Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Genes (Basel) ; 15(2)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38397163

RESUMEN

Extra virgin olive oil phenolic compounds have been identified as possible biostimulant agents against different pathological processes, including alterations in healing processes. However, there is little evidence on the molecular mechanisms involved in this process. The aim was to analyse the effect of hydroxytyrosol, tyrosol, and oleocanthal on fibroblast gene expression. PCR was used to determine the expression of different differentiation markers, extracellular matrix elements, and growth factors in cultured human fibroblasts CCD-1064Sk treated with different doses of hydroxytyrosol (10-5 M and 10-6 M), tyrosol (10-5 M and 10-6 M), and oleocanthal (10-6 M and 10-7 M). After 24 h of hydroxytyrosol treatment, increased expression of connective tissue growth factor, fibroblast growth factor (FGF), platelet-derived growth factor, vascular endothelial growth factor, transforming growth factor ß1 (TGF-ß1), and their receptors was observed. Tyrosol and olecanthal modulated the expression of FGF and TGFßR1. All phytochemicals tested modified the expression of differentiation markers and extracellular matrix elements, increasing gene expression of actin, fibronectin, decorin, collagen I, and III. Phenolic compounds present in extra virgin olive could have a beneficial effect on tissue regeneration by modulating fibroblast physiology.


Asunto(s)
Aldehídos , Monoterpenos Ciclopentánicos , Fenoles , Alcohol Feniletílico/análogos & derivados , Aceites de Plantas , Factor A de Crecimiento Endotelial Vascular , Humanos , Aceite de Oliva/farmacología , Aceites de Plantas/análisis , Biomarcadores , Antígenos de Diferenciación , Proliferación Celular , Fibroblastos , Expresión Génica
2.
Planta Med ; 88(9-10): 783-793, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35803258

RESUMEN

Leishmaniasis is a major tropical disease with increasing global incidence. Due to limited therapeutic options with severe drawbacks, the discovery of alternative treatments based on natural bioactive compounds is important. In our previous studies we have pointed out the antileishmanial activities of olive tree-derived molecules. In this study, we aimed to investigate the in vitro and in vivo antileishmanial as well as the in vivo immunomodulatory effects of oleocanthal, a molecule that has recently gained increasing scientific attention. Pure oleocanthal was isolated from extra virgin olive oil through extraction and chromatography techniques. The in vitro antileishmanial effects of oleocanthal were examined with a resazurin-based assay, while its in vivo efficacy was evaluated in Leishmania major-infected BALB/c mice by determining footpad induration, parasite load in popliteal lymph nodes, histopathological outcome, antibody production, cytokine profile of stimulated splenocytes and immune gene expression, at three weeks after the termination of treatment. Oleocanthal demonstrated in vitro antileishmanial effect against both L. major promastigotes and intracellular amastigotes. This effect was further documented in vivo as demonstrated by the suppressed footpad thickness, the decreased parasite load and the inflammatory cell influx at the infection site. Oleocanthal treatment led to the dominance of a Th1-type immunity linked with resistance against the disease. This study establishes strong scientific evidence for olive tree-derived natural products as possible antileishmanial agents and provides an adding value to the scientific research of oleocanthal.


Asunto(s)
Antiprotozoarios , Leishmaniasis Cutánea , Leishmaniasis , Aldehídos , Animales , Antiprotozoarios/farmacología , Monoterpenos Ciclopentánicos , Inmunoterapia , Leishmaniasis/tratamiento farmacológico , Leishmaniasis/parasitología , Leishmaniasis Cutánea/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Fenoles
3.
Phytomedicine ; 101: 154070, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35523114

RESUMEN

BACKGROUND: Asperuloside is a natural compound extracted from various herbs with several bioactivities. Its effects on anti-inflammation and anti-tumor indicated that asperuloside might prevent colorectal cancer developing from inflammatory bowel diseases (IBD). But there were few reports about the efficacy and mechanism of asperuloside on improving colorectal cancer. It has been reported that vitamin D receptor (VDR) could regulate the expression of SMAD3. In previous study, asperuloside could significantly improve the expression of VDR and reduced Smad3 mRNA in IEC-6 cell. PURPOSE: The present study was aimed to investigate the potential mechanism of asperuloside on inhibiting epithelial-mesenchymal transition (EMT) in colitis associated cancer. STUDY DESIGN: First, in LPS-injured IEC-6 cell, asperuloside inhibited phosphorylated p65 (p-p65) level, improved VDR expression and reduced Smad3 mRNA. Second, we wonder the relationship between VDR signaling and nucleus factor-kappaB (NF-κB) signaling during asperuloside on reducing Smad3 mRNA. And then, the effect of asperuloside on inhibiting EMT development through VDR/Smad3 was investigated. Finally, we testified the effect of asperuloside on protecting against colitis associated cancer (CAC) by inhibiting EMT development through VDR/Smad3. METHODS: Pyrrolidinedithiocarbamate ammonium (PDTC) was used for established NF-κB-inhibited IEC-6 cell. This cell was applied for investigating the relationship between NF-κB and VDR of asperuloside on inhibiting Smad3. VDR-inhibited cell was established by small interfering RNA (siRNA) of VDR and was employed to investigate the role of VDR for asperuloside on decreasing Smad3. Transforming growth factor ß1 (TGFß1) was used for inducing EMT/fibrosis in IEC-6 cell. TGFß1-stimulated cell was used for testifying the effect of asperuloside on inhibiting EMT development. AOM/DSS-induced CAC was established to investigate the effect of asperuloside on suppressing cancer development. RESULTS: Asperuloside inhibited the level of p-p65 which was up-regulated by LPS. Asperuloside could up-regulate VDR signaling and reduce Smad3 mRNA in NF-κB-knockdown IEC-6 cells. Asperuloside failed to reduce Smad3 mRNA due to VDR knockdown, which implied that asperuloside might down-regulate Smad3 mRNA dependently on activation of VDR signaling and independently on inhibiting NF-κB signaling. Asperuloside exhibited significant prevention of EMT development in TGFß1-induced IEC-6 cell (EMT cell) and mice CAC. Asperuloside reduced the transform of epithelial phenotype into motile mesenchymal phenotype in EMT cell along with decreasing levels of EMT markers by inhibiting Smad3 mRNA via activation of VDR. In mice with CAC, expression of VDR in colon was improved by asperuloside. Symptoms of colitis, tumor number and tumor size were significantly inhibited by asperuloside. Suppressed EMT development was determined by reduced α-SMA expression and decreased mRNAs of several EMT markers. CONCLUSION: Asperuloside might prevent CAC through inhibiting EMT development via regulation of VDR/Smad3 pathway.


Asunto(s)
Neoplasias Asociadas a Colitis , Transición Epitelial-Mesenquimal , Animales , Monoterpenos Ciclopentánicos , Glucósidos , Lipopolisacáridos/farmacología , Ratones , FN-kappa B/metabolismo , Piranos , ARN Mensajero , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
4.
Nutrients ; 13(5)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34069842

RESUMEN

Alzheimer's disease (AD) is a complex progressive neurodegenerative disorder affecting humans mainly through the deposition of Aß-amyloid (Aß) fibrils and accumulation of neurofibrillary tangles in the brain. Currently available AD treatments only exhibit symptomatic relief but do not generally intervene with the amyloid and tau pathologies. The extra-virgin olive oil (EVOO) monophenolic secoiridoid S-(-)-oleocanthal (OC) showed anti-inflammatory activity through COX system inhibition with potency comparable to the standard non-steroidal anti-inflammatory drug (NSAID) like ibuprofen. OC also showed positive in vitro, in vivo, and clinical therapeutic effects against cardiovascular diseases, many malignancies, and AD. Due to its pungent, astringent, and irritant taste, OC should be formulated in acceptable dosage form before its oral use as a potential nutraceutical. The objective of this study is to develop new OC oral formulations, assess whether they maintained OC activity on the attenuation of ß-amyloid pathology in a 5xFAD mouse model upon 4-month oral dosing use. Exploration of potential OC formulations underlying molecular mechanism is also within this study scope. OC powder formulation (OC-PF) and OC-solid dispersion formulation with erythritol (OC-SD) were prepared and characterized using FT-IR spectroscopy, powder X-ray diffraction, and scanning electron microscopy (ScEM) analyses. Both formulations showed an improved OC dissolution profile. OC-PF and OC-SD improved memory deficits of 5xFAD mice in behavioral studies. OC-PF and OC-SD exhibited significant attenuation of the accumulation of Aß plaques and tau phosphorylation in the brain of 5xFAD female mice. Both formulations markedly suppressed C3AR1 (complement component 3a receptor 1) activity by targeting the downstream marker STAT3. Collectively, these results demonstrate the potential for the application of OC-PF as a prospective nutraceutical or dietary supplement to control the progression of amyloid pathogenesis associated with AD.


Asunto(s)
Aldehídos/administración & dosificación , Enfermedad de Alzheimer/tratamiento farmacológico , Monoterpenos Ciclopentánicos/administración & dosificación , Suplementos Dietéticos , Aceite de Oliva/administración & dosificación , Fenoles/administración & dosificación , Placa Amiloide/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Formas de Dosificación , Femenino , Ratones , Ratones Transgénicos , Placa Amiloide/patología , Polvos , Espectroscopía Infrarroja por Transformada de Fourier
5.
Front Endocrinol (Lausanne) ; 12: 615446, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33927690

RESUMEN

Asperuloside is an iridoid glycoside found in many medicinal plants that has produced promising anti-obesity results in animal models. In previous studies, three months of asperuloside administration reduced food intake, body weight, and adipose masses in rats consuming a high fat diet (HFD). However, the mechanisms by which asperuloside exerts its anti-obesity properties were not clarified. Here, we investigated homeostatic and nutrient-sensing mechanisms regulating food intake in mice consuming HFD. We confirmed the anti-obesity properties of asperuloside and, importantly, we identified some mechanisms that could be responsible for its therapeutic effect. Asperuloside reduced body weight and food intake in mice consuming HFD by 10.5 and 12.8% respectively, with no effect on mice eating a standard chow diet. Fasting glucose and plasma insulin were also significantly reduced. Mechanistically, asperuloside significantly reduced hypothalamic mRNA ghrelin, leptin, and pro-opiomelanocortin in mice consuming HFD. The expression of fat lingual receptors (CD36, FFAR1-4), CB1R and sweet lingual receptors (TAS1R2-3) was increased almost 2-fold by the administration of asperuloside. Our findings suggest that asperuloside might exert its therapeutic effects by altering nutrient-sensing receptors in the oral cavity as well as hypothalamic receptors involved in food intake when mice are exposed to obesogenic diets. This signaling pathway is known to influence the subtle hypothalamic equilibrium between energy homeostasis and reward-induced overeating responses. The present pre-clinical study demonstrated that targeting the gustatory system through asperuloside administration could represent a promising and effective new anti-obesity strategy.


Asunto(s)
Fármacos Antiobesidad/farmacología , Peso Corporal/efectos de los fármacos , Monoterpenos Ciclopentánicos/farmacología , Glucósidos/farmacología , Piranos/farmacología , Percepción del Gusto/efectos de los fármacos , Aumento de Peso/efectos de los fármacos , Animales , Glucemia , Dieta Alta en Grasa , Ingestión de Energía/efectos de los fármacos , Ghrelina/metabolismo , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Insulina/sangre , Leptina/metabolismo , Masculino , Ratones , Proopiomelanocortina/metabolismo
6.
Molecules ; 26(1)2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33466567

RESUMEN

The cultivar Bianchera is an autochthonous variety from the eastern part of northern Italy, but it is also cultivated in the Slovenian and Croatian peninsula of Istria where it is named Belica (Slovenia) and Bjelica (Croatia). The properties of oleocanthal, a natural anti-inflammatory ibuprofen-like compound found in commercial monocultivar extra virgin olive oils, were determined by means of both quantitative 1H NMR (qNMR) and HPLC analyses, where qNMR was identified as a rapid and reliable method for determining the oleocanthal content. The total phenolic content (TPC) was determined by means of the Folin-Ciocalteau method and the major phenols present in the olive oils were also quantified by means of HPLC analyses. All these analyses confirmed that the cultivar Bianchera was very rich in polyphenols and satisfied the health claim provided by the EU Commission Regulation on the polyphenols content of olive oils and their beneficial effects on human health.


Asunto(s)
Aldehídos/análisis , Cromatografía Líquida de Alta Presión/métodos , Monoterpenos Ciclopentánicos/análisis , Espectroscopía de Resonancia Magnética/métodos , Olea/química , Aceite de Oliva/análisis , Fenoles/análisis , Extractos Vegetales/química , Polifenoles/análisis , Humanos , Hojas de la Planta/química
7.
J Ethnopharmacol ; 267: 113543, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33152429

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Chilean population relies on medicinal plants for treating a wide range of illnesses, especially those of the gastrointestinal system. Junellia spathulata (Gillies & Hook.) Moldenke var. spathulata (Verbenaceae), called as "verbena-azul-de-cordilleira", is a medicinal plant native to Argentina and Chile traditionally used for treating digestive disorders. Although the species of the genus are important as therapeutic resources for the Andean population, the plants are very scarcely studied. AIMS OF THE STUDY: The purpose of the present study was to find out the main constituents and investigate the protective effect of J. spathulata against oxidative stress induced by the potent oxidant 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) in human hepatoblastoma cells. MATERIALS AND METHODS: The crude methanol extract of J. spathulata and an iridoid obtained by chromatographic processes were tested to access the hepatoprotective effect and cytotoxicity in HepG2 cell. In addition, the reducing power of the samples and their ability to scavenge free radicals were evaluated using FRAP and ORAC assay systems. RESULTS: The iridoid asperuloside, the main compound of the crude methanol extract of J. spathulata, was isolated and identified by means of NMR analysis. The crude methanol extract of J. spathulata and asperuloside protected HepG2 cells against oxidative damage triggered by AAPH-derived free radicals. This effect can be credited to the ability of the extract and asperuloside to protect the liver cells from chemical-induced injury, which might be correlated to their free radical scavenging potential. CONCLUSIONS: This study experimentally evidenced the ethnopharmacological usefulness of J. spathulata as a treatment of digestive disorders. Our result could stimulate further investigations of hepatoprotective agents in other Chilean Junellia species.


Asunto(s)
Monoterpenos Ciclopentánicos/farmacología , Depuradores de Radicales Libres/farmacología , Glucósidos/farmacología , Hepatocitos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Piranos/farmacología , Verbenaceae , Supervivencia Celular/efectos de los fármacos , Chile , Monoterpenos Ciclopentánicos/aislamiento & purificación , Depuradores de Radicales Libres/aislamiento & purificación , Glucósidos/aislamiento & purificación , Células Hep G2 , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Extractos Vegetales/aislamiento & purificación , Piranos/aislamiento & purificación , Verbenaceae/química
8.
Molecules ; 25(16)2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32796621

RESUMEN

Extra virgin olive oil (EVOO) phenols represent a significant part of the intake of antioxidants and bioactive compounds in the Mediterranean diet. In particular, hydroxytyrosol (HTyr), tyrosol (Tyr), and the secoiridoids oleacein and oleocanthal play central roles as anti-inflammatory, neuro-protective and anti-cancer agents. These compounds cannot be easily obtained via chemical synthesis, and their isolation and purification from EVOO is cumbersome. Indeed, both processes involve the use of large volumes of organic solvents, hazardous reagents and several chromatographic steps. In this work we propose a novel optimized procedure for the green extraction, isolation and purification of HTyr, Tyr, oleacein and oleocanthal directly from EVOO, by using a Natural Deep Eutectic Solvent (NaDES) as an extracting phase, coupled with preparative high-performance liquid chromatography. This purification method allows the total recovery of the four components as single pure compounds directly from EVOO, in a rapid, economic and ecologically sustainable way, which utilizes biocompatible reagents and strongly limits the use or generation of hazardous substances.


Asunto(s)
Aldehídos/aislamiento & purificación , Fraccionamiento Químico/métodos , Cromatografía Líquida de Alta Presión/métodos , Monoterpenos Ciclopentánicos/aislamiento & purificación , Aceite de Oliva/química , Fenoles/aislamiento & purificación , Alcohol Feniletílico/análogos & derivados , Extractos Vegetales/aislamiento & purificación , Alcohol Feniletílico/aislamiento & purificación
9.
Nutrients ; 12(6)2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32545325

RESUMEN

Lung cancer (LC) represents the topmost mortality-causing cancer in the U.S. LC patients have overall poor survival rate with limited available treatment options. Dysregulation of the mesenchymal epithelial transition factor (c-MET) and cyclooxygenase 2 (COX2) initiates aggressive LC profile in a subset of patients. The Mediterranean extra-virgin olive oil (EVOO)-rich diet already documented to reduce multiple malignancies incidence. (-)-Oleocanthal (OC) is a naturally occurring phenolic secoiridoid exclusively occurring in EVOO and showed documented anti-breast and other cancer activities via targeting c-MET. This study shows the novel ability of OC to suppress LC progression and metastasis through dual targeting of c-MET and COX-2. Western blot analysis and COX enzymatic assay showed significant reduction in the total and activated c-MET levels and inhibition of COX1/2 activity in the lung adenocarcinoma cells A549 and NCI-H322M, in vitro. In addition, OC treatment caused a dose-dependent inhibition of the HGF-induced LC cells migration. Daily oral treatment with 10 mg/kg OC for 8 weeks significantly suppressed the LC A549-Luc progression and prevented metastasis to brain and other organs in a nude mouse tail vein injection model. Further, microarray data of OC-treated lung tumors showed a distinct gene signature that confirmed the dual targeting of c-MET and COX2. Thus, the EVOO-based OC is an effective lead with translational potential for use as a prospective nutraceutical to control LC progression and metastasis.


Asunto(s)
Adenocarcinoma/patología , Aldehídos/farmacología , Aldehídos/uso terapéutico , Inhibidores de la Ciclooxigenasa 2 , Monoterpenos Ciclopentánicos/farmacología , Monoterpenos Ciclopentánicos/uso terapéutico , Neoplasias Pulmonares/patología , Aceite de Oliva/química , Fenoles/farmacología , Fenoles/uso terapéutico , Fitoterapia , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Adenocarcinoma/genética , Aldehídos/aislamiento & purificación , Animales , Neoplasias Encefálicas/prevención & control , Neoplasias Encefálicas/secundario , Línea Celular Tumoral , Monoterpenos Ciclopentánicos/aislamiento & purificación , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Neoplasias Pulmonares/genética , Ratones Desnudos , Fenoles/aislamiento & purificación
10.
Molecules ; 25(10)2020 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-32456326

RESUMEN

The phenolic fraction of the extra virgin olive oil (EVOO) has been studied over the past two decades because of its important health protective properties. Numerous studies have been performed in order to clarify the most crucial factors that affect the concentration of the EVOO's phenolic fraction and many contradictory results have been reported. Having as target to maximize the phenolic content of EVOO and its healthy properties we investigated the impact of harvest time, malaxation temperature, and malaxation duration on the concentration of individual phenols in extra virgin olive oil. Olive oil was prepared in a lab-scale olive mill from different varieties in Greece. The extraction process for cultivar (cv) Koroneiki samples was performed at five different harvest periods from the same trees with three different malaxation temperatures and five different malaxation duration times (N = 75). Similar types of experiments were also performed for other varieties: cv Athenolia (N = 20), cv Olympia (N = 3), cv Kalamata (N = 3), and cv Throubolia Aegean (N=3) in order to compare the changes in the phenolic profile during malaxation. The quantitative analysis of the olive oil samples with NMR showed that the total phenolic content has a negative correlation with the ripening degree and the malaxation time. The NMR data we collected helped us to quantitate not only the total phenolic content but also the concentration of the major phenolic compounds such as oleocanthal, oleacein, oleokoronal, and oleomissional. We noticed different trends for the concentration of these phenols during malaxation process and for different malaxation temperatures. The different trends of the concentration of the individual phenols during malaxation and the completely different behavior of each variety revealed possible biosynthetic formation steps for oleocanthal and oleacein and may explain the discrepancies reported from previous studies.


Asunto(s)
Olea/química , Aceite de Oliva/química , Fenoles/química , Aceites de Plantas/química , Aldehídos/química , Aldehídos/aislamiento & purificación , Monoterpenos Ciclopentánicos/química , Monoterpenos Ciclopentánicos/aislamiento & purificación , Grecia , Olea/crecimiento & desarrollo , Fenoles/aislamiento & purificación , Temperatura
11.
Phytother Res ; 34(11): 2820-2834, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32449241

RESUMEN

Cancer is among the leading causes of mortality worldwide. Current cancer therapies are associated with serious side effects, which further damage patients' health. Therefore, the search for new anticancer agents with no toxic effects on normal and healthy cells is of great interest. Recently, we and other groups have demonstrated that oleocanthal (OLC), a phenolic compound from extra virgin olive oil, exhibits antitumor activity in various tumor models. However, the underlying mechanisms and intracellular targets of OLC remain to be completely elucidated. This review summarizes the current advancers concerning the anticancer activity of OLC, with particular emphasis on the molecular signaling pathways modulated by this compound in different tumor cell types. The major mechanisms of action of OLC include modulation of the apoptotic pathway, the HGF/c-Met pathway, and the signal transducer and activator of transcription 3 signaling pathway, among others. Furthermore, OLC has synergistic effects with anticancer drugs in vitro. Also discussed are OLC bioavailability and its concentration in olive oil. Data summarized here will represent a database for more extensive studies aimed at providing information on molecular mechanisms against cancer induced by OLC.


Asunto(s)
Aldehídos/uso terapéutico , Antineoplásicos/uso terapéutico , Monoterpenos Ciclopentánicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Aceite de Oliva/uso terapéutico , Fenoles/uso terapéutico , Aldehídos/farmacología , Antineoplásicos/farmacología , Monoterpenos Ciclopentánicos/farmacología , Humanos , Aceite de Oliva/farmacología , Fenoles/farmacología , Transducción de Señal/efectos de los fármacos
12.
Biomed Pharmacother ; 125: 109819, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32106370

RESUMEN

Acute myeloid leukemia (AML) is a complicated disease of hematopoietic stem cell disorders. However, its pathogenesis mechanisms and therapeutic treatments still remain vague. Asperuloside (ASP) is an iridoid glycoside found in Herba Paederiae, and is a component from traditional Chinese herbal medicine. ASP has been suggested to have various pharmacological activities, such as anti-tumor and anti-inflammation. In this study, we explored the effects of ASP on apoptosis and endoplasmic reticulum (ER) stress in human leukemia cells and in human primary leukemia blasts. ASP treatments selectively reduced the cell viability of human leukemia cells and primary leukemia blasts in a dose-dependent manner. We also found that ASP induced cell death via promoting the cleavage of Caspase-9, -3 and poly (ADP-ribose) polymerase (PARP), which was along with the loss of mitochondrial membrane potential and Cyto-c release from the mitochondria. In addition, we found that ASP significantly induced ER stress in leukemia cells by improving the protein expression levels of glucose-regulated protein of 78 kDa (GRP78), phosphorylated protein kinase RNA-like ER kinase (PERK), phosphorylated eukaryotic translation initiation factor 2 alpha (eIF2α), C/EBP homologous protein (CHOP), phosphorylated inositol-requiring enzyme 1 (p-IRE1), X-box binding protein 1 (XBP1), activating transcription factor-6 (ATF6) and cleaved Caspase-12. Moreover, ER stress suppression markedly abrogated ASP-induced apoptosis. In addition, GRP78 knockdown significantly diminished ER stress and apoptosis triggered by ASP. Importantly, co-immunoprecipitation (IP) analysis further indicated that ASP regulated the interaction between GRP78 and PERK, subsequently meditating the apoptotic cell death. In vivo leukemia xenografts finally validated ER stress and apoptosis were related to the tumor growth reduction induced by ASP. The overall survival of mice was also improved by ASP treatments, accompanied with the significantly reduced number of white blood cells and elevated red blood cells. Together, our present results showed that ASP exerted anti-leukemic effects at least partially via inducing apoptosis regulated by ER stress, and suggested that ASP might be a novel and effective therapeutic strategy for treating human leukemia.


Asunto(s)
Apoptosis/efectos de los fármacos , Monoterpenos Ciclopentánicos/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Glucósidos/farmacología , Proteínas de Choque Térmico/metabolismo , Leucemia/tratamiento farmacológico , Piranos/farmacología , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Humanos , Masculino , Ratones , Ratones Desnudos , Mitocondrias/metabolismo
13.
Chem Biol Interact ; 315: 108911, 2020 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-31786185

RESUMEN

Over the years, the attention of researchers in the field of modern drug discovery and development has become further intense on the identification of active compounds from plant sources and traditional remedies, as they exhibit higher therapeutic efficacies and improved toxicological profiles. Among the large diversity of plant extracts that have been discovered and explored for their potential therapeutic benefits, asperuloside, an iridoid glycoside, has been proven to provide promising effects as a therapeutic agent for several diseases. Although, this potent substance exists in several genera, it is primarily found in plants belonging to the genus Eucommia. Recent decades have seen a surge in the research on Asperuloside, making it one of the most studied natural products in the field of medicine and pharmacology. In this review, we have attempted to study the various reported mechanisms of asperuloside that form the basis of its wide spectrum of pharmacological activities.


Asunto(s)
Monoterpenos Ciclopentánicos/farmacología , Monoterpenos Ciclopentánicos/uso terapéutico , Glucósidos/farmacología , Glucósidos/uso terapéutico , Iridoides/farmacología , Iridoides/uso terapéutico , Piranos/farmacología , Piranos/uso terapéutico , Animales , Eucommiaceae/química , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
14.
PLoS One ; 14(8): e0216024, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31412041

RESUMEN

(-)-Oleocanthal (oleocanthal) is a phenolic compound found in varying concentrations in extra virgin olive oil oleocanthal has been shown to be active physiologically, benefiting several diseased states by conferring anti-inflammatory and neuroprotective benefits. Recently, we and other groups have demonstrated its specific and selective toxicity toward cancer cells; however, the mechanism leading to cancer cell death is still disputed. The current study demonstrates that oleocanthal, as well as naturally oleocanthal-rich extra virgin olive oils, induced damage to cancer cells' lysosomes leading to cellular toxicity in vitro and in vivo. Lysosomal membrane permeabilization following oleocanthal treatment in various cell lines was assayed via three complementary methods. Additionally, we found oleocanthal treatment reduced tumor burden and extended lifespan of mice engineered to develop pancreatic neuroendocrine tumors. Finally, following-up on numerous correlative studies demonstrating consumption of olive oil reduces cancer incidence and morbidity, we observed that extra virgin olive oils naturally rich in oleocanthal sharply reduced cancer cell viability and induced lysosomal membrane permeabilization while oleocanthal-poor oils did not. Our results are especially encouraging since tumor cells often have larger and more numerous lysosomes, making them especially vulnerable to lysosomotropic agents such as oleocanthal.


Asunto(s)
Aldehídos/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Permeabilidad de la Membrana Celular/efectos de los fármacos , Monoterpenos Ciclopentánicos/administración & dosificación , Lisosomas/efectos de los fármacos , Tumores Neuroectodérmicos Primitivos/tratamiento farmacológico , Aceite de Oliva/administración & dosificación , Fenoles/administración & dosificación , Aceites de Plantas/administración & dosificación , Animales , Apoptosis , Neoplasias Encefálicas/patología , Lisosomas/metabolismo , Ratones , Necrosis , Tumores Neuroectodérmicos Primitivos/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Sci Rep ; 9(1): 1524, 2019 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-30728370

RESUMEN

There is an increased need for improved and affordable insect repellents to reduce transmission of rapidly spreading diseases with high mortality rates. Natural products are often used when DEET cannot be afforded or accessed and when consumers choose not to use a synthetic repellent. The essential oils from two newly bred Nepeta cataria (catnip) plants representing two different chemotypes and their respective isolated nepetalactone isomers were evaluated as mosquito repellents against Aedes aegypti mosquitoes that transmit the Zika and Dengue virus in a one choice landing rate inhibition assay. A dose response curve was generated for each treatment and a time course analysis of repellency was performed over 24 hours with a N. cataria essential oil sample. The results indicate that all essential oil samples and their respective purified nepetalactone isomers were able to achieve greater than 95% repellency. Between two and four hours, the ability to repel more than 95% of the mosquitoes diminished. At the lowest concentrations tested, the nepetalactones and crude essential oil samples were more effective than DEET at reducing the number of mosquito landings.


Asunto(s)
Aedes/fisiología , Monoterpenos Ciclopentánicos/farmacología , Repelentes de Insectos/farmacología , Nepeta/química , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Pironas/farmacología , Aedes/efectos de los fármacos , Animales , Monoterpenos Ciclopentánicos/aislamiento & purificación , Femenino , Repelentes de Insectos/aislamiento & purificación , Aceites Volátiles/aislamiento & purificación , Aceites de Plantas/aislamiento & purificación , Pironas/aislamiento & purificación
16.
Food Res Int ; 116: 447-454, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30716967

RESUMEN

'Brava' and 'Mansa de Figueiredo' extra-virgin olive oils (EVOOs) are two varieties identified from north-western Spain. A systematic phenolic characterization of the studied oils was undertaken by LC-ESI-IT-MS. In addition, the role of dietary polyphenols from these EVOOs has been evaluated against the inhibition of key enzymes (α-glucosidase and α-amylase) in the management of diabetes mellitus (DM). Oleuropein and ligstroside derivatives comprised 83% and 67% of the total phenolic compounds in 'Brava' and 'Mansa de Figueiredo' EVOOs, respectively. The main secoiridoids from oleuropein were DOA (3,4-DHPEA-EDA, 59 and 22 mg kg-1, respectively) and the main isomer of OlAgl (3,4-DHPEA-EA, 74 and 23 mg kg-1). The main secoiridoids from ligstroside were D-LigAgl (p-HPEA-EDA or oleocanthal, 23 and 167 mg kg-1) and the main isomer of LigAgl (p-HPEA-EA, 214 and 114 mg kg-1). For α-glucosidase, both EVOO extracts displayed stronger inhibitory activity (IC50 values of 60 ±â€¯8 and 118 ±â€¯9 µg mL-1, respectively) than the commercial inhibitor acarbose (IC50 = 356 ±â€¯21 µg mL-1). Nevertheless, for α-amylase, only 'Brava' extracts showed anti-α-amylase capacity. A daily VOO intake lower than the requirements of EFSA seem to be enough to reach both 50% for α-glucosidase and 25% for α-amylase inhibition. These findings support the potential health benefits derived from Galician EVOOs that might be probably linked to the outstanding high concentration levels of phenolic acids and flavonoids.


Asunto(s)
Aceite de Oliva/química , Extractos Vegetales/análisis , Extractos Vegetales/farmacología , alfa-Amilasas/efectos de los fármacos , alfa-Glucosidasas/efectos de los fármacos , Aldehídos/análisis , Monoterpenos Ciclopentánicos/análisis , Diabetes Mellitus Tipo 2 , Flavonoides , Glucósidos/análisis , Inhibidores de Glicósido Hidrolasas/farmacología , Hipoglucemiantes/farmacología , Glucósidos Iridoides , Iridoides/análisis , Fenoles/análisis , Fenoles/farmacología , Piranos/análisis , España
17.
Complement Ther Med ; 42: 298-301, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30670258

RESUMEN

OBJECTIVE: Photodynamic therapy (PDT) is an effective treatment against skin field cancerization. Its main side effect is local inflammation in the treated area. The phenolic compound oleocanthal (decarboxy methyl ligstroside aglycone), which is present in extra virgin olive oil (EVOO), has anti-inflammatory properties. The purpose of this study was to evaluate the topical efficacy of an oily fluid enriched with oleocanthal (OC) extract, in comparison with a conventional oily fluid, in reducing the degree of inflammatory reaction after conventional PDT. METHODS: Quasi-experimental pilot study, before-after with a control group, performed with a cohort of consecutive patients diagnosed with actinic keratosis/field cancerization (AK/FC) in the forehead and/or scalp, treated by PDT. The study was carried out from April 2016 to November 2017 at a speciality hospital in southern Spain. A group of 24 consecutive patients received the topical application, three times daily for one week, of an emollient oily fluid in the area treated with PDT. Subsequently, another group, of 23 consecutive patients, received the same treatment pattern with an oily fluid enriched with OC extract. The post-PDT inflammatory reaction was measured by an independent member of the hospital's dermatology department, using the following visual scale of erythema (from 0 to 4).The assessment was conducted at 30 min and at 48 h post-PDT. RESULTS: In the assessment at 48 h after treatment, the inflammation had improved more among the patients treated with OC (median: 25%, 95%CI: -5.3 to 28.5) than in the non-OC group (median: 0%; 95%CI: -45.2 to -6.2). The difference was statistically significant (p<0.01), and the Cohen's d value was 0.89 (large effect). At three months after PDT, a complete response had been obtained by 60.9% of the patients treated with OC compared to 29.2% of the non-OC group, and the difference was close to statistical significance (p=0.059). CONCLUSIONS: The topical application of an oily fluid enriched with OC extract achieved a greater reduction in post-PDT cutaneous inflammation and a better treatment response, in comparison with the application of a conventional oily fluid.


Asunto(s)
Aldehídos/uso terapéutico , Inflamación/tratamiento farmacológico , Olea/química , Fenoles/uso terapéutico , Fotoquimioterapia/efectos adversos , Fitoterapia , Neoplasias Cutáneas/terapia , Piel/efectos de los fármacos , Administración Tópica , Anciano , Anciano de 80 o más Años , Aldehídos/administración & dosificación , Aldehídos/farmacología , Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Monoterpenos Ciclopentánicos , Eritema , Cara , Femenino , Humanos , Inflamación/etiología , Masculino , Persona de Mediana Edad , Fenoles/administración & dosificación , Fenoles/farmacología , Proyectos Piloto , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Estudios Prospectivos , Cuero Cabelludo , Piel/patología , Resultado del Tratamiento
18.
Nat Prod Res ; 33(5): 695-700, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29212359

RESUMEN

One new and three known compounds were isolated from the ethanol extract of Psychotria prainii aerial parts. By means of spectroscopic methods, their structures were elucidated to be deacetylasperulosidic acid 6-ethyl ether (1), asperulosidic acid (2), asperuloside (3) and obtucarbamates C (4). The isolated compounds were evaluated for their inhibitory effect on NO production in LPS-stimulated RAW264.7 cells. Among them, compounds 2 and 4 exhibited strong effect with the IC50 values of 5.75 ± 0.85 and 6.92 ± 0.43 µM, respectively. This is the first report for the chemical composition and biological activity of P. prainii.


Asunto(s)
Antiinflamatorios/farmacología , Carbamatos/farmacología , Glicósidos/farmacología , Psychotria/química , Animales , Antiinflamatorios/aislamiento & purificación , Carbamatos/aislamiento & purificación , Monoterpenos Ciclopentánicos , Glucósidos , Glicósidos/aislamiento & purificación , Ratones , Estructura Molecular , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Componentes Aéreos de las Plantas/química , Extractos Vegetales/química , Piranos , Células RAW 264.7 , Vietnam
19.
Phytomedicine ; 49: 75-82, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30217264

RESUMEN

BACKGROUND: Chronic hyperalgesia and allodynia associated with progressive damage of peripheral neurons are the most prevalent complications of diabetes mellitus. Plants belonging to the family of Oleaceae were traditionally used in folk medicine for the management of diabetes. HYPOTHESIS/PURPOSE: The aim of this study was to investigate whether an aqueous extract from the leaves of Ligustrum vulgare (common privet) could be useful to target neuropathic pain in a rat streptozotocin (STZ) model of diabetes. METHODS: The chemical composition of the aqueous extract from privet leaf was characterized with the UHPLC-DAD-MS method and the analytical quantification of its constituents was performed with HPLC-DAD. Mechanical hyperalgesia and allodynia were evaluated with the Randall-Selitto and von Frey tests. RESULTS: Our investigation revealed the presence of secoiridoids: oleacein (23.48 ±â€¯0.87 mg/g), oleocanthal (8.44 ±â€¯0.08 mg/g), oleuropein (1.50 ±â€¯0.01 mg/g), as well as phenylpropanoids: echinacoside (6.46 ±â€¯0.07 mg/g), verbascoside (4.03 ± 0.04 mg/g) and p-coumaroyl glucarates in the dried aqueous extract of privet leaves. Behavioral data indicated that chronic intraperitoneal administration of the extract (50-200 mg/kg) for 21 days resulted in a decrease in diabetes-induced hyperalgesia and allodynia. Blood glucose levels remained unaltered, while body weight and water intake decreased significantly. CONCLUSION: The aqueous privet leaf extract could serve useful in facilitating treatment of painful diabetic neuropathy. Additionally, the study showed that the antihyperalgesic activity of Ligustrum vulgare leaf extract is not likely related to its antihyperglycemic properties.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Neuropatías Diabéticas/tratamiento farmacológico , Ligustrum/química , Extractos Vegetales/farmacología , Aldehídos , Animales , Cromatografía Líquida de Alta Presión , Monoterpenos Ciclopentánicos , Glucósidos , Glicósidos , Hiperalgesia/tratamiento farmacológico , Glucósidos Iridoides , Iridoides/uso terapéutico , Masculino , Neuralgia/tratamiento farmacológico , Fenoles , Hojas de la Planta/química , Ratas , Estreptozocina
20.
Phytomedicine ; 47: 143-150, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30166099

RESUMEN

BACKGROUND: Leishmaniasis is a neglected and emerging disease with varying clinical manifestations. The current treatment options rely on limited chemotherapy with serious drawbacks. Thus, there is an increasing interest in the identification of new candidates for designing potent, less toxic and low-cost drugs. PURPOSE: The purpose of this study was to evaluate the potential antileishmanial activity of the total phenolic fraction (TPF) derived from extra virgin olive oil (EVOO) when added in in vitro and in vivo experimental models of Leishmania infection. STUDY DESIGN: We investigated the in vitro antileishmanial activity of TPF against two Leishmania species: a viscerotropic (L. infantum) and a dermotropic (L. major) strain. The antileishmanial effect was also tested in vivo in a murine cutaneous leishmaniasis model using L. major-infected BALB/c mice. METHODS: Separation and analytical methodologies were applied in order to extract the olive oil phenols (TPF) and determine the concentration of the major ones, respectively. The in vitro antileishmanial activity of TPF against promastigotes and intracellular amastigotes was determined by the resazurin cell viability assay. The TPF-induced nitric oxide synthesis by L. infantum and L. major -infected J774A.1 macrophages was determined using the Griess reaction, while the respective generation of reactive oxygen species was assessed by flow cytometry. Moreover, L. major-infected BALB/c mice were treated with TPF and its in vivo therapeutic effect was determined as reduction of the footpad swelling. RESULTS: Our data showed that TPF exhibits inhibitory effect against cell free promastigotes and intracellular amastigotes of both L. infantum and L. major parasite strains. TPF demonstrated to be selectively active against Leishmania amastigotes and its antileishmanial activity was possibly mediated by reactive nitrogen and oxygen intermediates generated from the infected J774A.1 macrophages. Furthermore, administration of TPF in BALB/c mice infected with L. major caused significant reduction of footpad swelling demonstrating in vivo its antileishmanial effect. Based on HPLC-DAD analysis the major components of TPF are tyrosol, hydroxytyrosol, oleacein and oleocanthal. CONCLUSION: This study brings a new low-cost candidate to the leishmaniasis drug discovery pipeline, upon further pharmacological investigation.


Asunto(s)
Antiprotozoarios/farmacología , Leishmania/efectos de los fármacos , Leishmaniasis Cutánea/tratamiento farmacológico , Aceite de Oliva/química , Fenoles/farmacología , Aldehídos , Animales , Monoterpenos Ciclopentánicos , Macrófagos/metabolismo , Macrófagos/parasitología , Ratones , Ratones Endogámicos BALB C , Óxido Nítrico/metabolismo , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA