size of recyclable synaptic vesicle (SV) pool. Like LXRß agonist GW3695, ST suppressed the expression of GluN2B. Furthermore, ST induced mitophagy through upregulating the expressions of LC3BII, p62, and PINK1. The molecular simulation study showed that ST interacted with the ligand binding domain of liver X receptor ß (LXRß), a known binding receptor of ST, through multiple hydrogen bonding. CONCLUSION: Collectively, these findings revealed that ST exhibited a promising neuroprotective effect by regulating both pre- and post-synaptic events following H/R, particularly, attenuation of GluN2B-mediated excitotoxicity and oxidative stress, and induction of mitophagy, and suggested that ST might be a therapeutic promise against ischemic stroke and its associated neurological disorders.


Asunto(s)
Receptores X del Hígado/agonistas , Mitofagia/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Daño por Reperfusión/prevención & control , Estigmasterol/farmacología , Animales , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Hipocampo/citología , Hipoxia/tratamiento farmacológico , Hipoxia/fisiopatología , Receptores X del Hígado/química , Receptores X del Hígado/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitofagia/fisiología , Simulación del Acoplamiento Molecular , Neuronas/metabolismo , Neuronas/patología , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Estigmasterol/química , Estigmasterol/metabolismo
15.
Biomed Pharmacother ; 127: 110148, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32344255

RESUMEN

Myocardial ischemia/reperfusion (I/R) is an important complication of reperfusion therapy for myocardial infarction, and trimetazidine is used successfully for treatment of ischemic cardiomyopathy by regulating mitochondrial function. Moreover, electroacupuncture (EA) preconditioning was demonstrated to be cardioprotective in both in vivo rodent models and in patients undergoing heart valve replacement surgery. However, the mechanisms have not been well elucidated. Mitophagy, mediated by the mTORC1-ULK1-FUNDC1 (mTOR complex 1-unc-51-like autophagy-activating kinase 1-FUN14 domain-containing 1) pathway, can regulate mitochondrial mass and cell survival effectively to restrain the development of myocardial ischemia/reperfusion injury (MIRI). In this study, we hypothesized that EA preconditioning ameliorated MIRI via mitophagy. To test this, rapamycin, an mTOR inhibitor, was used. The results showed that EA preconditioning could reduce the infarct size and risk size, and decrease the ventricular arrhythmia score and serum creatine kinase-myocardial band isoenzyme (CK-MB), lactate dehydrogenase (LDH), and cardiac troponin T (cTnT) in MIRI rats. Moreover, it also attenuated MIRI-induced apoptosis and mitophagy accompanied by elevated mTORC1 level and decreased ULK1 and FUNDC1 levels. However, these effects of EA preconditioning were blocked by rapamycin, which aggravated MIRI, reduced adenosine triphosphate (ATP) production, and antagonized infarct size reduction. In conclusion, our results indicated that EA preconditioning protected the myocardium against I/R injury by inhibiting mitophagy mediated by the mTORC1-ULK1-FUNDC1 pathway.


Asunto(s)
Electroacupuntura/métodos , Mitofagia/fisiología , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/terapia , Adenosina Trifosfato/metabolismo , Animales , Apoptosis/fisiología , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Modelos Animales de Enfermedad , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Daño por Reperfusión Miocárdica/fisiopatología , Ratas , Ratas Sprague-Dawley , Sirolimus/farmacología
16.
Biochem Pharmacol ; 174: 113815, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31972167

RESUMEN

Diabetes is related to alterations in glucose and lipid metabolism, which are linked to endothelial cell (EC) dysfunction. Salvianolic acid B (Sal B), one of the major ingredient of Danshen (Salvia miltiorrhiza), possesses many of the biological activities. However, protective effect of Sal B against oxLDL induced ECs dysfunction under high glucose condition (high Glu) is not well known. Thus, in this study, we investigated the protective effects of Sal B against EC dysfunction induced by oxLDL and high Glu and examined the associated mechanisms. Our results showed that Sal B significantly and dose-dependently decreased oxLDL- and high Glu-mediated induction of lectin-like oxLDL receptor-1 and significantly decreased oxLDL- and high Glu-induced mitochondrial ROS (mtROS) production and mitochondrial DNA (mtDNA) expression. In addition, oxLDL stimulation under high-Glu conditions activated the intrinsic apoptosis pathway in ECs. These effects were abolished by Sal B through reductions in mtROS and mtDNA. Furthermore, Sal B inhibited oxLDL- and high Glu-induced increases in fission protein (p-DRP 1 and FIS 1) levels. OxLDL and high Glu activated the ROCK1 pathway, which is involved in apoptosis and mitophagy, while Sal B significantly reduced ROCK1 protein levels. The protective effects of Sal B against oxLDL- and high Glu-induced endothelial dysfunction may be mediated by reductions in apoptosis-related proteins and fission proteins through suppression of the ROCK1-mediated pathway.


Asunto(s)
Benzofuranos/farmacología , Células Endoteliales/metabolismo , Glucosa/toxicidad , Lipoproteínas LDL/toxicidad , Mitofagia/fisiología , Quinasas Asociadas a rho/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Medicamentos Herbarios Chinos/farmacología , Células Endoteliales/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Mitofagia/efectos de los fármacos , Quinasas Asociadas a rho/antagonistas & inhibidores
17.
Cell ; 180(2): 296-310.e18, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31978346

RESUMEN

Mitochondria and lysosomes are functionally linked, and their interdependent decline is a hallmark of aging and disease. Despite the long-standing connection between these organelles, the function(s) of lysosomes required to sustain mitochondrial health remains unclear. Here, working in yeast, we show that the lysosome-like vacuole maintains mitochondrial respiration by spatially compartmentalizing amino acids. Defects in vacuole function result in a breakdown in intracellular amino acid homeostasis, which drives age-related mitochondrial decline. Among amino acids, we find that cysteine is most toxic for mitochondria and show that elevated non-vacuolar cysteine impairs mitochondrial respiration by limiting intracellular iron availability through an oxidant-based mechanism. Cysteine depletion or iron supplementation restores mitochondrial health in vacuole-impaired cells and prevents mitochondrial decline during aging. These results demonstrate that cysteine toxicity is a major driver of age-related mitochondrial deterioration and identify vacuolar amino acid compartmentation as a cellular strategy to minimize amino acid toxicity.


Asunto(s)
Cisteína/toxicidad , Hierro/metabolismo , Mitocondrias/metabolismo , Aminoácidos/metabolismo , Senescencia Celular/fisiología , Cisteína/metabolismo , Homeostasis , Lisosomas/metabolismo , Mitocondrias/fisiología , Mitofagia/fisiología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Vacuolas/metabolismo
18.
Aging (Albany NY) ; 11(23): 11504-11519, 2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31834867

RESUMEN

Resveratrol (3,5,4'-trihydroxystilbene, RSV) is a natural potential anti-aging polyphenolic compound frequently used as a nutritional supplement against several diseases. However, the underlying mechanisms by which resveratrol regulates postovulatory aging of oocytes are still insufficiently known. In this study, we found that resveratrol could delay postovulatory aging and improve developmental competence of oocytes through activating selective mitophagy in the mouse. Resveratrol could maintain spindle morphology but it disturbed cortical granule (CG) distribution during oocyte aging. This might be due to upregulated mitophagy, since blocking mitophagy by cyclosporin A (CsA) treatment affected oocyte quality by damaging mitochondrial function and it decreased embryonic development. In addition, we also observed an involvement of FoxO3a in regulating mitophagy in aging oocytes following resveratrol treatment. Taken together, our results provide evidence that mitophagy induced by resveratrol is a potential mechanism to protect against postovulatory oocyte aging.


Asunto(s)
Mitofagia/efectos de los fármacos , Oocitos/efectos de los fármacos , Ovulación/fisiología , Resveratrol/farmacología , Adenina/análogos & derivados , Adenina/farmacología , Animales , Ciclosporina/farmacología , Femenino , Ratones , Ratones Endogámicos ICR , Mitofagia/fisiología , Oocitos/fisiología
20.
Brain Res Bull ; 144: 1-13, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30414993

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a common neurodegenerative disorder, but little is known about the exact causes and pathophysiology of this disease. In transgenic mouse models of ALS, mitochondrial abnormalities develop during the disease and might contribute to the progression of ALS. Gene therapy was recently shown to induce beneficial effects. For example, the delivery of human insulin-like growth factor-1 (hIGF-1) by self-complementary adeno-associated virus (AAV) vectors has been shown to prolong the lifespan of ALS transgenic mice. However, the function of IGF-1 in mitochondria has not been systematically studied in ALS models. In this study, scAAV9-hIGF-1 was intramuscularly injected into transgenic SOD1G93A mice and administered to cell lines expressing the ∼25-kDa C-terminal fragment of transactive response DNA-binding protein (TDP-25). The mitochondrial electrical transmembrane potential was hyperpolarized, and electron microscopy findings revealed that the abnormal mitochondria were transformed. Moreover, the intrinsic mitochondrial apoptotic process was modified through the upregulation of anti-apoptotic proteins (B-cell lymphoma-extra large (Bcl-xl) and B-cell lymphoma-2 (Bcl-2)), the downregulation of pro-apoptotic proteins (Bcl-2-associated x protein (Bax) and Bcl-2 homologous antagonist killer (Bak)) and a reduction in mitochondrial cytochrome c release. Mitophagy was also increased after scAAV9-hIGF-1 treatment, as evidenced by a decrease in the p62 level and an increase in the LC3-II level. Furthermore, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) system was used to delete the IGF-1 gene in SOD1G93A model mice via an intrathecal injection of scAAV9-sgRNA-IGF1-Cas9 to confirm these findings. The protective effect of IGF-1 on the mitochondria decreased after genetic deletion. These novel findings demonstrate that IGF-1 strongly protects mitochondria from apoptosis and upregulates mitophagy in mouse and cell models of ALS. Therefore, therapies that specifically protect mitochondrial function might be promising strategies for treating ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Apoptosis/fisiología , Línea Celular , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Factor I del Crecimiento Similar a la Insulina/fisiología , Masculino , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Mitofagia/fisiología , Neuronas Motoras/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Fragmentos de Péptidos/metabolismo , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA