Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.143
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Chemosphere ; 357: 142038, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38621486

RESUMEN

Mercury (Hg) stable isotope ratios supplemented by Hg solid speciation data were determined in soils in a former Fe-Hg mining/smelting area (Jedová hora, Czech Republic, Central Europe). The dominant Hg phase in the studied soils was found to be cinnabar (HgS). A secondary form of soil Hg(II) was represented by Hg weakly and strongly bound to mineral (micro)particles, as revealed by thermo-desorption analysis. These Hg species probably play a key role in local soil Hg processes and biogeochemical cycling. The Hg isotopic data generally showed small differences between HgS (-1.1 to -0.8‰; δ202Hg) and the soil samples (-1.4 to -0.9‰; δ202Hg), as well as limited isotopic variability within the two studied soil profiles. On the other hand, the detected negative δ202Hg shift (∼0.4‰) in organic horizons compared to mineral soils in the highly contaminated profile suggests the presence of secondary post-depositional Hg processes, such as sorption or redox changes. For the less contaminated profile, the observed Hg isotopic variation (∼0.3‰; δ202Hg) in the subsurface mineral soil compared to both overlying and underlying horizons is likely due to cyclic redox reactions associated with Hg isotopic fractionation. We assume that the adsorption of Hg(II) to secondary Fe(III)/Mn(III,IV)-oxides could be of major importance in such cases.


Asunto(s)
Monitoreo del Ambiente , Hierro , Mercurio , Minería , Contaminantes del Suelo , Suelo , Mercurio/análisis , Mercurio/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química , Suelo/química , Monitoreo del Ambiente/métodos , República Checa , Hierro/química , Hierro/análisis , Isótopos de Mercurio/análisis , Compuestos de Mercurio
2.
Environ Pollut ; 349: 123920, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38582187

RESUMEN

This research endeavors to elevate indoor air quality within aging school environments by concentrating on refining interior finishing materials and windows. Renovations, encompassing window and floor remodeling in classrooms, aim to mitigate particulate matter (PM) infiltration and enhance air exchange rates. Utilizing SPS30 sensors for the analysis of 0.3-2.5 µm particles, with a focus on their implications for human health, the study evaluated air exchange rates, deposition rates, infiltration rates, and particle generation during classroom activities. Post-renovation results demonstrated a noteworthy decrease in air exchange rates, indicating an enhancement in airtightness. The investigation delves into particle generation with various flooring materials, accentuating the importance of opting for durable and low-particle-generating alternatives. Health risk assessments, considering multiple exposure routes (inhalation, dermal contact, and ingestion), revealed reduced risks post-renovation, particularly for children. To further optimize indoor air quality, the study suggests the implementation of air purification systems. Examination of PM generation during student activities showcased a substantial reduction post-renovation. This study underscores the positive influence of architectural enhancements on indoor air quality while acknowledging the necessity for holistic solutions and continuous research.


Asunto(s)
Contaminación del Aire Interior , Material Particulado , Instituciones Académicas , Contaminación del Aire Interior/estadística & datos numéricos , Contaminación del Aire Interior/análisis , Material Particulado/análisis , Humanos , Pisos y Cubiertas de Piso , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis
3.
Sci Total Environ ; 927: 171881, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38531454

RESUMEN

The increasing popularity and recognition of citizen science approaches to monitor soil health have promoted the idea to assess soil microbial decomposition based on a standard litter sample - tea bags. Although tea bag initiatives are expanding across the world, the global datasets remain biased in regard to investigating regions and biomes. This study aimed to expand the tea bag initiative to European Russia, which remains a "white spot" on the tea bag index map. We also added urban soils into the analysis, which were underestimated previously. We compared the standard and local tea brands to explore possible adaptations of the standard approach to regions with limited access to standard tea brands. The established monitoring network included natural and urban sites in six vegetation zones along a 3000 km latitudinal gradient. There was a very close linear relationship (R2 = 0.94-0.98) in the mass loss of alternative and standard tea litter. The mass loss of green tea in soil along the latitudinal gradient showed an increasing trend from north to south. Variations in the microbial decomposition of green tea were mainly explained by the latitudinal gradient, with low soil temperature identified as key factors hampering decomposition. Mass loss of the more recalcitrant rooibos tea was mainly determined via land use, with decomposition rates on average 1.3 times higher in urban soils. This pattern was in line with higher soil temperatures and pH in urban sites compared to natural counterparts. The findings of our study could prove valuable in extending the tea bag network of soil decomposition assessment into broader territories, including urban areas. Additionally, they could facilitate the involvement of citizen science and complete the database for C cycle modeling depending on climatic conditions.


Asunto(s)
Monitoreo del Ambiente , Suelo , , Federación de Rusia , Monitoreo del Ambiente/métodos , Suelo/química , Microbiología del Suelo
4.
Food Chem Toxicol ; 187: 114586, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38493978

RESUMEN

The risk assessment of heavy metals in tea is extremely imperative for the health of tea consumers. However, the effects of varietal variations and seasonal fluctuations on heavy metals and minerals in tea plants remain unclear. Inductively coupled plasma optical emission spectrometry (ICP-OES) was used to evaluate the contents of aluminum (Al), manganese (Mn), magnesium (Mg), boron (B), calcium (Ca), copper (Cu), cobalt (Co), iron (Fe), sodium (Na), zinc (Zn), arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), and antimony (Sb) in the two categories of young leaves (YL) and mature leaves (ML) of tea (Camellia sinensis) cultivars throughout the growing seasons. The results showed significant variations in the contents of the investigated nutrients both among the different cultivars and growing seasons as well. Furthermore, the average concentrations of Al, Mn, Mg, B, Ca, Cu, Co, Fe, Na, Zn, As, Cd, Cr, Ni, and Sb in YL ranged, from 671.58-2209.12, 1260.58-1902.21, 2290.56-2995.36, 91.18-164.68, 821.95-5708.20, 2.55-3.80, 3.96-25.22, 37.95-202.84, 81.79-205.05, 27.10-69.67, 0.028-0.053, 0.065-0.127, 2.40-3.73, 10.57-12.64, 0.11-0.14 mg kg-1, respectively. In ML, the concentrations were 2626.41-7834.60, 3980.82-6473.64, 3335.38-4537.48, 327.33-501.70, 9619.89-13153.68, 4.23-8.18, 17.23-34.20, 329.39-567.19, 145.36-248.69, 40.50-81.42, 0.089-0.169, 0.23-0.27, 5.24-7.89, 18.51-23.97, 0.15-0.19 mg kg-1, respectively. The contents of all analyzed nutrients were found to be higher in ML than in YL. Target hazard quotients (THQ) of As, Cd, Cr, Ni, and Sb, as well as the hazard index (HI), were all less than one, suggesting no risk to human health via tea consumption. This research might provide the groundwork for essential minerals recommendations, as well as a better understanding and management of heavy metal risks in tea.


Asunto(s)
Arsénico , Camellia sinensis , Metales Pesados , Humanos , Estaciones del Año , Cadmio/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/toxicidad , Metales Pesados/análisis , Arsénico/análisis , Minerales , Cromo/análisis , Níquel/análisis , Manganeso/análisis , Aluminio/análisis , Medición de Riesgo , Zinc/análisis , Té/química
5.
Environ Sci Pollut Res Int ; 31(16): 23462-23481, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38466385

RESUMEN

Over the past two decades, oil spills have been one of the most serious ecological disasters, causing massive damage to the aquatic and terrestrial ecosystems as well as the socio-economy. In view of this situation, several methods have been developed and utilized to analyze oil samples. Among these methods, laser-induced fluorescence (LIF) technology has been widely used in oil spill detection due to its classification method, which is based on the fluorescence characteristics of chemical material in oil. This review systematically summarized the LIF technology from the perspective of excitation wavelength selection and the application of traditional and novel machine learning algorithms to fluorescence spectrum processing, both of which are critical for qualitative and quantitative analysis of oil spills. It can be seen that an appropriate excitation wavelength is indispensable for spectral discrimination due to different kinds of polycyclic aromatic hydrocarbons' (PAHs) compounds in petroleum products. By summarizing some articles related to LIF technology, we discuss the influence of the excitation wavelength on the accuracy of the oil spill detection model and proposed several suggestions on the selection of excitation wavelength. In addition, we introduced some traditional and novel machine learning (ML) algorithms and discussed the strengths and weaknesses of these algorithms and their applicable scenarios. With an appropriate excitation wavelength and data processing algorithm, it is believed that laser-induced fluorescence technology will become an efficient technique for real-time detection and analysis of oil spills.


Asunto(s)
Contaminación por Petróleo , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Contaminación por Petróleo/análisis , Fluorescencia , Ecosistema , Contaminantes Químicos del Agua/análisis , Petróleo/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Rayos Láser , Monitoreo del Ambiente/métodos
6.
J Environ Manage ; 356: 120548, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492420

RESUMEN

Urban stormwater runoff is a significant source of nutrient pollution that is very costly to treat. Water quality trading (WQT) is a market-based strategy that can be used to lower the costs associated with meeting stormwater quality regulations. While many WQT programs have experienced low participation, Virginia's program has seen high participation due to the inclusion of land developers and other regulated stormwater dischargers. However, the extent to which WQT is used as a compliance option by regulated stormwater dischargers is not well understood, particularly when compared with the adoption of traditional compliance options. To address this knowledge gap, we collated a novel dataset comprising site characteristics and stormwater compliance methods for all development projects in the City of Roanoke, Virginia from December 2015 to March 2022. We analyzed this dataset to characterize the adoption of nutrient offset credits and other compliance methods being used, including best management practices (BMPs) and improved land covers associated with reduced nutrient export. Results show that credits are the preferred compliance option in Roanoke and were used as the only treatment compliance method for 59% of projects with treatment requirements. Projects using credits corresponded with a lower median disturbed area (1.36 acres) and lower median nutrient load reduction requirement (0.69 pounds of total phosphorus per year) compared with other compliance methods. Furthermore, we found that 58% of the projects that used credits achieved stormwater quantity compliance using methods other than implementing stormwater control devices. By mapping buyers and sellers of credits, we found that all credit sellers are downstream of the development projects. We discuss how this downstream trading could be a cause for concern, as part of a larger discussion of the advantages of tracking stormwater compliance methods, drawing on Roanoke as a case study.


Asunto(s)
Contaminantes Químicos del Agua , Calidad del Agua , Virginia , Lluvia , Ciudades , Fósforo/análisis , Movimientos del Agua , Monitoreo del Ambiente/métodos
7.
Environ Monit Assess ; 196(4): 336, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38430341

RESUMEN

River nutrient enrichment is a significant issue, and researchers worldwide are concerned about phosphorus. The physicochemical characteristics and phosphorus (P) fractions of 36 sediment and water samples from the Ganga (Kanpur, Prayagraj, Varanasi) and Yamuna (Mathura, Agra, Prayagraj) rivers were examined. Among the physicochemical parameters, pH exceeded the permissible limit in Ganga and Yamuna River water and sediment samples. Electrical conductivity (EC) and alkalinity were within the permissible limits, whereas total nitrogen (TN) exceeded the limit in Yamuna water. The analysis of phosphorus fractions indicated the dominance of inorganic phosphorus (IP) (76% in Ganga and 96% in Yamuna) over organic phosphorus in both rivers, suggesting the mineralization and microbial degradation as major processes responsible for transforming OP to IP. The positive correlation of pH with IP, AP (apatite phosphorus), and NAIP (non-apatite inorganic phosphorus) explains the release of inorganic phosphorus under alkaline conditions. The correlation between total organic carbon (TOC), TN, and organic phosphorus (OP) indicated the organic load in the rivers from allochthonous and autochthonous sources. Phosphorus released from river sediments and the concentration of phosphate in overlying river water show a positive correlation, suggesting that river sediments may serve as phosphorus reservoirs. The average phosphorus pollution index (PPI) was above one in both rivers, with relatively higher PPI values observed in the Yamuna River, indicating the contamination of sediment with phosphorus, indicating the contamination of sediment with phosphorus. This study revealed variations in the P fractionation of the sediment in both rivers, primarily as a result of contributions from different P sources. This information will be useful for applying different mitigation techniques to lower the phosphorus load in both river systems.


Asunto(s)
Ríos , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Agua/análisis , Fósforo/análisis , Disponibilidad Biológica , Contaminantes Químicos del Agua/análisis , Eutrofización , India , Sedimentos Geológicos/análisis
8.
Water Res ; 254: 121372, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38430761

RESUMEN

Watershed water quality modeling is a valuable tool for managing ammonium (NH4+) pollution. However, simulating NH4+ pollution presents unique challenges due to the inherent instability of NH4+ in natural environment. This study modified the widely-used Soil and Water Assessment Tool (SWAT) model to simulate non-point source (NPS) NH4+ processes, specifically incorporating the simulation of land-to-water NH4+ delivery. The Jiulong River Watershed (JRW) is the study area, a coastal watershed in Southeast China with substantial sewage discharge, livestock farming, and fertilizer application. The results demonstrate that the modified model can effectively simulate the NPS NH4+ processes. It is recommended to use multiple sets of observations to calibrate NH4+ simulation to enhance model reliability. Despite constituting a minor proportion (5.6 %), point source inputs significantly contribute to NH4+ load at watershed outlet (32.4∼51.9 %), while NPS inputs contribute 15.3∼17.3 % of NH4+ loads. NH4+ primarily enters water through surface runoff and lateral flow, with negligible leaching. Average NH4+ land-to-water delivery rate is about 2.35 to 2.90 kg N/ha/a. High delivery rates mainly occur at agricultural areas. Notably, proposed NH4+ mitigation measures, including urban sewage treatment enhancement, livestock manure management improvement, and fertilizer application reduction, demonstrate potential to collectively reduce the NH4+ load at watershed outlet by 1/4 to 1/3 and significantly enhance water quality standard compliance frequency. Insights gained from modeling experience in the JRW offer valuable implications for NH4+ modeling and management in regions with similar climates and significant anthropogenic nitrogen inputs.


Asunto(s)
Compuestos de Amonio , Contaminantes Químicos del Agua , Fertilizantes , Aguas del Alcantarillado , Reproducibilidad de los Resultados , Monitoreo del Ambiente/métodos , Nitrógeno/análisis , Calidad del Agua , China , Ríos , Contaminantes Químicos del Agua/análisis , Fósforo/análisis
9.
Molecules ; 29(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38474484

RESUMEN

The determination and evaluation of 16 polycyclic aromatic hydrocarbons (PAHs) in seven Chinese herbal medicines (CHMs) were conducted through a rapid and straightforward extraction and purification method, coupled with GC-MS. A sample-based solid-phase extraction (SPE) pretreatment technique, incorporating isotopic internal standards, was employed for detecting various medicinal parts of CHMs. The assay exhibited linearity within the range of 5 to 500 ng/mL, with linear coefficients (R2) for PAHs exceeding 0.999. The recoveries of spiked standards ranged from 63.37% to 133.12%, with relative standard deviations (RSDs) ranging from 0.75% to 14.54%. The total PAH content varied from 176.906 to 1414.087 µg/kg. Among the 16 PAHs, phenanthrene (Phe) was consistently detected at the highest levels (47.045-168.640 µg/kg). Characteristic ratio analysis indicated that oil, coal, and biomass combustion were the primary sources of PAHs in CHMs. The health risk associated with CHMs was assessed using the lifetime carcinogenic risk approach, revealing potential health risks from the consumption of honeysuckle, while the health risks of consuming Lycium chinense berries were deemed negligible. For the other five CHMs (glycyrrhizae, Coix lacryma, ginseng, lotus seed, seed of Sterculia lychnophora), the health risk from consumption fell within acceptable ranges. Furthermore, sensitivity analyses utilizing Monte Carlo exposure assessment methods identified PAH levels in CHMs as health risk sensitizers. It is crucial to recognize that the consumption of herbal medicines is not a continuous process but entails potential health risks. Hence, the monitoring and risk assessment of PAH residues in CHMs demand careful attention.


Asunto(s)
Monitoreo del Ambiente , Hidrocarburos Policíclicos Aromáticos , Monitoreo del Ambiente/métodos , Hidrocarburos Policíclicos Aromáticos/análisis , Cromatografía de Gases y Espectrometría de Masas , Medición de Riesgo , Extractos Vegetales/análisis , China
10.
Mar Environ Res ; 196: 106439, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479292

RESUMEN

In semi-enclosed coastal brackish lakes, changes in dissolved oxygen in the bottom layer due to salinity stratification can affect the flux of phosphorus (P) at the sediment-water interface, resulting in short- and long-term water quality fluctuations in the water column. In this study, the physicochemical properties of the water layers and sediments at five sites in Saemangeum Lake were analyzed in spring and autumn for four years, and phosphorus release experiments from sediments were conducted for 20 days under oxic and anoxic conditions during the same period. Sediment total phosphorus (T-P) decreased in autumn compared to spring due to mineralization of organic bound phosphorus, which was the most dominant P fraction. This may be related to the increase in the ratio of PO4-P to T-P in bottom waters in autumn, when hypoxia was frequently observed. The difference in P fluxes between oxic and anoxic conditions indicated that during autumn, as compared to spring, the release of phosphorus could have a more immediate impact on the water column during the formation of hypoxia/anoxia. The main factors influencing changes in P fluxes from sediments were identified through redundancy analysis. Additionally, based on the results of multiple regression analysis, sediment TOC, sediment non-apatite phosphorus, porewater pH, and porewater PO4-P were determined to be the most significant factors affecting P fluxes from sediments, depending on the season or redox conditions. Recently, the increased influx of seawater into Saemangeum Lake has been shown to contribute to water quality improvements in the water column due to a strong dilution effect. However, the sediment environment has shifted towards a more reduced state, leading to increased P release under anoxic conditions. Therefore, for future water quality management within the lake, it is necessary to consistently address the recurring hypoxia and continuously monitor phosphorus dynamics.


Asunto(s)
Lagos , Contaminantes Químicos del Agua , Humanos , Lagos/química , Fósforo/análisis , Oxígeno , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/análisis , Hipoxia , China
11.
Chemosphere ; 353: 141597, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432466

RESUMEN

The contamination of creek sediments near industrially nuclear dominated site presents significant environmental challenges, particularly in identifying and quantifying potentially toxic metal (loid)s (PTMs). This study aims to measure the extent of contamination and apportion related sources for nine PTMs in alpine creek sediments near a typical uranium tailing dam from China, including strontium (Sr), rubidium (Rb), manganese (Mn), lithium (Li), nickel (Ni), copper (Cu), vanadium (V), cadmium (Cd), zinc (Zn), using multivariate statistical approach and Sr isotopic compositions. The results show varying degrees of contamination in the sediments for some PTMs, i.e., Sr (16.1-39.6 mg/kg), Rb (171-675 mg/kg), Mn (224-2520 mg/kg), Li (11.6-78.8 mg/kg), Cd (0.31-1.38 mg/kg), and Zn (37.1-176 mg/kg). Multivariate statistical analyses indicate that Sr, Rb, Li, and Mn originated from the uranium tailing dam, while Cd and Zn were associated with abandoned agricultural activities, and Ni, Cu, and V were primarily linked to natural bedrock weathering. The Sr isotope fingerprint technique further suggests that 48.22-73.84% of Sr and associated PTMs in the sediments potentially derived from the uranium tailing dam. The combined use of multivariate statistical analysis and Sr isotopic fingerprint technique in alpine creek sediments enables more reliable insights into PTMs-induced pollution scenarios. The findings also offer unique perspectives for understanding and managing aqueous environments impacted by nuclear activities.


Asunto(s)
Metales Pesados , Uranio , Cadmio , Zinc , Manganeso , Níquel , Estroncio , Litio , Medición de Riesgo , China , Metales Pesados/análisis , Monitoreo del Ambiente/métodos , Sedimentos Geológicos
12.
Mar Pollut Bull ; 200: 116059, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38335628

RESUMEN

The ultraphytoplankton composition and dynamics were assessed during a Saharan dust event occurring off the southern Tunisian coasts during the MERITE-HIPPOCAMPE Trans-Mediterranean oceanographic cruise. The composition of atmospheric dust was characterized in terms of nutriments and trace metals. Data-assimilative hydrodynamic model revealed no differences in the hydrological features along the sampling track and almost no water transport occurred during the period of atmospheric deposition. Dust deposition increased the growth rates and the productivity of the major phytoplanktonic cytometric groups, resulting in the highest surface biomass along the Mediterranean transect. One group, distinguished by low fluorescence and nanoplanktonic size, reacted to dust deposition within hours, exhibiting the highest growth rate and net productivity. The dust composition showed a substantial enrichment with organic phosphorous representing (56 % of Total phosphorus) and trace metals mainly Fe, Mn and V.


Asunto(s)
Polvo , Oligoelementos , Polvo/análisis , Fósforo , Oligoelementos/análisis , África del Norte , Monitoreo del Ambiente/métodos
13.
Environ Toxicol Pharmacol ; 107: 104394, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382585

RESUMEN

The Itezhi-tezhi Dam on the Kafue River in Zambia is a major capture fishery. However, the upstream reaches of the Kafue River receive effluents from copper mines. It was unclear whether fish health in the dam is adversely affected due to the mining effluents. We investigated the health status of fish in Itezhi-tezh Dam using a histology-based fish health assessment protocol with Oreochromis andersonii as a bioindicator. Fish were sampled in the Itezhi-tezh Dam and at a reference site further upstream on the Kafue River before it enters the mining region. Metal bioaccumulation, biometric indices and histological alterations in the gills, gonads, hearts, kidneys and livers were assessed. The findings revealed significantly higher copper and selenium sediment concentrations (p = 0.02843 and p = 0.02107 respectively), bioaccumulation of copper and selenium, and increased histological alterations in the gills, kidneys and livers of fish in the Itezhi-tezhi Dam.


Asunto(s)
Cíclidos , Metales Pesados , Selenio , Contaminantes Químicos del Agua , Animales , Cobre/toxicidad , Cobre/análisis , Bioacumulación , Selenio/toxicidad , Zambia , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/toxicidad , Metales Pesados/análisis
14.
Environ Sci Pollut Res Int ; 31(16): 23568-23578, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38421543

RESUMEN

Shallow urban lakes are naturally vulnerable to ecosystem degradation. Rapid urbanization in recent decades has led to a variety of aquatic problems such as eutrophication, algal blooms, and biodiversity loss, increasing the risk to lake-wide ecological sustainability. Instead of a simple binary assessment of ecological risk, holistic evaluation frameworks that consider multiple stressors and receptors can provide a more comprehensive assessment of overall ecological risk. In this study, we analyzed a combined dataset of government statistics, remote sensing images, and 1 year of field measurements to develop an index system for urban lake ecological risk assessment based on the pressure-state-response (PSR) framework. We used the developed ecological safety index (ESI) system to evaluate the ecological risk for three urban lakes in Jiangsu Province, China: Lake Yangcheng-LYC, Lake Changdang-LCD, and Lake Tashan-LTS. LYC and LTS were classified as "mostly safe" and "generally recognized as safe," respectively, while LCD was assessed as having "potential ecological risk." Our data suggest that socioeconomic pressure and aquatic health are the two main factors affecting the ecological risk in both LYC and LCD. The ecological risk of LTS could be improved more effectively if regional management plans are well implemented. Our study highlights the pressure of external wastewater loading, low forest-grassland coverage, and lake shoreline damage on the three selected urban lakes. The findings of this study can inform watershed management for lake ecosystem restoration and environmental sustainability.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Monitoreo del Ambiente/métodos , Lagos , Biodiversidad , China , Medición de Riesgo , Eutrofización
15.
Environ Sci Pollut Res Int ; 31(16): 23579-23590, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38421544

RESUMEN

In recent years, the eutrophication of lakes has accelerated in cold arid regions; the release of nutrients from sediments is an important contributor. The sequential extraction method, high-resolution peeper (HR-Peeper), and diffusive gradients in thin films (DGT) techniques were used to study the occurrence characteristics, release risk, and release mechanism of phosphorus (P) at the sediment-water interface (SWI) of Ulanor Wetland in the Hulun Lake Basin, Inner Mongolia, China. The mean total P concentration in overlying water was lower in August than that in May. Dissolved organic P (DOP) or particulate P (PP) was the main form of P in the overlying water. PP dominates in May and DOP in August. Refractory P was the main form of P in sediments. The concentrations of soluble reactive P and DGT-active P in the pore water of the sediment column were higher than those in the overlying water, and the concentrations were higher in August than those in May. Release of P in the wetland sediments occurred during the non-frozen seasons, with a higher risk in August than in May. The good linear correlation between dissolved P, Fe, and Mn in the DGT profiles verified their co-release due to the anaerobic reduction of Fe/Mn oxides. Moreover, alkaline sediments are also conducive to the release of sediment P. This study can provide data and theoretical support for eutrophication control in Ulanor Wetland and other similar water bodies in cold and arid regions.


Asunto(s)
Contaminantes Químicos del Agua , Agua , Contaminantes Químicos del Agua/análisis , Lagos , Fósforo/análisis , Estaciones del Año , Sedimentos Geológicos , Monitoreo del Ambiente/métodos , China
16.
Sci Total Environ ; 920: 170737, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38340860

RESUMEN

The study investigated the influence of a National Highway (NH) traversing tea estates (TEs) on heavy metal (HM) contamination in the top soils of Upper Assam, India. The dispersion and accumulation of six HMs, viz. cadmium (Cd), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), and zinc (Zn), within tea-growing soils were assessed using diverse indices: contamination factor (CF), degree of contamination (DC), enrichment factor (EF), geo-accumulation index (Igeo), modified degree of contamination (MDC), Nemerow pollution index (PINemerow), pollution load index (PLI), potential ecological risk factor (Eri), and potential ecological risk index (RI). The order of HM prevalence was Fe > Mn > Zn > Ni > Cu > Cd. Elevated Cd levels near the NH prompted immediate attention, while Cd and Zn showed moderate pollution in CF, EF, and RI. The remaining metals posed minimal individual risk (Eri< 40), resulting in an overall contamination range of "nil to shallow," signifying slight contamination from the studied metals. From MDC values for investigated metals, it was found to be "zero to very low degree of contamination" at all locations except the vicinity of NH. Soil pollution, as determined by PLI, indicated unpolluted soils in both districts, yet PINemerow values indicated slight pollution. The statistical analysis revealed that there is a significant decrease in most of the indices of HM as the distance from NH increases. The application of multivariate statistical techniques namely Principal Component Analysis and Cluster Analysis showed the presence of three distinct homogenous groups of distances based on different indices. This investigation underscores NH-associated anthropogenic effects on TE soil quality due to HM deposition, warranting proactive mitigation measures.


Asunto(s)
Camellia sinensis , Metales Pesados , Contaminantes del Suelo , Suelo , Cadmio/análisis , Medición de Riesgo , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Contaminación Ambiental/análisis , Zinc/análisis , Manganeso/análisis , Níquel/análisis ,
17.
J Contam Hydrol ; 261: 104305, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38301313

RESUMEN

Initial flush management is an effective measure to control non-point source pollution (NPSP) in storm runoff. However, determining the parameter of the initial flush in different areas may pose challenges in storm runoff management strategies. To address this issue, Erhai Lake in China, Yunnan-Guizhou Plateau, was selected as an example for the study. Erhai Lake is a typical mesotrophic lake with the profound influence of NPSP. The NPSP control strategy in this area will provide a valuable reference for other lakes. In 2021, 289 storm events and 190 ditchwater samples were detected around Erhai Lake. The average flow in the ditches ranged from 0.004 to 0.147 m3/s, the instant total nitrogen (TN) concentration ranged from 0.28 to 91.43 mg/L, and the instant total phosphorus (TP) concentration ranged from 0.26 to 7.35 mg/L in the storm events. It was found that the concentration of pollutants was lower than expected in the initial flush period. Instead, the event mean concentrations of TN and TP were 9.3 and 2.1 times higher than in the wet seasons, showing high nutrient concentration levels throughout the entire rainfall period. To manage storm runoff effectively, a flow-processes-division method was proposed to analyze the inflow condition and pollutant removal rate in different runoff periods. The peak flow interception strategy was recommended as the optimal stormwater management plan, as it showed the highest inflow conditions and 50% pollutant removal rate. Considering the need to reduce the constant flush of stormwater runoff, it is essential to establish a healthy water cycle system to alleviate NPSP and raise the Erhai water level. The storm runoff management method can serve as a practical tool for lake areas that do not exhibit initial flush characteristics.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Lluvia , China , Movimientos del Agua , Fósforo , Nitrógeno/análisis
18.
Environ Sci Pollut Res Int ; 31(15): 22759-22773, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38409383

RESUMEN

Petroleum hydrocarbon (PHC) contamination is a widespread and severe environmental issue affecting many countries' resource sectors. PHCs are mixtures of hydrocarbon compounds with varying molar masses that naturally attenuate at different rates. Lighter fractions attenuate first, followed by medium-molar-mass constituents, while larger molecules remain for longer periods. This results in significant regulatory challenges concerning residual hydrocarbons in long-term contaminated soils. This study examined the potential risks associated with residual PHC and its implications for risk-based management of heavily contaminated soils (23,000-26,000 mg PHC/kg). Ecotoxicological properties, such as seedling emergence and growth of two native plant species-small Flinders grass (Iseilema membranaceum) and ruby saltbush (Enchylaena tomentosa)-and earthworm survival tests in PHC-contaminated soils, were assessed. Additionally, the effects of aging on the attenuation of PHC in contaminated soils were evaluated. Toxicity responses of plant growth parameters were determined as no-observed-effect concentrations: 75%-100% for seedling emergence, < 25%-75% for plant shoot height, and 75%-100% for earthworm survival. After 42 weeks of aging, the total PHC levels in weathered soils decreased by 14% to 30% and by 67% in diesel-spiked soil due to natural attenuation. Dehydrogenase enzyme activity in soils increased during the initial aging period. Furthermore, a clear shift of bacterial communities was observed in the soils following aging, including enrichment of PHC-resistant and -utilizing bacteria-for example, Nocardia sp. This study underscores the potential of natural attenuation for eco-friendly and cost-effective soil management, underlining that its success depends on site-specific factors like water content and nutrient availability. Therefore, we recommend detailed soil assessments to evaluate these conditions prior to adopting a risk-based management approach.


Asunto(s)
Petróleo , Contaminantes del Suelo , Contaminantes del Suelo/análisis , Hidrocarburos/análisis , Contaminación Ambiental , Suelo , Monitoreo del Ambiente/métodos , Petróleo/análisis , Bacterias , Biodegradación Ambiental , Microbiología del Suelo
19.
Se Pu ; 42(2): 176-184, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38374598

RESUMEN

Short-chain chlorinated paraffins (SCCPs) are an emerging class of persistent organic pollutants (POPs) that are widely detected in environmental matrices and human samples. Because of their environmental persistence, long-range transport potential, bioaccumulation potential, and biotoxicity, SCCPs pose a significant threat to human health. In this study, metabolomics technology was applied to reveal the metabolomic interference in human normal hepatic (L02) cells after exposure to low (1 µg/L), moderate (10 µg/L), and high (100 µg/L) doses of SCCPs. Principal component analysis (PCA) and metabolic effect level index (MELI) values showed that all three SCCP doses caused notable metabolic perturbations in L02 cells. A total of 72 metabolites that were annotated by MS/MS and matched with the experimental spectra in the Human Metabolome Database (HMDB) or validated by commercially available standards were selected as differential metabolites (DMs) across all groups. The low-dose exposure group shared 33 and 36 DMs with the moderate- and high-dose exposure groups, respectively. The moderate-dose exposure group shared 46 DMs with the high-dose exposure group. In addition, 33 DMs were shared among the three exposure groups. Among the 72 DMs, 9, 9, and 45 metabolites participated in the amino acid, nucleotide, and lipid metabolism pathways, respectively. The results of pathway enrichment analysis showed that the most relevant metabolic pathways affected by SCCPs were the lipid metabolism, fatty acid ß-oxidation, and nucleotide metabolism pathways, and that compared with low-dose exposure, moderate- and high-dose SCCP exposures caused more notable perturbations of these metabolic pathways in L02 cells. Exposure to SCCPs perturbed glycerophospholipid and sphingolipid metabolism. Significant alterations in the levels of phosphatidylcholines, phosphatidylethanolamines, and sphingomyelins indicated SCCP-induced biomembrane damage. SCCPs inhibited fatty acid ß-oxidation by decreasing the levels of short- and medium-chain acylcarnitines in L02 cells, indicating that the energy supplied by fatty acid oxidation was reduced in these cells. Furthermore, compared with low- and moderate-dose SCCPs, high-dose SCCPs produced a significantly stronger inhibition of fatty acid ß-oxidation. In addition, SCCPs perturbed nucleotide metabolism. The higher hypoxanthine levels observed in L02 cells after SCCP exposures indicate that SCCPs may induce several adverse effects, including hypoxia, reactive oxygen species production, and mutagenesis in L02 cells.


Asunto(s)
Hidrocarburos Clorados , Parafina , Humanos , Parafina/toxicidad , Parafina/análisis , Espectrometría de Masas en Tándem , Hidrocarburos Clorados/toxicidad , Hidrocarburos Clorados/análisis , Monitoreo del Ambiente/métodos , Ácidos Grasos , Nucleótidos , Hepatocitos/química , China
20.
Environ Monit Assess ; 196(3): 278, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38367088

RESUMEN

The current study investigated wild plant resources and health risk assessment along with northern Pakistan's mafic and ultramafic regions. Ethnobotanical data was collected through field visits and semi-structured questionnaire surveys conducted from local inhabitants and healers. Six potentially toxic elements (PTEs) such as lead (Pb), cadmium (Cd), nickel (Ni), chromium (Cr), manganese (Mn), and zinc (Zn) were extracted with acids and analyzed using atomic absorption spectrophotometer (AAS, Perkin Elmer-7000) in nine selected wild medicinal plants. Contamination factor (CF), pollution load index (PLI), estimated daily intake (EDI), target hazard quotient (THQ), and hazard index (HI) were used to determine the health risk assessment of the studied medicinal plants. The results showed that the selected medicinal plants were used for the treatments of cough, joint swelling, cardiovascular disorders, toothaches, diabetes, and skin pimples by the local inhabitants due to their low-cost and easy accessibility. The concentrations of Pb (3.4-53 mg kg-1), Cd (0.03-0.39 mg kg-1), Ni (17.5-82 mg kg-1), Cr (29-315 mg kg-1), Mn (20-142 mg kg-1), and Zn (7.4-64 mg kg-1) in the studied medicinal plants were found above the safe limits (except Zn) set by WHO/FAO/USEPA (1984/2010). The Pb contamination factor was significantly (p < 0.05) higher in A. modesta (7.84) and D. viscosa (6.81), and Cd contamination factor was significantly higher in C. officinalis (26.67), followed by A. modesta (8.0) mg kg-1. Based on PTE concentrations, the studied plants are considered not suitable for human consumption purposes. Pollution load index values for A. modesta, A. barbadensis, A. caudatus, A. indica, C. procera (2.93), D. viscosa (2.79), and C. officinalis (2.83), R. hastatus (3.12), and Z. armatum were observed as 1.00, 2.80, 2.29, 2.29, 2.93, 2.79, 2.83, 3.12 and 2.19, respectively. Hazard index values were in order of R. hastatus (1.32 × 10-1) ˃ C. procera (1.21 × 10-1) ˃ D. viscosa (1.10 × 10-1) ˃ A. caudatus (9.11 × 10-2) ˃ A. barbadensis (8.66 × 10-2) ˃ Z. armatum (7.99 × 10-2) ˃ A. indica (6.87 × 10-2) ˃ A. modesta (5.6 × 10-2) ˃ C. officinalis (5.42 × 10-2). The health risk index values suggested that consumption of these plants individually or in combination would cause severe health problems in the consumers. Pearson's correlation results showed a significant correlation (p ≤ 0.001) between Zn and Mn in the studied medicinal plants. The current study suggests that wild medicinal plants should be adequately addressed for PTEs and other carcinogenic pollutants before their uses in the study area. Open dumping of mining waste should be banned and eco-friendly technology like organic amendments application should be used to mitigate PTEs in the study area.


Asunto(s)
Porcelana Dental , Aleaciones de Cerámica y Metal , Metales Pesados , Plantas Medicinales , Contaminantes del Suelo , Titanio , Humanos , Cadmio , Metales Pesados/análisis , Monitoreo del Ambiente/métodos , Pakistán , Plomo , Medición de Riesgo , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA