Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 554
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
J Cancer Res Clin Oncol ; 150(4): 212, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662247

RESUMEN

BACKGROUND AND AIM: Morinda citrifolia fruit juice (noni) is an herbal remedy documented to have antioxidant properties. It has been suggested that prevention of carcinogen-DNA adduct formation and the antioxidant activity of NJ may contribute to the cancer preventive effect. In the present study, the antitumor activity of noni was investigated in the presence of cyclophosphamide (CYL) in vitro and in vivo. METHODS: In vitro breast cancer cells (MDA-MB-468) were used to measure the percentage of inhibition and the IC50. The in vivo antitumor activity of noni was studied by monitoring the mean survival time (MST), percentage increase in life span (%ILS), viable and non-viable cell count, tumor volume, body weight, and hematological and serum biochemical parameters in mice. Treatment with noni and CYL exhibited dose- and time-dependent cytotoxicity toward breast cancer cells. RESULTS: Individual treatment of noni and CYL exhibited dose- and time-dependent cytotoxicity on breast cancer cell lines, while in combination therapy of noni and CYL, noni enhances cytotoxic effect of CYL at 48 h than that at 24 h. Similar result was found in in vivo studies, the results of which revealed that alone treatment of CYL and noni suppressed tumor growth. However, combination treatment with CYL and noni presented better tumor inhibition than that of alone treatment of CYL and noni. On the contrary, CYL alone drastically attenuated hematological parameters, i.e., RBC, WBC, and Hb compared to normal and control groups, and this change was reversed and normalized by noni when given as combination therapy with CYL. Moreover, the levels of serum biochemical markers, i.e., AST, ALP, and ALT, were significantly increased in the control and CYL-treated groups than those in the normal group. In the combination treatment of noni and CYL, the above biochemical marker levels significantly decreased compared to CYL alone-treated group. CONCLUSIONS: The present study suggested that CYL treatment can cause serious myelotoxicity and hepatic injury in cancer patients. In conclusion, the combined use of noni with CYL potentially enhances the antitumor activity of CYL and suppresses myelotoxicity and hepatotoxicity induced by CYL in tumor-bearing mice.


Asunto(s)
Neoplasias de la Mama , Ciclofosfamida , Morinda , Animales , Ciclofosfamida/farmacología , Ciclofosfamida/efectos adversos , Ratones , Humanos , Femenino , Morinda/química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Jugos de Frutas y Vegetales , Ensayos Antitumor por Modelo de Xenoinjerto , Sinergismo Farmacológico , Extractos Vegetales/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/efectos adversos , Ratones Endogámicos BALB C , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología
2.
J Ethnopharmacol ; 328: 118051, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38493905

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Traditionally, the plant Morinda longissima Y.Z.Ruan (Rubiaceae) is used by ethnic people in Vietnam for the treatment of liver diseases and hepatitis. AIM OF THE STUDY: The study was designed to assess the efficacy of the 95% ethanolic extract of Morinda longissima roots (MLE) in experimental immune inflammation. The phytochemical variation of root extract and the chemical structures of natural compounds were also investigated using HPLC-DAD-HR-MS analysis. MATERIALS AND METHODS: Three different doses (100, 200, and 300 mg/kg b.w.) of MLE were chosen to determine anti-inflammatory activity. The mice were given orally extracts and monitored their behavior and mortality for 14 days to evaluate acute toxicity. The volume of the paw and the histopathological evaluation were carried out. The polyphenolic phytoconstituents of MLE extract were identified using LC/MS analysis. The anti-inflammatory efficacy in silico and molecular docking simulations of these natural products were evaluated based on their cyclooxygenase (COX)-1 and 2 inhibitory effects. RESULTS: This investigation showed the 95% ethanolic extract of Morinda longissima roots was found non-toxic up to 2000 mg/kg dose level in an acute study, neither showed mortality nor treatment-related signs of toxicity in mice. Eight anthraquinones and anthraquinone glycosides of Morinda longissima roots were identified by HPLC-DAD-HR-MS analysis. In the in vivo experiments, MLE was found to possess powerful anti-inflammatory activities in comparison with diclofenac sodium. The highest anti-inflammatory activity of MLE in mice was observed at a dose of 300 mg/kg body weight. The in silico analysis showed that seven out the eight anthraquinones and anthraquinone glycosides possess a selectivity index RCOX-2/COX-1 lower than 1, indicating that these compounds are selective against the COX-2 enzyme in the following the order: rubiadin-3-methyl ether < morindone morindone-6-methyl ether < morindone-5-methyl ether < damnacanthol < rubiadin < damnacanthol-3-O-ß-primeveroside. The natural compounds with the best selectivity against the COX-2 enzyme are quercetin (9), rubiadin-3-methyl ether (7), and morindone (4), with RCOX2/COX1 ratios of 0.02, 0.03, and 0.19, respectively. When combined with the COX-2 protein in the MD research, quercetin and rubiadin-3-methyl ether greatly stabilized the backbone proteins and ligands. CONCLUSION: In conclusion, the anthraquinones and ethanolic extract of Morinda longissima roots may help fight COX-2 inflammation. To develop novel treatments for inflammatory disorders linked to this one, these chemicals should be investigated more in the future.


Asunto(s)
Éteres Metílicos , Morinda , Rubiaceae , Humanos , Ratones , Animales , Morinda/química , Rubiaceae/química , Simulación del Acoplamiento Molecular , Ciclooxigenasa 2 , Quercetina/análisis , Raíces de Plantas/química , Antraquinonas/farmacología , Antraquinonas/uso terapéutico , Extractos Vegetales/uso terapéutico , Extractos Vegetales/toxicidad , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/análisis , Glicósidos/química , Inflamación/tratamiento farmacológico , Éteres Metílicos/análisis , Fitoquímicos/uso terapéutico , Fitoquímicos/toxicidad
3.
J Ethnopharmacol ; 328: 118090, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38521432

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Morinda officinalis How is called "Ba-Ji-Tian" in Traditional Chinese Medicine (TCM), which belongs to the genus Rubiaceae and is widely used for medicinal purposes in China and other eastern Asian countries. Morinda officinalis How polysaccharides (MOPs) are one of the key bioactive components, and have a variety of biological activities, such as antioxidation, antifatigue, enhanced immunity, antiosteoporosis, ect. AIM OF THE REVIEW: This review is aimed at providing comprehensive information of the latest preparation technologies, structural characterization, and pharmacological effects of MOPs. A more in-depth research on the structure and clinical pharmacology of the MOPs was explored. It could lay a foundation for further investigate the pharmacological activities and guide the safe clinical practice of MOPs. MATERIALS AND METHODS: The Web of Science, PubMed, Scifinder, Google Scholar, CNKI, Wanfang database, and other online database are used to search and collect the literature on extraction and separation methods, structural characterization, and pharmacological activities of MOPs publisher from 2004 to 2023. The key words are "Morinda officinalis polysaccharides", "extraction", "isolation", "purification" and "pharmacological effects". RESULTS: Morinda officinalis has been widely used in tonifying the kidney yang since ancient times, and is famous for one of the "Four Southern Medicines" in China for the treatment of depression, osteoporosis, rheumatoid arthritis, infertility, fatigue and Alzheimer's disease. The active ingredients of Morinda officinalis that have been researched on the treatment of depression and osteoporosis are mostly polysaccharides and oligosaccharides. The content of polysaccharides varies with different methods of extraction, separation and purification. MOPs have a wide range of pharmacological effects, including antioxidant, antifatigue, immunomodulatory, antiosteoporosis, and regulation of spermatogenesis activities. These pharmacological properties lay a foundation for the treatment of oxidative stress, osteoporosis, spermatogenic dysfunction, immunodeficiency, inflammation and other diseases with MOPs. CONCLUSIONS: At present, MOPs have been applied in the treatment of skeletal muscle atrophy, varicocele, osteoporosis, because of its effects of enhancing immunity, improving reproduction and antioxidant. However, the structure-activity relationship of these effects are still not clear. The more deeply study could be conducted on the MOPs in the future. The toxicology and clinical pharmacology, as well as mechanism of action of MOPs were also needed to deeply studied and clarified. This paper could lay the foundation for the application and safety of MOPs in multifunctional foods and drugs.


Asunto(s)
Medicamentos Herbarios Chinos , Morinda , Osteoporosis , Masculino , Humanos , Morinda/química , Antioxidantes , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Oligosacáridos , Osteoporosis/tratamiento farmacológico , Fitoquímicos/farmacología , Polisacáridos/farmacología , Polisacáridos/uso terapéutico
4.
J Ethnopharmacol ; 328: 118124, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38556138

RESUMEN

ETHNOPHAMACOLOGICAL RELEVANCE: Morinda officinalis oligosaccharides (MOs) is a mixture of oligosaccharides extracted from the roots of Morinda officinalis (MO). It is approved by Chinese Food and Drug Administration (CFDA) for depression treatment. MOs could improve the antidepressant efficacy of escitalopram in clinic. AIM OF THE STUDY: We aim to explore the antidepressant activity and potential mechanism of the combination usage of MOs and escitalopram on animal model of depression. MATERIALS AND METHODS: Depressive animal model was induced by chronic mild stress (CMS). Behavioral tests were conducted to evaluate the antidepressant efficacy of MOs and escitalopram. Serum neurotransmitter levels were detected by High-performance liquid chromatography (HPLC). Quantitative real-time PCR and Western blotting were applied to assay the hippocampus neurotrophic factors' mRNA and protein levels. Peripheral cytokines levels were measured through Enzyme-Linked Immunosorbent Assay (ELISA). Micorglia polization phenotype was assayed by immunofluorescence and flow cytometry. RESULTS: MOs and escitalopram obviously attenuated depression-like behaviors of CMS mice. Importantly, MOs plus escitalopram exhibited better antidepressant activity on CMS mice than monotherapy. At the same time, MOs combined escitalopram treatment significantly increased hippocampus neurotransmitters and neurotrophic factor levels, stimulated hippocampus neurogenesis and relieved central nervous system (CNS) microglia over-activation of CMS mice. The combination therapy had greater effect on neuroprotection and inflammation attenuation of CMS mice than monotherapy. CONCLUSION: Our results indicates MOs combined escitalopram might produce antidepressant activity through protecting neuron activity, relieving inflammation and modulating microglia polarization process.


Asunto(s)
Escitalopram , Morinda , Ratones , Animales , Depresión/tratamiento farmacológico , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Oligosacáridos/farmacología , Oligosacáridos/uso terapéutico , Inflamación/tratamiento farmacológico , Estrés Psicológico/tratamiento farmacológico , Modelos Animales de Enfermedad
5.
Chem Biodivers ; 21(5): e202400506, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38507138

RESUMEN

Acute lung injury (ALI) is a disease characterized by extensive lung damage and rampant inflammation, with a high mortality rate and no effective treatments available. Morinda officinalis oligosaccharides (MOOs), derived from the root of the traditional Chinese medicinal herb Morinda officinalis, known for its immune-boosting properties, presents a novel therapeutic possibility. To date, the impact of MOOs on ALI has not been explored. Our study aimed to investigate the potential protective effects of MOOs against ALI and to uncover the underlying mechanisms through an integrated approach of network pharmacology, molecular docking, and experimental validation. We discovered that MOOs significantly mitigated the pathological damage and decreased the expression of pro-inflammatory cytokines in LPS-induced ALI in mice. Complementary in vitro studies further demonstrated that MOOs effectively attenuated the M1 polarization induced by LPS. Network pharmacology analysis identified HSP90AA1, HSP90AB1, and NF-κB as key overlapping targets within a protein-protein interaction (PPI) network. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses elucidated the biological processes and signaling pathways implicated in MOOs' therapeutic action on ALI. Subsequently, molecular docking affirmed the binding of MOOs to the active sites of these identified targets. Corroborating these findings, our in vivo and in vitro experiments consistently demonstrated that MOOs significantly inhibited the LPS-induced upregulation of HSP90 and NF-κB. Collectively, these findings suggest that MOOs confer protection against ALI through a multi-target, multi-pathway mechanism, offering a promising new therapeutic strategy to mitigate this severe pulmonary condition.


Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , Simulación del Acoplamiento Molecular , Morinda , Oligosacáridos , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Animales , Morinda/química , Ratones , Oligosacáridos/farmacología , Oligosacáridos/química , Oligosacáridos/aislamiento & purificación , Masculino , Células RAW 264.7 , Ratones Endogámicos C57BL , Citocinas/metabolismo , FN-kappa B/metabolismo
6.
Sci Rep ; 14(1): 5668, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454039

RESUMEN

Vibrio parahaemolyticus is a gram-negative facultative anaerobic bacterium implicated as the causative agent of several shrimp diseases. As part of the effort to provide biocontrol and cost-effective treatments, this research was designed to elucidate the effect of Morinda citrifolia fruit extract on the immunity of Penaeus vannamei postlarvae (PL) to V. parahaemolyticus. The methanol extract of M. citrifolia was vacuum evaporated, and the bioactive compounds were detected using gas chromatography‒mass spectrometry (GC‒MS). Thereafter, P. vannamei PL diets were supplemented with M. citrifolia at different concentrations (0, 10, 20, 30, 40, and 50 mg/g) and administered for 30 days before 24 h of exposure to the bacterium V. parahaemolyticus. A total of 45 bioactive compounds were detected in the methanol extract of M. citrifolia, with cyclononasiloxane and octadecamethyl being the most abundant. The survival of P. vannamei PLs fed the extract supplement was better than that of the control group (7.1-26.7% survival greater than that of the control group) following V. parahaemolyticus infection. Shrimp fed 50 mg/g M. citrifolia had the highest recorded survival. The activities of digestive and antioxidant enzymes as well as hepatopancreatic cells were significantly reduced, except for those of lipase and hepatopancreatic E-cells, which increased following challenge with V. parahaemolyticus. Histological assessment of the hepatopancreas cells revealed reduced cell degeneration following the administration of the plant extracts (expecially those fed 50 mg/g M. citrifolia) compared to that in the control group. Therefore, the enhanced immunity against V. parahaemolyticus infection in P. vannamei could be associated with the improved hepatopancreas health associated with M. citrifolia fruit extract supplementation.


Asunto(s)
Morinda , Penaeidae , Vibriosis , Vibrio parahaemolyticus , Animales , Penaeidae/microbiología , Composición de Base , Frutas , Metanol/farmacología , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Extractos Vegetales/farmacología , Inmunidad Innata
7.
Phytother Res ; 38(4): 1932-1950, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38358681

RESUMEN

Morinda citrifolia L., commonly known as Noni, has a longstanding history in traditional medicine for treating various diseases. Recently, there has been an increased focus on exploring Noni extracts and phytoconstituents, particularly for their effectiveness against cancers such as lung, esophageal, liver, and breast cancer, and their potential in cancer chemoprevention. This study aims to provide a comprehensive review of in vitro and in vivo studies assessing Noni's impact on cancer, alongside an exploration of its bioactive compounds. A systematic review was conducted, encompassing a wide range of scientific databases to gather pertinent literature. This review focused on in vitro and in vivo studies, as well as clinical trials that explore the effects of Noni fruit and its phytoconstituents-including anthraquinones, flavonoids, sugar derivatives, and neolignans-on cancer. The search was meticulously structured around specific keywords and criteria to ensure a thorough analysis. The compiled studies highlight Noni's multifaceted role in cancer therapy, showcasing its various bioactive components and their modes of action. This includes mechanisms such as apoptosis induction, cell cycle arrest, antiangiogenesis, and immune system modulation, demonstrating significant anticancer and chemopreventive potential. The findings reinforce Noni's potential as a safe and effective option in cancer prevention and treatment. This review underscores the need for further research into Noni's anticancer properties, with the hope of stimulating additional studies and clinical trials to validate and expand upon these promising findings.


Asunto(s)
Antineoplásicos , Productos Biológicos , Neoplasias de la Mama , Morinda , Humanos , Femenino , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Medicina Tradicional , Neoplasias de la Mama/tratamiento farmacológico , Frutas
8.
Zhongguo Zhong Yao Za Zhi ; 49(2): 453-460, 2024 Jan.
Artículo en Chino | MEDLINE | ID: mdl-38403321

RESUMEN

This study aimed to investigate the therapeutic effects of Morinda officinalis iridoid glycosides(MOIG) on paw edema and bone loss of rheumatoid arthritis(RA) rats, and analyze its potential mechanism based on ultra-high performance liguid chromatography-guadrupole time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS) serum metabolomics. RA rats were established by injecting bovin type Ⅱ collagen. The collagen-induced arthritis(CIA) rats were administered drug by gavage for 8 weeks, the arthritic score were used to evaluate the severity of paw edem, serum bone metabolism biochemical parameters were measured by ELISA kits, Masson staining was used to observe the bone microstructure of the femur in CIA rats. UPLC-Q-TOF-MS was used to analyze the alteration of serum metabolite of CIA rats, principal component analysis(PCA) and partial least squares-discriminant analysis(PLS-DA) were used to screen the potential biomarkers, KEGG database analysis were used to construct related metabolic pathways. The results demonstrated that the arthritic score, serum levels of IL-6 and parameters related with bone metabolism including OCN, CTX-Ⅰ, DPD and TRAP were significantly increased, and the ratio of OPG and RANKL was significantly decreased, the microstructure of bone tissue and cartilage were destructed in CIA rats, while MOIG treatments could significantly reduce arthritis score, mitigate the paw edema, reverse the changes of serum biochemical indicators related with bone metabolism, and improve the microstructure of bone tissue and cartilage of CIA rats. The non-targeted metabolomics results showed that 24 altered metabolites were identified in serum of CIA rats; compared with normal group, 13 significantly altered metabolites related to RA were identified in serum of CIA rats, mainly involving alanine, aspartate and glutamate metabolism; compared with CIA model group, MOIG treatment reversed the alteration of 15 differential metabolites, mainly involving into alanine, aspartate and glutamate metabolism, D-glutamine and D-glutamate metabolism, taurine and hypotaurine metabolism, valine, leucine and isoleucine biosynthesis. Therefore, MOIG significantly alleviated paw edema, improved the destruction of microstructure of bone and cartilage in CIA rats maybe through involving into the regulation of amino acid metabolism.


Asunto(s)
Artritis Reumatoide , Morinda , Ratas , Animales , Glicósidos Iridoides/química , Morinda/química , Cromatografía Líquida de Alta Presión , Ácido Aspártico , Metabolómica , Artritis Reumatoide/tratamiento farmacológico , Edema , Alanina/uso terapéutico , Glutamatos/uso terapéutico , Biomarcadores
9.
Fitoterapia ; 173: 105781, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38128619

RESUMEN

Six anthraquinones were isolated from Morinda scabrida Craib, an unexplored species of Morinda found in the tropical forest of Thailand. All six anthraquinones showed cytotoxicity against A549 lung cancer cells, with the most active compound, nordamnacanthal (MS01), exhibiting the IC50 value of 16.3 ± 2.5 µM. The cytotoxic effect was dose-dependent and led to cell morphological changes characteristic of apoptosis. In addition, flow cytometric analysis showed dose-dependent apoptosis induction and the G2/M phase cell cycle arrest, which was in agreement with the tubulin polymerization inhibitory activity of MS01. Molecular docking analysis illustrated the binding between MS01 and the α/ß-tubulin heterodimer at the colchicine binding site, and UV-visible absorption spectroscopy revealed the DNA binding capacity of MS01.


Asunto(s)
Neoplasias Pulmonares , Morinda , Humanos , Estructura Molecular , Morinda/química , Proliferación Celular , Línea Celular Tumoral , Polimerizacion , Neoplasias Pulmonares/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Antraquinonas/farmacología , Moduladores de Tubulina/farmacología , Moduladores de Tubulina/química , Moduladores de Tubulina/metabolismo
10.
An Acad Bras Cienc ; 95(suppl 2): e20221026, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38055562

RESUMEN

Morinda citrifolia, commonly known as noni, is a plant belonging to the Rubiaceae family. This plant has a high biological potential, which has different biological properties, including antioxidant, antibacterial, antiviral, antifungal, antitumor and anti-inflammatory. In this work, the immunomodulatory, antitumor and antimicrobial activities of lignin isolated from Morinda citrifolia leaves were investigated. The results showed that this lignin was not cytotoxic and that it was able to promote activation and differentiation of immune cells in addition to inducing the production of anti-inflammatory cytokines. Furthermore, it was able to inhibit the growth of different tumor and microbial cells in vitro. This pioneering study on these different activities shows that the lignin isolated in this study can be used as a raw material to obtain biomedical and pharmaceutical products.


Asunto(s)
Antiinfecciosos , Morinda , Lignina , Extractos Vegetales/farmacología , Antiinfecciosos/farmacología , Antiinflamatorios/farmacología , Frutas
11.
Medicina (Kaunas) ; 59(11)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38004017

RESUMEN

Background and Objectives: To investigate the antiplaque properties of two plant-based mouthwashes, Morinda citrifolia (MC) and Ocimum sanctum (OS), and their effect on TNF-α, IL-α, IL-ß, IL-2, and IL-6 in gingival crevicular fluid (GCF) of patients undergoing fixed orthodontic treatment. Materials and Methods: Seventy-five individuals were recruited according to defined inclusion and exclusion criteria. This study was structured into two distinct phases. Phase I was a combination of toothbrushing using toothpaste containing fluoride (Protocol A), while Phase II toothbrushing included fluoride toothpaste and use of a mouthwash (Protocol B). For Phase II, individuals participating in this study were allocated into different groups through a randomization process: Group 1-0.12% CHX, Group 2-5% MC, and Group 3-4% OS. Each individual's Phase I and Phase II scores were assessed. GCF was measured in three phases to determine the level of inflammatory biomarkers. The paired t-test evaluated the disparities between the pre- and post-plaque index. Categorical data were subjected to crosstab analysis to assess qualitative variables. The mean values of cytokine levels were presented. An unpaired t-test was employed to assess the levels of cytokines between individuals in Phase I and Phase II. Results: Toothbrushing, fluoride toothpaste, and the supplementary use of mouthwash (Phase II) resulted in mean plaque scores significantly lower than group A (p < 0.001). Cytokines TNF-α, IL-α, and IL-ß demonstrated a significant downward trend in herbal mouthwash users. Conclusions: In conjunction with fluoridated toothpaste and brushing, OS and MC can serve as a viable alternative to conventional synthetic mouthwash CHX. This combination demonstrates reducing mean plaque scores and diminishing the levels of cytokines TNF-α, IL-α, and IL-ß.


Asunto(s)
Morinda , Antisépticos Bucales , Humanos , Antisépticos Bucales/uso terapéutico , Factor de Necrosis Tumoral alfa , Interleucina-2 , Interleucina-6 , Pastas de Dientes , Líquido del Surco Gingival , Fluoruros/uso terapéutico , Ocimum sanctum , Citocinas
12.
Sci Rep ; 13(1): 18838, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914791

RESUMEN

The green methodologies of nanoparticles with plant extracts have received an increase of interest. Copper oxide nanoparticles (CuO NPs) have been utilized in a many of applications in the last few decades. The current study presents the synthesis of CuO NPs with aqueous extract of Morinda citrifolia as a stabilizing agent. The leaf extract of Morinda citrifolia was mixed with a solution of copper sulphate (CuSO4·5H2O) and sodium hydroxide as a catalyst. UV-visible spectroscopy, FTIR, XRD, SEM, TEM, and EDAX analysis were performed to study the synthesized CuO NPs. Particle size distribution of the synthesized CuO NPs have been measured with dynamic light scattering. The CuO NPs synthesized were highly stable, sphere-like, and have size of particles from 20 to 50 nm. Furthermore, as-formed CuO NPs shown strong antibacterial activity against the Gram-positive bacteria (Bacillus subtilis, and Staphylococcus aureus), and Gram-negative bacteria (Escherichia coli). CuO NPs revealed a similar trend was analysed for antifungal activity. The zone of inhibition for the fungi evaluated for Aspergillus flavus (13.0 ± 1.1), Aspergillus niger (14.3 ± 0.7), and Penicillium frequentans (16.8 ± 1.4). According to the results of this investigation, green synthesized CuO NPs with Morinda citrifolia leaf extract may be used in biomedicine as a replacement agent for biological applications.


Asunto(s)
Nanopartículas del Metal , Morinda , Nanopartículas , Antifúngicos/farmacología , Cobre/química , Morinda/química , Nanopartículas del Metal/química , Antibacterianos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Óxidos , Pruebas de Sensibilidad Microbiana , Espectroscopía Infrarroja por Transformada de Fourier
13.
Exp Parasitol ; 255: 108617, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37844753

RESUMEN

Schistosomiasis is a parasitic disease that can be asymptomatic, but it can progress and cause serious damage, such as hospitalization and death. This work aimed to characterize and carry out the in vivo pharmacological test of the dry extract of Morinda citrifolia and obtain a pharmaceutical dosage form based on this extract for the treatment of schistosomiasis. The aqueous extract was characterized based on the evaluation of pH, dry residue and density. The aqueous extract was dried through the freeze-drying process. The obtained dry extract was characterized through phytochemical screening, rheological analysis, acute toxicity and in vivo pharmacology. Additionally, the pre-formulation development of a pharmaceutical dosage form was pursued with the dry extract. Through the HPLC chromatogram, characteristic rutin peaks were identified. The rheological behavior of the dry extract did not show good characteristics. Acute toxicity, at a dose of 2000 mg/kg, showed excitatory activity in the central and autonomous nervous system. The in vivo pharmacological test of the dry extract showed that, at a dose of 400 mg/kg, it was possible to reduce 67.5% of the total adult worms, 66% of female worms and 60% of the number of eggs. The pharmaceutical dosage form obtained was an oral solution that was clear, transparent, without the presence of lumps and precipitates, having a density of 1.1276 g mL-1 and pH of 5.92. The results obtained will provide parameters for the production of suitable pharmaceutical formulations, as well as for the quality control of products based on M. citrifolia, with promising schistosomicidal activity.


Asunto(s)
Morinda , Esquistosomiasis , Animales , Extractos Vegetales/uso terapéutico , Extractos Vegetales/toxicidad , Morinda/química , Composición de Medicamentos , Agua , Frutas/química
14.
Afr Health Sci ; 23(1): 213-217, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37545963

RESUMEN

Background: Morinda lucida leaves and fruits of Capsicum frutescens are used locally in the management of fever in Nigeria. No scientific credence has been lent to this claim. Objective: To investigate the antipyretic effect and potency of aqueous extracts of Morinda lucida leaves and fruits of Capsicum frutescens in albino rats. Method: Brewer's yeast was used to induce pyrexia. Thirty animals were divided into six groups. Group A was orally administered normal saline (103 mg/kg). Group B was served indomethacin (5 mg/kg), while groups C and D received aqueous extract of Capsicum frutescens at 100mg/kg and 200mg/kg, 17 hours post induction of pyrexia. Groups E and F were administered extract of Morinda lucida at the same doses. Rectal temperature of the animals was taken at 60-, 90- and 120-minutes post-treatment. Results: Both C. frutescens and M. lucida produced significant reduction (p<0.05) in rectal temperature after 120 minutes in the rats compared with animals in the control group. Also, the antipyretic activities of the two extracts at 100mg/kg and 200mg/kg were comparable to 5mg/kg of indomethacin, with apparent dose dependence in the antipyretic activities of both extracts. Conclusion: Morinda lucida leaves and fruits of Capsicum frutescens exhibit dose-dependent antipyretic activities.


Asunto(s)
Antipiréticos , Capsicum , Morinda , Ratas , Animales , Antipiréticos/farmacología , Extractos Vegetales/farmacología , Frutas , Fiebre/tratamiento farmacológico , Indometacina , Hojas de la Planta
15.
BMC Plant Biol ; 23(1): 381, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550611

RESUMEN

BACKGROUND: The R2R3-MYB transcription factors are a crucial and extensive gene family in plants, which participate in diverse processes, including development, metabolism, defense, differentiation, and stress response. In the Lingnan region of China, Morinda officinalis is extensively grown and is renowned for its use as both a medicinal herb and food source. However, there are relatively few reports on the R2R3-MYB transcription factor family in M.officinalis. RESULTS: In this study, we identified 97 R2R3-MYB genes in the genome of Morinda officinalis and classified them into 32 subgroups based on phylogenetic comparison with Arabidopsis thaliana. The lack of recent whole-genome duplication events in M.officinalis may be the reason for the relatively few members of the R2R3-MYB family. We also further analyzed the physical and chemical characteristics, conserved motifs, gene structure, and chromosomal location. Gene duplication events found 21 fragment duplication pairs and five tandem duplication event R2R3-MYB genes in M.officinalis may also affect gene family expansion. Based on phylogenetic analysis, cis-element analysis, co-expression analysis and RT-qPCR, we concluded that MoMYB33 might modulate flavonol levels by regulating the expression of 4-coumarate-CoA ligase Mo4CL2, chalcone isomerase MoCHI3, and flavonol synthase MoFLS4/11/12. MoMYB33 and AtMYB111 showed the highest similarity of 79% and may be involved in flavonol synthase networks by the STRING database. Moreover, we also identified MoMYB genes that respond to methyl Jasmonate (MeJA) and abscisic acid (ABA) stress by RT-qPCR. CONCLUSIONS: This study offers a thorough comprehension of R2R3-MYB in M.officinalis, which lays the foundation for the regulation of flavonol synthesis and the response of MoMYB genes to phytohormones in M.officinalis.


Asunto(s)
Arabidopsis , Morinda , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Morinda/genética , Morinda/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Genómica , Flavonoles/metabolismo , Regulación de la Expresión Génica de las Plantas
16.
Acta Parasitol ; 68(3): 659-675, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37474844

RESUMEN

BACKGROUND: The search for new antimalarial drugs remains elusive prompting research into antimalarial combinations from medicinal plants due to their cheapness, efficacy and availability. Azadirachta indica (AI), Morinda lucida (ML) and Mangifera indica (MI) have all been reported as potent antimalarial plants. PURPOSE: This study evaluated the efficacy of an antimalarial combination therapeutics prepared from leaves of AI, ML and MI using in vitro, in vivo and molecular methods. METHODS: Refined extracts of the plants combination was made by partitioning the aqueous extract of plants combinations (AI + MI, AI + ML, MI + ML, AI + MI + ML) using methanol and ethyl acetate consecutively. The resulting ethyl acetate partitioned fraction was evaluated for its antimalarial activity. Molecular docking and molecular dynamics simulation were employed to determine the possible mechanism of action of the constituent of the most active combination against four important P. falciparum proteins. RESULTS: The result revealed that the refined extract from combinations AI + ML and MI + ML at 16 mg/kg bodyweight have the highest chemo-suppressive effect of 90.7% and 91.0% respectively compared to chloroquine's 100% at 10 mg/kg. Also, refined extract from MI + ML combination improved PCV levels significantly (p < 0.05) compared to controls. Molecular docking revealed oleanolic acid and ursolic acid as multiple inhibitors of plasmepsin II, hiso-aspartic protease, falcipain-2 and P. falciparum Eonyl acyl-carrier protein reductase with relative stability during 100 ns of simulation. CONCLUSION: The study unveiled the potentials of ML and MI as good candidates for antimalarial combination therapy and further established their use together as revealed in folklore medicine.


Asunto(s)
Antimaláricos , Azadirachta , Malaria , Mangifera , Morinda , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Plasmodium falciparum , Extractos Vegetales/farmacología , Simulación del Acoplamiento Molecular , Hojas de la Planta
17.
In Vivo ; 37(2): 591-595, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36881078

RESUMEN

BACKGROUND/AIM: The inflammatory response plays an important role in the activation and progression of many inflammation-related diseases. Cannabis sativa and Morinda citrifolia have long been used in folk medicine to treat inflammation. Cannabidiol is the most abundant non-psychoactive phytocannabinoid in C. sativa and exhibits anti-inflammatory activity. The objective of this study was to examine the anti-inflammatory effect of cannabidiol in combination with M. citrifolia and compare its effects with those of cannabidiol alone. MATERIALS AND METHODS: RAW264 cells stimulated with lipopolysaccharide (200 ng/ml) were treated with cannabidiol (0-10 µM), M. citrifolia seed extract (0-100 µg/ml), or a combination of both for 8 or 24 h. Following the treatments, nitric oxide production in the activated RAW264 cells and the expression of inducible nitric oxide synthase were assessed. RESULTS: Our results showed that combination of cannabidiol (2.5 µM) and M. citrifolia seed extract (100 µg/ml) exhibited more efficient inhibition of nitric oxide production than cannabidiol treatment alone in lipopolysaccharide-stimulated RAW264 cells. The combination treatment also reduced the expression of inducible nitric oxide synthase. CONCLUSION: These results suggest that the anti-inflammatory effect of combined treatment with cannabidiol and M. citrifolia seed extract causes a reduction in the expression of inflammatory mediators.


Asunto(s)
Cannabidiol , Morinda , Cannabidiol/farmacología , Lipopolisacáridos , Óxido Nítrico , Óxido Nítrico Sintasa de Tipo II , Inflamación/tratamiento farmacológico , Macrófagos , Extractos Vegetales/farmacología
18.
Front Biosci (Landmark Ed) ; 28(2): 34, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36866542

RESUMEN

Heart failure (HF) is a cardiovascular disease with an extremely high mortality rate. However, Morinda officinalis How (MO) has not been studied for cardiovascular purposes at this time, the aim of this study was to find new mechanism for the MO of treatment of HF through a bioinformatics and experimental validation. The present study also aimed to establish a link between the basic and clinical applications of this medicinal herb. MO compounds and targets were obtained by traditional Chinese medicine systems pharmacology (TCMSP) and Pubchem. Subsequently, HF targets were acquired from DisGeNET and the interactions of all the targets and other human proteins were obtained via String so as to establish a component-target interaction network by Cytoscape 3.7.2. All the targets of clusters were inserted into Database for Annotation, Visualization and Integrated Discovery (DAVID) to perform GO (gene ontology) enrichment analysis. Molecular docking was adopted to predict the targets of MO relevant to the treatment of HF and to further explore the associated pharmacological mechanisms. Subsequently, a series of in vitro experiments, including histopathological staining, immunohistochemical and immunofluorescence analyses were conducted for further verification. Moreover, western blot analysis and in vivo experiments were performed. The results indicated that MO alleviated apoptosis, regulated cholesterol metabolism and transport function, and reduced inflammation, which resulted in the successful treatment of HF. Beta-sitosterol, Asperuloside tetraacetate and americanin A were the key bioactive components of MO. ALB, AKT1, INS, STAT3, IL-6, TNF, CCND1, CTNNB1, CAT, and TP53 were the core potential targets, which were significantly associated with multiple pathways, namely the FoxO signaling pathway, the AMPK signaling pathway, and the HIF-1 signaling pathway. In vivo experiments validated that MO may protect against heart failure or treat this disease by increasing the levels of autophagy via the FoxO3 signaling pathway in rats. The present study suggested that a combination of network pharmacology prediction with experimental validation may offer a useful tool to characterize the molecular mechanism of action of the traditional Chinese medicine (TCM) MO in the treatment of HF.


Asunto(s)
Enfermedades Cardiovasculares , Medicamentos Herbarios Chinos , Insuficiencia Cardíaca , Morinda , Animales , Humanos , Ratas , Enfermedades Cardiovasculares/tratamiento farmacológico , Insuficiencia Cardíaca/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Medicamentos Herbarios Chinos/farmacología
19.
Molecules ; 28(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36985397

RESUMEN

Recently, selenium nanoparticles have been drawing attention worldwide, and it is crucial to increase the stability of nano-Se. Morinda officinalis polysaccharides (MOP) are the main active component in Morinda officinalis radix. However, their low activity has limited their application. A novel selenium nanoparticle (Se-MOP) was prepared to solve these problems using MOP as a dispersant. The zeta potential was measured to evaluate the stability, and UV and ATR-FTIR were used to investigate the binding type of selenium and MOP. The morphology was observed by the TEM method. Furthermore, the inhibitory effect on five selected cancer cells (HepG2, MCF-7, AGS, PC9, and HCT8) was evaluated, showing remarkable inhibition of all five cancer cells. The mechanism of inhibition was also investigated by cell circle assay, and it was found that Se-MOP could induce cell circle G0/G1 phase arrest. Immune-enhancing activities were evaluated by measuring the proliferation and cytokines of mouse spleen lymphocytes in vitro and quantitative RT-PCR. The results indicated that single stimulation of Se-MOP and synergistic stimulation with PHA or LPS increased immune capacity and improved immune by increasing the expression of cytokines.


Asunto(s)
Morinda , Nanopartículas , Selenio , Ratones , Animales , Selenio/farmacología , Selenio/química , Morinda/química , Polisacáridos/farmacología , Citocinas , Nanopartículas/química
20.
J Ethnopharmacol ; 309: 116355, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-36914035

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Pain and inflammation are the major symptoms of almost every human disease. Herbal preparations from Morinda lucida are used to treat pain and inflammation in traditional medicine. However, the analgesic and anti-inflammatory activities of some of the plant's chemical constituents are not known. AIM OF THE STUDY: The aim of this study is to evaluate the analgesic and anti-inflammatory activities and possible mechanisms of these activities of iridoids from Morinda lucida. MATERIAL AND METHODS: The compounds were isolated using column chromatography and characterized by NMR spectroscopy and LC-MS. Anti-inflammatory activity was evaluated using carrageenan-induced paw edema. Whereas, the analgesic activity was assessed in the hot plate and acetic acid-induced writhing assays. Mechanistic studies were conducted using pharmacological blockers, determination of antioxidant enzymes, lipid peroxidation, and docking studies. RESULTS: The iridoid, ML2-2 exhibited inverse dose-dependent anti-inflammatory activity (42.62% maximum at 2 mg/kg p. o). ML2-3 produced dose-dependent anti-inflammatory activity (64.52% maximum at 10 mg/kg p. o.). Anti-inflammatory activity of diclofenac sodium was 58.60% at 10 mg/kg p. o. Furthermore, ML2-2 and ML2-3 produced analgesic activity (P < 0.01) of 44.44 ± 5.84 and 54.18 ± 19.01%. at 10 mg/kg p. o. respectively in the hot plate assay and 64.88 and 67.44% in the writhing assay. ML2-2 significantly elevated catalase activity. However, ML2-3 elevated SOD and catalase activity significantly. In the docking studies, both iridoids formed stable crystal complexes with delta and kappa opioid receptors, and the COX-2 enzyme with very low free binding energies (ΔG) from -11.2 to -14.0 kcal/mol. However, they did not bind with the mu opioid receptor. The lower bound RMSD of most of the poses were found to be ≤ 2. Several amino acids were involved in the interactions through various inter molecular forces. CONCLUSION: These results indicate that ML2-2 and ML2-3 possessed very significant analgesic and anti-inflammatory activities via acting as both delta and kappa opioid receptor agonist, elevation of anti-oxidant activity and inhibition of COX-2.


Asunto(s)
Morinda , Rubiaceae , Humanos , Ciclooxigenasa 2/metabolismo , Receptores Opioides delta , Catalasa , Iridoides/farmacología , Iridoides/uso terapéutico , Analgésicos/farmacología , Analgésicos/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Dolor/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Carragenina , Inflamación/tratamiento farmacológico , Antioxidantes , Superóxido Dismutasa/metabolismo , Edema/inducido químicamente , Edema/tratamiento farmacológico , Edema/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA