Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Chin Med ; 49(6): 1437-1448, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34247560

RESUMEN

Linalool, a major odorous constituent in essential oils extracted from lavender, is known to have a wide range of physiological effects on humans including pain management. The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) is involved in transmission of orofacial nociceptive responses through thin myelinated A[Formula: see text] and unmyelinated C primary afferent fibers. Up to date, the orofacial antinociceptive mechanism of linalool concerning SG neurons of the Vc has not been completely clarified yet. To fill this knowledge gap, whole-cell patch-clamp technique was used in this study to examine how linalool acted on SG neurons of the Vc in mice. Under a high chloride pipette solution, non-desensitizing and repeatable linalool-induced inward currents were preserved in the presence of tetrodotoxin (a voltage-gated Na[Formula: see text]channel blocker), CNQX (a non-NMDA glutamate receptor antagonist), and DL-AP5 (an NMDA receptor antagonist). However, linalool-induced inward currents were partially suppressed by picrotoxin (a GABA[Formula: see text] receptor antagonist) or strychnine (a glycine receptor antagonist). These responses were almost blocked in the presence of picrotoxin and strychnine. It was also found that linalool exhibited potentiation with GABA- and glycine-induced responses. Taken together, these data show that linalool has GABA- and glycine-mimetic effects, suggesting that it can be a promising target molecule for orofacial pain management by activating inhibitory neurotransmission in the SG area of the Vc.


Asunto(s)
Monoterpenos Acíclicos/farmacología , Glicina/metabolismo , Manejo del Dolor/métodos , Sustancia Gelatinosa/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Núcleo Caudal del Trigémino/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones
2.
J Headache Pain ; 21(1): 35, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32316909

RESUMEN

BACKGROUND: The neurochemical background of the evolution of headache disorders, still remains partially undiscovered. Accordingly, our aim was to further explore the neurochemical profile of Complete Freund's adjuvant (CFA)-induced orofacial pain, involving finding the shift point regarding small molecule neurotransmitter concentrations changes vs. that of the previously characterized headache-related neuropeptides. The investigated neurotransmitters consisted of glutamate, γ-aminobutyric acid, noradrenalin and serotonin. Furthermore, in light of its influence on glutamatergic neurotransmission, we measured the level of kynurenic acid (KYNA) and its precursors in the kynurenine (KYN) pathway (KP) of tryptophan metabolism. METHODS: The effect of CFA was evaluated in male Sprague Dawley rats. Animals were injected with CFA (1 mg/ml, 50 µl/animal) into the right whisker pad. We applied high-performance liquid chromatography to determine the concentrations of the above-mentioned compounds from the trigeminal nucleus caudalis (TNC) and somatosensory cortex (ssCX) of rats. Furthermore, we measured some of these metabolites from the cerebrospinal fluid and plasma as well. Afterwards, we carried out permutation t-tests as post hoc analysis for pairwise comparison. RESULTS: Our results demonstrated that 24 h after CFA treatment, the level of glutamate, KYNA and that of its precursor, KYN was still elevated in the TNC, all diminishing by 48 h. In the ssCX, significant concentration increases of KYNA and serotonin were found. CONCLUSION: This is the first study assessing neurotransmitter changes in the TNC and ssCX following CFA treatment, confirming the dominant role of glutamate in early pain processing and a compensatory elevation of KYNA with anti-glutamatergic properties. Furthermore, the current findings draw attention to the limited time interval where medications can target the glutamatergic pathways.


Asunto(s)
Dolor Facial/metabolismo , Ácido Glutámico/metabolismo , Ácido Quinurénico/metabolismo , Norepinefrina/metabolismo , Serotonina/metabolismo , Triptófano/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Dolor Facial/inducido químicamente , Adyuvante de Freund , Masculino , Ratas , Ratas Sprague-Dawley , Núcleo Caudal del Trigémino/metabolismo , Vibrisas/efectos de los fármacos
3.
Med Hypotheses ; 125: 90-93, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30902160

RESUMEN

BACKGROUND: Migraine is a highly prevalent, disabling, and costly disorder worldwide. From a long time ago, headaches have been known to be associated with gastrointestinal (GI) disorders. Headaches originating from gastric complaints were appreciated by Persian Medicine (PM) scholars. Today, functional GI disorders are shown to have high comorbidity with migraines; however, a causal relationship is not accepted today and pathophysiological explanations for this comorbidity are scarce. Therefore, based on the PM philosophy and the existing evidence, we aimed to propose an explanation for the co-morbidity of migraine and GI disorders. SUMMARY: Noxious stimuli from the GI tract are relayed to the nucleus tractus solitarius (NTS) in the brain stem, which is located close to the trigeminal nucleus caudalis (TNC). TNC has shown projections to (NTS) through which frequent GI stimuli may antidromically reach the TNC and finally result in neurogenic inflammation. In addition, immune products, particularly histamine, are released in the submucosa of the GI tract and absorbed into the systemic circulation, which renders migraineurs more prone to attacks.


Asunto(s)
Enfermedades Gastrointestinales/complicaciones , Trastornos Migrañosos/complicaciones , Tronco Encefálico/fisiopatología , Comorbilidad , Enfermedades Gastrointestinales/fisiopatología , Cefalea/complicaciones , Histamina/química , Humanos , Inflamación , Trastornos Migrañosos/fisiopatología , Modelos Biológicos , Resultado del Tratamiento , Núcleo Caudal del Trigémino/fisiopatología
4.
Mol Pain ; 15: 1744806918820452, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30799680

RESUMEN

Migraine is the seventh most disabling disorder globally, with prevalence of 11.7% worldwide. One of the prevailing mechanisms is the activation of the trigeminovascular system, and calcitonin gene-related peptide (CGRP) is an important therapeutic target for migraine in this system. Recent studies suggested an emerging role of pituitary adenylate cyclase-activating peptide (PACAP) in migraine. However, the relation between CGRP and PACAP and the role of PACAP in migraine remain undefined. In this study, we established a novel repetitive (one, three, and seven days) electrical stimulation model by stimulating dura mater in conscious rats. Then, we determined expression patterns in the trigeminal ganglion and the trigeminal nucleus caudalis of the trigeminovascular system. Electrical stimulation decreased facial mechanical thresholds, and the order of sensitivity was as follows: vibrissal pad >inner canthus >outer canthus (P < 0.001). The electrical stimulation group exhibited head-turning and head-flicks (P < 0.05) nociceptive behaviors. Importantly, electrical stimulation increased the expressions of CGRP, PACAP, and the PACAP-preferring type 1 (PAC1) receptor in both trigeminal ganglion and trigeminal nucleus caudalis (P < 0.05). The expressions of two vasoactive intestinal peptide (VIP)-shared type 2 (VPAC1 and VPAC2) receptors were increased in the trigeminal ganglion, whereas in the trigeminal nucleus caudalis, their increases were peaked on Day 3 and then decreased by Day 7. PACAP was colocalized with NEUronal Nuclei (NeuN), PAC1, and CGRP in both trigeminal ganglion and the trigeminal nucleus caudalis. Our results demonstrate that the repetitive electrical stimulation model can simulate the allodynia during the migraine chronification, and PACAP plays a role in the pathogenesis of migraine potentially via PAC1 receptor.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/metabolismo , Terapia por Estimulación Eléctrica/métodos , Trastornos Migrañosos/terapia , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Núcleo Caudal del Trigémino/fisiología , Animales , Femenino , Masculino , Trastornos Migrañosos/fisiopatología , Nocicepción/efectos de los fármacos , Dinámicas no Lineales , Fosfopiruvato Hidratasa/metabolismo , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Estadísticas no Paramétricas , Factores de Tiempo
5.
Phytother Res ; 31(6): 899-905, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28488307

RESUMEN

Migraine is a common neurological disorder with a serious impact on quality of life. The aim of this study was to explore the effect of baicalin on nitroglycerin-induced migraine rats. We carried out a behavioral research within 2 h post-nitroglycerin injection, and blood samples were drawn for measurements of nitric oxide (NO), calcitonin gene-related peptide, and endothelin (ET) levels. Immunohistochemistry was adopted to detect the activation of C-fos immunoreactive neurons in periaqueductal gray. The number, area size, and integrated optical density of C-fos positive cells were measured using Image-Pro Plus. As a result, baicalin administration (0.22 mm/kg) alleviated pain responses of migraine rats. It profoundly decreased NO and calcitonin gene-related peptide levels, increased ET levels, and rebuilt the NO/ET balance in migraine rats. Besides, baicalin pretreatment significantly reduced the number, the stained area size, and integrated optical density value of C-fos positive cells. In brief, this paper supports the possibility of baicalin as a potential migraine pharmacotherapy. Copyright © 2017 John Wiley & Sons, Ltd.


Asunto(s)
Flavonoides/farmacología , Trastornos Migrañosos/tratamiento farmacológico , Nitroglicerina/efectos adversos , Núcleo Caudal del Trigémino/efectos de los fármacos , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Endotelinas/metabolismo , Femenino , Masculino , Trastornos Migrañosos/inducido químicamente , Neuronas/efectos de los fármacos , Óxido Nítrico/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Sprague-Dawley
6.
Neurosci Lett ; 647: 14-19, 2017 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-28323089

RESUMEN

Although it is well known that migraine pain is enhanced by photic stimulation of the eye, the mechanisms underlying this response are not yet understood. Noxious stimulation to the dura is known to activate trigeminal spinal subnucleus caudalis and upper cervical spinal cord (Vc/C1) neurons, causing migraine pain. Intense photic stimulation to the eye is also known to activate certain Vc/C1 neurons, thus increasing migraine pain. In this study, we hypothesized that Vc/C1 neurons receiving noxious dural input would be further activated by intense photic stimulation, resulting in the enhancement of migraine pain. However, mechanisms underlying the interactions between dural and photic sensory information in Vc/C1 neurons is unknown. To evaluate the above hypothesis, we studied phosphorylated extracellular signal-regulated kinase (pERK) -immunoreactive (IR) cells in Vc/C1 in dural mustard oil (DMO)-administrated rats. The change in neuronal excitability of Vc/C1 nociceptive neurons receiving input from the dura in DMO rats was examined and tested if those neurons were modulated by intense flush light stimulation. There were many pERK-IR cells in the lateral portion of Vc/C1 after MO administration to the dura. Flashlight presentation to the eye in DMO rats caused an enhancement of ERK phosphorylation in Vc/C1 neurons and pERK-IR cells were significantly suppressed after intracisternal administration of MEK1 inhibitor PD98059. Dura-light sensitive (DL) neurons were recorded in the lateral portion of Vc/C1 and photic responses of DL neurons were significantly enhanced following dural MO administration. These findings indicate that DL Vc/C1 neurons in DMO rats intensified their responses to intense photic stimulation and that ERK phosphorylation in Vc/C1 neurons receiving noxious dural input increased with intense photic stimulation, suggesting that Vc/C1 nociceptive neurons are involved in the enhancement of dural nociception associated with intense light stimulation.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Luz , Trastornos Migrañosos/metabolismo , Neuronas/metabolismo , Médula Espinal/metabolismo , Núcleo Caudal del Trigémino/metabolismo , Animales , Masculino , Trastornos Migrañosos/patología , Planta de la Mostaza , Nociceptores/metabolismo , Fosforilación , Estimulación Luminosa , Aceites de Plantas/farmacología , Ratas Sprague-Dawley , Médula Espinal/patología , Médula Espinal/efectos de la radiación , Núcleo Caudal del Trigémino/patología , Núcleo Caudal del Trigémino/efectos de la radiación
7.
Am J Chin Med ; 44(2): 389-400, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27080947

RESUMEN

The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) receives nociceptive afferent inputs from thin-myelinated A[Formula: see text] fibers and unmyelinated C fibers and has been shown to be involved in the processing of orofacial nociceptive information. Scutellaria baicalensis Georgi (Huang-Qin, SbG), one of the 50 fundamental herbs of Chinese herbology, has been used historically as anti-inflammatory and antineoplastic medicine. Baicalin, one of the major compounds of SbG, has been reported to have neuroprotective, anti-inflammatory and analgesic effects. However, the receptor type activated by baicalin and its precise action mechanism on the SG neurons of Vc have not yet been studied. The whole-cell patch clamp technique was performed to examine the ion channels activated by baicalin on the SG neurons of Vc. In high Cl[Formula: see text] pipette solution, the baicalin (300[Formula: see text][Formula: see text]M) induced repeatable inward currents ([Formula: see text][Formula: see text]pA, [Formula: see text]) without desensitization on all the SG neurons tested. Further, the inward currents showed a concentration (0.1-3[Formula: see text]mM) dependent pattern. The inward current was sustained in the presence of tetrodotoxin (0.5[Formula: see text][Formula: see text]M), a voltage sensitive Na[Formula: see text] channel blocker. In addition, baicalin-induced inward currents were reduced in the presence of picrotoxin (50[Formula: see text][Formula: see text]M), a GABAA receptor antagonist, flumazenil (100[Formula: see text][Formula: see text]M), a benzodiazepine-sensitive GABAA receptor antagonist, and strychnine (2[Formula: see text][Formula: see text]M), a glycine receptor antagonist, respectively. These results indicate that baicalin has inhibitory effects on the SG neurons of the Vc, which are due to the activation of GABAA and/or the glycine receptor. Our results suggest that baicalin may be a potential target for orofacial pain modulation.


Asunto(s)
Flavonoides/farmacología , Neuronas/metabolismo , Receptores de GABA/metabolismo , Receptores de Glicina/metabolismo , Sustancia Gelatinosa/citología , Núcleo Caudal del Trigémino/citología , Envejecimiento , Animales , Antiinflamatorios/farmacología , Antineoplásicos Fitogénicos/farmacología , Relación Dosis-Respuesta a Droga , Dolor Facial/tratamiento farmacológico , Femenino , Flavonoides/aislamiento & purificación , Flavonoides/uso terapéutico , Masculino , Ratones , Fármacos Neuroprotectores , Fitoterapia , Scutellaria baicalensis/química
8.
Brain Res Bull ; 120: 117-22, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26608254

RESUMEN

Although a modulatory role has been reported for the red wine polyphenol resveratrol on several types of ion channels and excitatory synaptic transmission in the nervous system, the acute effects of resveratrol in vivo, particularly on nociceptive transmission of the trigeminal system, remain to be determined. The aim of the present study was to investigate whether acute intravenous resveratrol administration to rats attenuates the excitability of wide dynamic range (WDR) spinal trigeminal nucleus caudalis (SpVc) neurons in response to nociceptive and non-nociceptive mechanical stimulation in vivo. Extracellular single unit recordings were made from 18 SpVc neurons in response to orofacial mechanical stimulation of pentobarbital-anesthetized rats. Responses to both non-noxious and noxious mechanical stimuli were analyzed in the present study. The mean firing frequency of SpVc WDR neurons in response to both non-noxious and noxious mechanical stimuli was inhibited by resveratrol (0.5-2 mg/kg, i.v.) and maximum inhibition of the discharge frequency of both non-noxious and noxious mechanical stimuli was seen within 10 min. These inhibitory effects were reversed after approximately 20 min. The relative magnitude of inhibition by resveratrol of SpVc WDR neuronal discharge frequency was significantly greater for noxious than non-noxious stimulation. These results suggest that, in the absence of inflammatory or neuropathic pain, acute intravenous resveratrol administration suppresses trigeminal sensory transmission, including nociception, and so resveratrol may be used as a complementary and alternative medicine therapeutic agent for the treatment of trigeminal nociceptive pain, including hyperalgesia.


Asunto(s)
Analgésicos/administración & dosificación , Neuronas/efectos de los fármacos , Nocicepción/efectos de los fármacos , Estilbenos/administración & dosificación , Tacto/efectos de los fármacos , Núcleo Caudal del Trigémino/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Administración Intravenosa , Animales , Relación Dosis-Respuesta a Droga , Cara/fisiología , Masculino , Microelectrodos , Neuronas/fisiología , Nocicepción/fisiología , Estimulación Física , Ratas Wistar , Resveratrol , Tacto/fisiología , Núcleo Caudal del Trigémino/fisiopatología
9.
Neuroscience ; 299: 125-33, 2015 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-25934040

RESUMEN

Group I metabotropic glutamate receptors (mGluR1 and mGluR5) are functionally linked to estrogen receptors and play a key role in the plasticity of central neurons. Estrogen status strongly influences sensory input from the temporomandibular joint (TMJ) to neurons at the spinomedullary (Vc/C1-2) region. This study tested the hypothesis that TMJ input to trigeminal subnucleus caudalis/upper cervical cord (Vc/C1-2) neurons involved group I mGluR activation and depended on estrogen status. TMJ-responsive neurons were recorded in superficial laminae at the Vc/C1-2 region in ovariectomized (OvX) female rats treated with low-dose estradiol (2 µg/day, LE) or high-dose estradiol (20 µg/day, HE) for 2 days. TMJ-responsive units were activated by adenosine triphosphate (ATP, 1mM) injected into the joint space. Receptor antagonists selective for mGluR1 (CPCCOEt) or mGluR5 (MPEP) were applied topically to the Vc/C1-2 surface at the site of recording 10 min prior to the intra-TMJ ATP stimulus. In HE rats, CPCCOEt (50 and 500 µM) markedly reduced ATP-evoked unit activity. By contrast, in LE rats, a small but significant increase in neural activity was seen after 50 µM CPCCOEt, while 500 µM caused a large reduction in activity that was similar in magnitude as that seen in HE rats. Local application of MPEP produced a significant inhibition of TMJ-evoked unit activity independent of estrogen status. Neither mGluR1 nor mGluR5 antagonism altered the spontaneous activity of TMJ units in HE or LE rats. High-dose MPEP caused a small reduction in the size of the convergent cutaneous receptive field in HE rats, while CPCCOEt had no effect. These data suggest that group I mGluRs play a key role in sensory integration of TMJ nociceptive input to the Vc/C1-2 region and are largely independent of estrogen status.


Asunto(s)
Neuronas/fisiología , Nocicepción/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Articulación Temporomandibular/fisiología , Núcleo Caudal del Trigémino/fisiología , Adenosina Trifosfato/farmacología , Animales , Cromonas/farmacología , Estradiol/administración & dosificación , Estradiol/fisiología , Femenino , Neuronas/efectos de los fármacos , Nocicepción/efectos de los fármacos , Piridinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptor del Glutamato Metabotropico 5/antagonistas & inhibidores , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Articulación Temporomandibular/efectos de los fármacos , Articulación Temporomandibular/inervación , Núcleo Caudal del Trigémino/efectos de los fármacos
10.
Neuroscience ; 259: 53-62, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24316475

RESUMEN

Sensory input from the temporomandibular joint (TMJ) to neurons in superficial laminae at the spinomedullary (Vc/C1-2) region is strongly influenced by estrogen status. This study determined if GABAergic mechanisms play a role in estrogen modulation of TMJ nociceptive processing in ovariectomized female rats treated with high- (HE) or low-dose (LE) estradiol (E2) for 2days. Superficial laminae neurons were activated by ATP (1mM) injections into the joint space. The selective GABAA receptor antagonist, bicuculline methiodide (BMI, 5 or 50µM, 30µl), applied at the site of recording greatly enhanced the magnitude and duration of ATP-evoked responses in LE rats, but not in units from HE rats. The convergent cutaneous receptive field (RF) area of TMJ neurons was enlarged after BMI in LE but not HE rats, while resting discharge rates were increased after BMI independent of estrogen status. By contrast, the selective GABAA receptor agonist, muscimol (50µM, 30µl), significantly reduced the magnitude and duration of ATP-evoked activity, resting discharge rate, and cutaneous RF area of TMJ neurons in LE and HE rats, whereas lower doses (5µM) affected only units from LE rats. Protein levels of GABAA receptor ß3 isoform at the Vc/C1-2 region were similar for HE and LE rats. These results suggest that GABAergic mechanisms contribute significantly to background discharge rates and TMJ-evoked input to superficial laminae neurons at the Vc/C1-2 region. Estrogen status may gate the magnitude of GABAergic influence on TMJ neurons at the earliest stages of nociceptive processing at the spinomedullary region.


Asunto(s)
Estrógenos/metabolismo , Neuronas/fisiología , Receptores de GABA-A/metabolismo , Articulación Temporomandibular/citología , Núcleo Caudal del Trigémino/citología , Potenciales de Acción/efectos de los fármacos , Adenosina Trifosfato/farmacología , Animales , Relación Dosis-Respuesta a Droga , Femenino , GABAérgicos/farmacología , Neuronas/efectos de los fármacos , Ovariectomía , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA