RESUMEN
Toxin-antitoxin (TA) systems are ubiquitous genetic elements in prokaryotes, but their biological importance is poorly understood. Mycobacterium smegmatis contains eight putative TA systems. Previously, seven TAs have been studied, with five of them being verified as functional. Here, we show that Ms0251-0252 is a novel TA system in that expression of the toxin Ms0251 leads to growth inhibition that can be rescued by the antitoxin Ms0252. To investigate the functional roles of TA systems in M. smegmatis, we deleted the eight putative TA loci and assayed the mutants for resistance to various stresses. Deletion of all eight TA loci resulted in decreased survival under starvation conditions and altered fitness when exposed to environmental stresses. Furthermore, we showed that deletion of the eight TA loci decreased resistance to phage infection in Sauton medium compared with the results using 7H10 medium, suggesting that TA systems might have different contributions depending on the nutrient environment. Furthermore, we found that MazEF specifically played a dominant role in resistance to phage infection. Finally, transcriptome analysis revealed that MazEF overexpression led to differential expression of multiple genes, including those related to iron acquisition. Altogether, we demonstrate that TA systems coordinately function to allow M. smegmatis to adapt to changing environmental conditions. IMPORTANCE Toxin-antitoxin (TA) systems are mechanisms for rapid adaptation of bacteria to environmental changes. Mycobacterium smegmatis, a model bacterium for studying Mycobacterium tuberculosis, encodes eight putative TA systems. Here, we constructed an M. smegmatis mutant with deletions of all eight TA-encoding genes and evaluated the resistance of these mutants to environmental stresses. Our results showed that different TA systems have overlapping and, in some cases, opposing functions in adaptation to various stresses. We suggest that complementary TA modules may function together to regulate the bacterial stress response, enabling adaptation to changing environments. Together, this study provides key insights into the roles of TA systems in resistance to various environmental stresses, drug tolerance, and defense against phage infection.
Asunto(s)
Antitoxinas , Toxinas Bacterianas , Mycobacterium tuberculosis , Sistemas Toxina-Antitoxina , Mycobacterium smegmatis/metabolismo , Sistemas Toxina-Antitoxina/genética , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Mycobacterium tuberculosis/genética , Antitoxinas/genética , Antitoxinas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismoRESUMEN
Twenty to thirty percent of the septating mycobacterial cells of the mid-log phase population showed highly deviated asymmetric constriction during division (ACD), while the remaining underwent symmetric constriction during division (SCD). The ACD produced short-sized cells (SCs) and normal/long-sized cells (NCs) as the sister-daughter cells, but with significant differential susceptibility to antibiotic/oxidative/nitrite stress. Here we report that, at 0.2% glycerol, formulated in the Middlebrook 7H9 medium, a significantly high proportion of the cells were divided by SCD. When the glycerol concentration decreased to 0.1% due to cell-growth/division, the ACD proportion gradually increased until the ACD:SCD ratio reached ~50:50. With further decrease in the glycerol levels, the SCD proportion increased with concomitant decrease in the ACD proportion. Maintenance of glycerol at 0.1%, through replenishment, held the ACD:SCD proportion at ~50:50. Transfer of the cells from one culture with a specific glycerol level to the supernatant from another culture, with a different glycerol level, made the cells change the ACD:SCD proportion to that of the culture from which the supernatant was taken. RT-qPCR data showed the possibility of diadenosine tetraphosphate phosphorylase (MSMEG_2932), phosphatidylinositol synthase (MSMEG_2933), and a Nudix family hydrolase (MSMEG_2936) involved in the ACD:SCD proportion-change in response to glycerol levels. We also discussed its physiological significance.
Asunto(s)
Glicerol/metabolismo , Mycobacterium bovis/metabolismo , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/metabolismo , Ácido Anhídrido Hidrolasas/metabolismo , Antioxidantes/metabolismo , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/metabolismo , Proliferación Celular , Medios de Cultivo , ADN Complementario/metabolismo , Glicerol/química , Humanos , Mutación , Estrés Oxidativo , Pirofosfatasas/metabolismo , ARN/metabolismo , Tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Hidrolasas NudixRESUMEN
The emergence of antibiotic-resistant strains of Mycobacterium tuberculosis and the decelerating development of new and effective antibiotics has impaired the treatment of tuberculosis (TB). Efflux pump inhibitors (EPIs) have the potential to improve the efficacy of existing anti-TB drugs although with toxicity limitations. Peptide nucleic acids (PNAs), oligonucleotide mimics, by virtue of their high nucleic acid binding specificity have the capability to overcome this drawback. We, therefore, investigated the efflux pump inhibitory properties of a PNA designed against an efflux pump of Mycobacterium smegmatis. LfrA, an efflux pump found in M. smegmatis, is majorly involved in conferring innate drug resistance to this strain and, therefore, was selected as a target for gene silencing via PNA. qRT-PCR and EtBr assays confirmed the EPI activity of the anti-lfrA PNA. On testing the effect of the anti-lfrA PNA on the bactericidal activity of a fluoroquinolone, norfloxacin, we observed that 5 µM of anti-lfrA PNA in combination with norfloxacin led to an enhanced killing of up to 2.5 log-fold against wild-type and a lab-generated multidrug resistant strain, exemplifying its potential in countering resistance. Improved efficacy was also observed against intra-macrophage mycobacteria, where the drug-PNA combination enhanced bacterial clearance by 1.3 log-fold. Further, no toxicity was observed with PNA concentrations up to 4 times higher than the efficacious anti-lfrA PNA concentration. Thus, PNA, as an adjuvant, presents a novel and viable approach to rejuvenate anti-TB therapeutics.
Asunto(s)
Mycobacterium tuberculosis , Ácidos Nucleicos de Péptidos , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico , Resistencia a Medicamentos , Pruebas de Sensibilidad Microbiana , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , NorfloxacinoRESUMEN
Recently, ATP synthase inhibitor Bedaquiline was approved for the treatment of multi-drug resistant tuberculosis emphasizing the importance of oxidative phosphorylation for the survival of mycobacteria. ATP synthesis is primarily dependent on the generation of proton motive force through the electron transport chain in mycobacteria. The mycobacterial electron transport chain utilizes two terminal oxidases for the reduction of oxygen, namely the bc1-aa3 supercomplex and the cytochrome bd oxidase. The bc1-aa3 supercomplex is an energy-efficient terminal oxidase that pumps out four vectoral protons, besides consuming four scalar protons during the transfer of electrons from menaquinone to molecular oxygen. In the past few years, several inhibitors of bc1-aa3 supercomplex have been developed, out of which, Q203 belonging to the class of imidazopyridine, has moved to clinical trials. Recently, the crystal structure of the mycobacterial cytochrome bc1-aa3 supercomplex was solved, providing details of the route of transfer of electrons from menaquinone to molecular oxygen. Besides providing insights into the molecular functioning, crystal structure is aiding in the targeted drug development. On the other hand, the second respiratory terminal oxidase of the mycobacterial respiratory chain, cytochrome bd oxidase, does not pump out the vectoral protons and is energetically less efficient. However, it can detoxify the reactive oxygen species and facilitate mycobacterial survival during a multitude of stresses. Quinolone derivatives (CK-2-63) and quinone derivative (Aurachin D) inhibit cytochrome bd oxidase. Notably, ablation of both the two terminal oxidases simultaneously through genetic methods or pharmacological inhibition leads to the rapid death of the mycobacterial cells. Thus, terminal oxidases have emerged as important drug targets. In this review, we have described the current understanding of the functioning of these two oxidases, their physiological relevance to mycobacteria, and their inhibitors. Besides these, we also describe the alternative terminal complexes that are used by mycobacteria to maintain energized membrane during hypoxia and anaerobic conditions.
Asunto(s)
Mycobacterium tuberculosis , Oxidorreductasas , Transporte de Electrón , Complejo IV de Transporte de Electrones/metabolismo , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/metabolismo , Oxidorreductasas/metabolismoRESUMEN
AIMS: To characterize the 21-kDa iron-regulated cell wall protein in Mycobacterium smegmatis co-expressed with the siderophores mycobactin, exochelin and carboxymycobactin upon iron limitation. METHODS AND RESULTS: Mycobacterium smegmatis, grown in the presence of 0·02 µg Fe ml-1 (low iron) produced high levels of all the three siderophores, which were repressed in bacteria supplemented with 8 µg Fe ml-1 (high iron). Exochelin, the major extracellular siderophore was the first to rise and was expressed at high levels during log phase of growth. Carboxymycobactin, a minor component in log phase iron-starved M. smegmatis continued to rise when cultured for longer periods, reaching levels greater than exochelin. Iron-starved bacteria expressed a 21-kDa iron-regulated protein (IrpA) that was identified as Clp protease subunit (MSMEG_3671) and characterized as a receptor for ferri-exochelin. CONCLUSIONS: Ferri-exochelin is the preferred siderophore in M. smegmatis and this ferri-exochelin: IrpA machinery is absent in Mycobacterium tuberculosis. SIGNIFICANCE AND IMPACT OF THE STUDY: Exochelin machinery is functional in M. smegmatis and the carboxymycobactin-mycobactin machinery is the sole iron uptake system in M. tuberculosis. The absence of the ferri-exochelin: IrpA system in the pathogen signifies the importance of the carboxymycobactin-mycobactin system machinery in M. tuberculosis.
Asunto(s)
Proteínas Bacterianas/metabolismo , Compuestos Férricos/metabolismo , Proteínas Reguladoras del Hierro/metabolismo , Hierro/metabolismo , Mycobacterium smegmatis/metabolismo , Péptidos Cíclicos/metabolismo , Transporte Biológico , Pared Celular/metabolismo , Medios de Cultivo/química , Deficiencias de Hierro , Mycobacterium smegmatis/crecimiento & desarrollo , Oxazoles/metabolismo , Sideróforos/metabolismoRESUMEN
Eleven independent simulations, each involving three consecutive molecules in the RecA filament, carried out on the protein from Mycobacterium tuberculosis, Mycobacterium smegmatis and Escherichia coli and their Adenosine triphosphate (ATP) complexes, provide valuable information which is complementary to that obtained from crystal structures, in addition to confirming the robust common structural framework within which RecA molecules from different eubacteria function. Functionally important loops, which are largely disordered in crystal structures, appear to adopt in each simulation subsets of conformations from larger ensembles. The simulations indicate the possibility of additional interactions involving the P-loop which remains largely invariant. The phosphate tail of the ATP is firmly anchored on the loop while the nucleoside moiety exhibits substantial structural variability. The most important consequence of ATP binding is the movement of the 'switch' residue. The relevant simulations indicate the feasibility of a second nucleotide binding site, but the pathway between adjacent molecules in the filament involving the two nucleotide binding sites appears to be possible only in the mycobacterial proteins.
Asunto(s)
Proteínas Bacterianas/química , Simulación de Dinámica Molecular , Conformación Proteica , Rec A Recombinasas/química , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Escherichia coli/metabolismo , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/metabolismo , Unión Proteica , Rec A Recombinasas/metabolismo , Especificidad de la EspecieRESUMEN
The mycobacterial phosphoglycosyltransferase WecA, which initiates arabinogalactan biosynthesis in Mycobacterium tuberculosis, has been proposed as a target of the caprazamycin derivative CPZEN-45, a preclinical drug candidate for the treatment of tuberculosis. In this report, we describe the functional characterization of mycobacterial WecA and confirm the essentiality of its encoding gene in M. tuberculosis by demonstrating that the transcriptional silencing of wecA is bactericidal in vitro and in macrophages. Silencing wecA also conferred hypersensitivity of M. tuberculosis to the drug tunicamycin, confirming its target selectivity for WecA in whole cells. Simple radiometric assays performed with mycobacterial membranes and commercially available substrates allowed chemical validation of other putative WecA inhibitors and resolved their selectivity toward WecA versus another attractive cell wall target, translocase I, which catalyzes the first membrane step in the biosynthesis of peptidoglycan. These assays and the mutant strain described herein will be useful for identifying potential antitubercular leads by screening chemical libraries for novel WecA inhibitors.
Asunto(s)
Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Animales , Proteínas Bacterianas/análisis , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Silenciador del Gen , Macrófagos/microbiología , Pruebas de Sensibilidad Microbiana , Terapia Molecular Dirigida/métodos , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidad , Radiometría/métodos , Transferasas/análisis , Transferasas/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/antagonistas & inhibidores , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Tuberculosis/microbiología , Tunicamicina/farmacología , Uridina/análogos & derivados , Uridina/farmacologíaRESUMEN
M. tuberculosis contains an unusually high number of serine hydrolases by proteome percentage compared to other common bacteria or humans. This letter describes a method to probe the global substrate specificity of mycobacterial serine hydrolases with ester-protected prodrugs of ethambutol, a first-line antibiotic treatment for TB. These compounds were synthesized directly from ethambutol using a selective o-acylation to yield products in high yield and purity with minimal workup. A library of derivatives was screened against M. smegmatis, a non-infectious model for M. tuberculosis, which displayed significantly lowered biological activity compared to ethambutol. Incubation with a general serine hydrolase reactivated each derivative to near-ethambutol levels, demonstrating that esterification of ethambutol should provide a simple screen for mycobacterial hydrolase activity.
Asunto(s)
Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Ésteres/farmacología , Etambutol/farmacología , Hidrolasas/antagonistas & inhibidores , Profármacos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Ésteres/síntesis química , Ésteres/química , Etambutol/síntesis química , Etambutol/química , Hidrolasas/metabolismo , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/metabolismo , Profármacos/síntesis química , Profármacos/química , Relación Estructura-ActividadRESUMEN
Mycobacterium smegmatis strain MC² 155 is an attractive model organism for the study of M. tuberculosis and other mycobacterial pathogens, as it can grow well using cholesterol as a carbon resource. However, its global transcriptomic response remains largely unrevealed. In this study, M. smegmatis MC² 155 cultivated in androstenedione, cholesterol and glycerol supplemented media were collected separately for a RNA-Sequencing study. The results showed that 6004, 6681 and 6348 genes were expressed in androstenedione, cholesterol and glycerol supplemented media, and 5891 genes were expressed in all three conditions, with 237 specially expressed in cholesterol added medium. A total of 1852 and 454 genes were significantly up-regulated by cholesterol compared with the other two supplements. Only occasional changes were observed in basic carbon and nitrogen metabolism, while almost all of the genes involved in cholesterol catabolism and mammalian cell entry (MCE) were up-regulated by cholesterol, but not by androstenedione. Eleven and 16 gene clusters were induced by cholesterol when compared with glycerol or androstenedione, respectively. This study provides a comprehensive analysis of the cholesterol responsive transcriptome of M. smegmatis. Our results indicated that cholesterol induced many more genes and increased the expression of the majority of genes involved in cholesterol degradation and MCE in M. smegmatis, while androstenedione did not have the same effect.
Asunto(s)
Androstenodiona/metabolismo , Colesterol/metabolismo , Genoma Bacteriano , Glicerol/metabolismo , Mycobacterium smegmatis/metabolismo , Transcriptoma , Regulación Bacteriana de la Expresión Génica , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crecimiento & desarrolloRESUMEN
Ergothioneine is a small, sulfur-containing metabolite (229 Da) synthesized by various species of bacteria and fungi, which can accumulate to millimolar levels in tissues or cells (e.g. erythrocytes) of higher eukaryotes. It is commonly marketed as a dietary supplement due to its proposed protective and antioxidative functions. In this study we report the genes forming the two-step ergothioneine biosynthetic pathway in the fission yeast, Schizosaccharomyces pombe. We identified the first gene, egt1+ (SPBC1604.01), by sequence homology to previously published genes from Neurospora crassa and Mycobacterium smegmatis. We showed, using metabolomic analysis, that the Δegt1 deletion mutant completely lacked ergothioneine and its precursors (trimethyl histidine/hercynine and hercynylcysteine sulfoxide). Since the second step of ergothioneine biosynthesis has not been characterized in eukaryotes, we examined four putative homologs (Nfs1/SPBC21D10.11c, SPAC11D3.10, SPCC777.03c, and SPBC660.12c) of the corresponding mycobacterial enzyme EgtE. Among deletion mutants of these genes, only one (ΔSPBC660.12c, designated Δegt2) showed a substantial decrease in ergothioneine, accompanied by accumulation of its immediate precursor, hercynylcysteine sulfoxide. Ergothioneine-deficient strains exhibited no phenotypic defects during vegetative growth or quiescence. To effectively study the role of ergothioneine, we constructed an egt1+ overexpression system by replacing its native promoter with the nmt1+ promoter, which is inducible in the absence of thiamine. We employed three versions of the nmt1 promoter with increasing strength of expression and confirmed corresponding accumulations of ergothioneine. We quantified the intracellular concentration of ergothioneine in S. pombe (0.3, 157.4, 41.6, and up to 1606.3 µM in vegetative, nitrogen-starved, glucose-starved, and egt1+-overexpressing cells, respectively) and described its gradual accumulation under long-term quiescence. Finally, we demonstrated that the ergothioneine pathway can also synthesize selenoneine, a selenium-containing derivative of ergothioneine, when the culture medium is supplemented with selenium. We further found that selenoneine biosynthesis involves a novel intermediate compound, hercynylselenocysteine.
Asunto(s)
Vías Biosintéticas/genética , Ergotioneína/biosíntesis , Regulación Fúngica de la Expresión Génica , Histidina/análogos & derivados , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Medios de Cultivo/química , Histidina/biosíntesis , Metaboloma/genética , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Neurospora crassa/genética , Neurospora crassa/metabolismo , Compuestos de Organoselenio , Regiones Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genéticaRESUMEN
Mycobacterium smegmatis is an obligate aerobe that harbours three predicted [NiFe] hydrogenases, Hyd1 (MSMEG_22622263), Hyd2 (MSMEG_2720-2719) and Hyd3 (MSMEG_3931-3928). We show here that these three enzymes differ in their phylogeny, regulation and catalytic activity. Phylogenetic analysis revealed that Hyd1 groups with hydrogenases that oxidize H2 produced by metabolic processes, and Hyd2 is homologous to a novel group of putative high-affinity hydrogenases. Hyd1 and Hyd2 respond to carbon and oxygen limitation, and, in the case of Hyd1, hydrogen supplementation. Hydrogen consumption measurements confirmed that both enzymes can oxidize hydrogen. In contrast, the phylogenetic analysis and activity measurements of Hyd3 are consistent with the enzyme evolving hydrogen. Hyd3 is controlled by DosR, a regulator that responds to hypoxic conditions. The strict dependence of hydrogen oxidation of Hyd1 and Hyd2 on oxygen suggests that the enzymes are oxygen tolerant and linked to the respiratory chain. This unique combination of hydrogenases allows M. smegmatis to oxidize hydrogen at high (Hyd1) and potentially tropospheric (Hyd2) concentrations, as well as recycle reduced equivalents by evolving hydrogen (Hyd3). The distribution of these hydrogenases throughout numerous soil and marine species of actinomycetes suggests that oxic hydrogen metabolism provides metabolic flexibility in environments with changing nutrient fluxes.
Asunto(s)
Proteínas Bacterianas/metabolismo , Hidrogenasas/metabolismo , Mycobacterium smegmatis/enzimología , Aerobiosis , Proteínas Bacterianas/genética , Hidrógeno/metabolismo , Hidrogenasas/genética , Familia de Multigenes , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Operón , Oxidación-Reducción , Oxígeno/metabolismo , FilogeniaRESUMEN
OBJECTIVE: A sigma factor is an important component of RNA polymerase complex and is essential for initiation of RNA synthesis. The sigma factors fall into 2 categories: primary sigma factor is essential for bacterial growth and the alterative sigma factor is activated under different environmental conditions. Sigma F (SigF) is one of the sigma factors of Mycobacterium tuberculosis, affecting its virulence and pathogenesis. In contrast, the ortholog of the non-virulent, fast growing strain Mycobacterium smegmatis has been suggested without similar physiology roles. Here, we studied the functions of M. smegmatis SigF. METHODS: sigF knockout Mycobacterium smegmatis strain was constructed by specialized transduction. The wild type, knockout and complementary stains were challenged by oxidative stress and antibiotics. RESULTS: The knockout sigF stain was susceptible oxidative stress, compared to wild type. Furthermore, there was no defect in resistance to antibiotics including isoniazid between the knockout sigF strain and wild type strain. In addition, SigF is required for carotenoid pigment production in M. smegmatis. CONCLUSION: Our data suggested that SigF is important to detoxify the reactive oxygen species, probably through photo-oxidative stress response pathway, which is independent on the pathway that is required for the isoniazid activation.
Asunto(s)
Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana , Peróxido de Hidrógeno/farmacología , Mycobacterium smegmatis/efectos de los fármacos , Factor sigma/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Estrés Oxidativo , Factor sigma/genéticaRESUMEN
Bacterial DNA can be damaged by reactive nitrogen and oxygen intermediates (RNI and ROI) generated by host immunity, as well as by antibiotics that trigger bacterial production of ROI. Thus a pathogen's ability to repair its DNA may be important for persistent infection. A prominent role for nucleotide excision repair (NER) in disease caused by Mycobacterium tuberculosis (Mtb) was suggested by attenuation of uvrB-deficient Mtb in mice. However, it was unknown if Mtb's Uvr proteins could execute NER. Here we report that recombinant UvrA, UvrB, and UvrC from Mtb collectively bound and cleaved plasmid DNA exposed to ultraviolet (UV) irradiation or peroxynitrite. We used the DNA incision assay to test the mechanism of action of compounds identified in a high-throughput screen for their ability to delay recovery of M. smegmatis from UV irradiation. 2-(5-Amino-1,3,4-thiadiazol-2-ylbenzo[f]chromen-3-one) (ATBC) but not several closely related compounds inhibited cleavage of damaged DNA by UvrA, UvrB, and UvrC without intercalating in DNA and impaired recovery of M. smegmatis from UV irradiation. ATBC did not affect bacterial growth in the absence of UV exposure, nor did it exacerbate the growth defect of UV-irradiated mycobacteria that lacked uvrB. Thus, ATBC appears to be a cell-penetrant, selective inhibitor of mycobacterial NER. Chemical inhibitors of NER may facilitate studies of the role of NER in prokaryotic pathobiology.
Asunto(s)
Reparación del ADN/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Endodesoxirribonucleasas/antagonistas & inhibidores , Proteínas de Escherichia coli/antagonistas & inhibidores , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Daño del ADN , Reparación del ADN/efectos de la radiación , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Endodesoxirribonucleasas/deficiencia , Endodesoxirribonucleasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/efectos de la radiación , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/efectos de la radiación , Ácido Peroxinitroso/farmacología , Tiadiazoles/química , Tiadiazoles/farmacología , Rayos UltravioletaRESUMEN
BACKGROUND: Two genotypically and microbiologically distinct strains of Mycobacterium avium subsp. paratuberculosis (MAP) exist - S and C MAP strains that primarily infect sheep and cattle, respectively. Concentration of iron in the cultivation medium has been suggested as one contributing factor for the observed microbiologic differences. We recently demonstrated that S strains have defective iron storage systems, leading us to propose that these strains might experience iron toxicity when excess iron is provided in the medium. To test this hypothesis, we carried out transcriptional and proteomic profiling of these MAP strains under iron-replete or -deplete conditions. RESULTS: We first complemented M.smegmatisΔideR with IdeR of C MAP or that derived from S MAP and compared their transcription profiles using M. smegmatis mc(2)155 microarrays. In the presence of iron, sIdeR repressed expression of bfrA and MAP2073c, a ferritin domain containing protein suggesting that transcriptional control of iron storage may be defective in S strain. We next performed transcriptional and proteomic profiling of the two strain types of MAP under iron-deplete and -replete conditions. Under iron-replete conditions, C strain upregulated iron storage (BfrA), virulence associated (Esx-5 and antigen85 complex), and ribosomal proteins. In striking contrast, S strain downregulated these proteins under iron-replete conditions.. iTRAQ (isobaric tag for relative and absolute quantitation) based protein quantitation resulted in the identification of four unannotated proteins. Two of these were upregulated by a C MAP strain in response to iron supplementation. The iron-sparing response to iron limitation was unique to the C strain as evidenced by repression of non-essential iron utilization enzymes (aconitase and succinate dehydrogenase) and upregulation of proteins of essential function (iron transport, [Fe-S] cluster biogenesis and cell division). CONCLUSIONS: Taken together, our study revealed that C and S strains of MAP utilize divergent metabolic pathways to accommodate in vitro iron stress. The knowledge of the metabolic pathways these divergent responses play a role in are important to 1) advance our ability to culture the two different strains of MAP efficiently, 2) aid in diagnosis and control of Johne's disease, and 3) advance our understanding of MAP virulence.
Asunto(s)
Hierro/metabolismo , Hierro/toxicidad , Mycobacterium avium subsp. paratuberculosis/clasificación , Mycobacterium avium subsp. paratuberculosis/metabolismo , Antibacterianos/metabolismo , Antibacterianos/toxicidad , Medios de Cultivo/química , Redes y Vías Metabólicas/genética , Análisis por Micromatrices , Mycobacterium avium subsp. paratuberculosis/química , Mycobacterium avium subsp. paratuberculosis/genética , Mycobacterium smegmatis/química , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Proteoma , Especificidad de la Especie , TranscriptomaRESUMEN
Two iminosugars have been designed and synthesized as potential inhibitors of UDP-Galf transferase, an enzyme involved in Mycobacterium tuberculosis cell wall biosynthesis. The design is based on a proposed model of the transition state for the transferase reaction. One of the two racemic compounds is the first reported inhibitor of the target enzyme from M. smegmatis.
Asunto(s)
Inhibidores Enzimáticos , Galactosiltransferasas/antagonistas & inhibidores , Galactosiltransferasas/biosíntesis , Iminas , Mycobacterium tuberculosis/enzimología , Catálisis , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Galactanos/antagonistas & inhibidores , Galactanos/biosíntesis , Galactosiltransferasas/química , Iminas/síntesis química , Iminas/farmacología , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Conformación Molecular , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Estereoisomerismo , Relación Estructura-Actividad , Especificidad por SustratoRESUMEN
Until recently, genetic analysis of Mycobacterium tuberculosis, the causative agent of tuberculosis, was hindered by a lack of methods for gene disruptions and allelic exchange. Several groups have described different methods for disrupting genes marked with antibiotic resistance determinants in the slow-growing organisms Mycobacterium bovis bacillus Calmette-Guérin (BCG) and M. tuberculosis. In this study, we described the first report of using a mycobacterial suicidal plasmid bearing the counterselectable marker sacB for the allelic exchange of unmarked deletion mutations in the chromosomes of two substrains of M. bovis BCG and M. tuberculosis H37Rv. In addition, our comparison of the recombination frequencies in these two slow-growing species and that of the fast-growing organism Mycobacterium smegmatis suggests that the homologous recombination machinery of the three species is equally efficient. The mutants constructed here have deletions in the lysA gene, encoding meso-diaminopimelate decarboxylase, an enzyme catalyzing the last step in lysine biosynthesis. We observed striking differences in the lysine auxotrophic phenotypes of these three species of mycobacteria. The M. smegmatis mutant can grow on lysine-supplemented defined medium or complex rich medium, while the BCG mutants grow only on lysine-supplemented defined medium and are unable to form colonies on complex rich medium. The M. tuberculosis lysine auxotroph requires 25-fold more lysine on defined medium than do the other mutants and is dependent upon the detergent Tween 80. The mutants described in this work are potential vaccine candidates and can also be used for studies of cell wall biosynthesis and amino acid metabolism.