RESUMEN
The feedback projections from cortical layer 6 (L6CT) to the sensory thalamus have long been implicated in playing a primary role in gating sensory signaling but remain poorly understood. To causally elucidate the full range of effects of these projections, we targeted silicon probe recordings to the whisker thalamocortical circuit of awake mice selectively expressing Channelrhodopsin-2 in L6CT neurons. Through optogenetic manipulation of L6CT neurons, multi-site electrophysiological recordings, and modeling of L6CT circuitry, we establish L6CT neurons as dynamic modulators of ongoing spiking in the ventral posteromedial nucleus of the thalamus (VPm), either suppressing or enhancing VPm spiking depending on L6CT neurons' firing rate and synchrony. Differential effects across the cortical excitatory and inhibitory sub-populations point to an overall influence of L6CT feedback on cortical excitability that could have profound implications for regulating sensory signaling across a range of ethologically relevant conditions.
Asunto(s)
Optogenética , Corteza Somatosensorial , Tálamo , Vibrisas , Vigilia , Animales , Vigilia/fisiología , Corteza Somatosensorial/fisiología , Ratones , Tálamo/fisiología , Vibrisas/fisiología , Neuronas/fisiología , Masculino , Vías Nerviosas/fisiología , Núcleos Talámicos Ventrales/fisiología , Potenciales de Acción/fisiología , Femenino , Ratones Endogámicos C57BLRESUMEN
BACKGROUND: The ventral intermediate nucleus of the thalamus (VIM) is an effective target for deep brain stimulation in tremor patients. Despite its therapeutic importance, its oscillatory coupling to cortical areas has rarely been investigated in humans. OBJECTIVES: The objective of this study was to identify the cortical areas coupled to the VIM in patients with essential tremor. METHODS: We combined resting-state magnetoencephalography with local field potential recordings from the VIM of 19 essential tremor patients. Whole-brain maps of VIM-cortex coherence in several frequency bands were constructed using beamforming and compared with corresponding maps of subthalamic nucleus (STN) coherence based on data from 19 patients with Parkinson's disease. In addition, we computed spectral Granger causality. RESULTS: The topographies of VIM-cortex and STN-cortex coherence were very similar overall but differed quantitatively. Both nuclei were coupled to the ipsilateral sensorimotor cortex in the high-beta band; to the sensorimotor cortex, brainstem, and cerebellum in the low-beta band; and to the temporal cortex, brainstem, and cerebellum in the alpha band. High-beta coherence to sensorimotor cortex was stronger for the STN (P = 0.014), whereas low-beta coherence to the brainstem was stronger for the VIM (P = 0.017). Although the STN was driven by cortical activity in the high-beta band, the VIM led the sensorimotor cortex in the alpha band. CONCLUSIONS: Thalamo-cortical coupling is spatially and spectrally organized. The overall similar topographies of VIM-cortex and STN-cortex coherence suggest that functional connections are not necessarily unique to one subcortical structure but might reflect larger frequency-specific networks involving VIM and STN to a different degree. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Asunto(s)
Estimulación Encefálica Profunda , Temblor Esencial , Magnetoencefalografía , Núcleo Subtalámico , Humanos , Masculino , Femenino , Persona de Mediana Edad , Magnetoencefalografía/métodos , Núcleo Subtalámico/fisiología , Núcleo Subtalámico/fisiopatología , Anciano , Estimulación Encefálica Profunda/métodos , Temblor Esencial/fisiopatología , Temblor Esencial/terapia , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Tálamo/fisiología , Tálamo/fisiopatología , Mapeo Encefálico , Corteza Cerebral/fisiopatología , Núcleos Talámicos Ventrales/fisiología , Núcleos Talámicos Ventrales/fisiopatologíaRESUMEN
In primary gustatory cortex (GC), a subregion of the insular cortex, neurons show anticipatory activity, encode taste identity and palatability, and their activity is related to decision-making. Inactivation of the gustatory thalamus, the parvicellular region of the ventral posteromedial thalamic nucleus (VPMpc), dramatically reduces GC taste responses, consistent with the hypothesis that VPMpc-GC projections carry taste information. Recordings in awake rodents reported that taste-responsive neurons can be found across GC, without segregated spatial mapping, raising the possibility that projections from the taste thalamus may activate GC broadly. In addition, we have shown that cortical inhibition modulates the integration of thalamic and limbic inputs, revealing a potential role for GABA transmission in gating sensory information to GC. Despite this wealth of information at the system level, the synaptic organization of the VPMpc-GC circuit has not been investigated. Here, we used optogenetic activation of VPMpc afferents to GC in acute slice preparations from rats of both sexes to investigate the synaptic properties and organization of VPMpc afferents in GC and their modulation by cortical inhibition. We hypothesized that VPMpc-GC synapses are distributed across GC, but show laminar- and cell-specific properties, conferring computationally flexibility to how taste information is processed. We also found that VPMpc-GC synaptic responses are strongly modulated by the activity regimen of VPMpc afferents, as well as by cortical inhibition activating GABAA and GABAB receptors onto VPMpc terminals. These results provide a novel insight into the complex features of thalamocortical circuits for taste processing.SIGNIFICANCE STATEMENT We report that the input from the primary taste thalamus to the primary gustatory cortex (GC) shows distinct properties compared with primary thalamocortical synapses onto other sensory areas. Ventral posteromedial thalamic nucleus afferents in GC make synapses with excitatory neurons distributed across all cortical layers and display frequency-dependent short-term plasticity to repetitive stimulation; thus, they do not fit the classic distinction between drivers and modulators typical of other sensory thalamocortical circuits. Thalamocortical activation of GC is gated by cortical inhibition, providing local corticothalamic feedback via presynaptic ionotropic and metabotropic GABA receptors. The connectivity and inhibitory control of thalamocortical synapses in GC highlight unique features of the thalamocortical circuit for taste.
Asunto(s)
Corteza Insular , Tálamo , Masculino , Femenino , Ratas , Animales , Tálamo/fisiología , Núcleos Talámicos Ventrales/fisiología , Neuronas/fisiología , Ácido gamma-Aminobutírico , Corteza Cerebral/fisiologíaRESUMEN
Background: Deep Brain Stimulation (DBS) for dystonia is usually targeted to the globus pallidus internus (GPi), though stimulation of the ventral-intermediate nucleus of the thalamus (Vim) can be an effective treatment for phasic components of dystonia including tremor. We report on a patient who developed a syndrome of bilateral upper limb postural and action tremor and progressive cervical dystonia with both phasic and tonic components which were responsive to Vim DBS. We characterize and quantify this effect using markerless-3D-kinematics combined with accelerometry. Methods: Stereo videography was used to record our subject in 3D. The DeepBehavior toolbox was applied to obtain timeseries of joint position for kinematic analysis [1]. Accelerometry was performed simultaneously for comparison with prior literature. Results: Bilateral Vim DBS improved both dystonic tremor magnitude and tonic posturing. DBS of the hemisphere contralateral to the direction of dystonic head rotation (left Vim) had greater efficacy. Assessment of tremor magnitude by 3D-kinematics was concordant with accelerometry and was able to quantify tonic dystonic posturing. Discussion: In this case, Vim DBS treated both cervical dystonic tremor and dystonic posturing. Markerless-3D-kinematics should be further studied as a method of quantifying and characterizing tremor and dystonia.
Asunto(s)
Estimulación Encefálica Profunda , Trastornos Distónicos , Tortícolis , Acelerometría , Fenómenos Biomecánicos , Estimulación Encefálica Profunda/métodos , Trastornos Distónicos/terapia , Humanos , Tálamo , Tortícolis/terapia , Temblor/terapia , Núcleos Talámicos Ventrales/fisiologíaRESUMEN
BACKGROUND: Deep brain stimulation (DBS) targeting the ventral intermediate nucleus (Vim) of the thalamus or the posterior subthalamic area (PSA) are effective treatments for essential tremor (ET). However, their relative efficacy is unknown. OBJECTIVE: Here, we present the first systematic review and network meta-analysis, examining the efficacy of Vim versus PSA DBS for treating medically refractory ET. METHODS: We included all primary studies that reported validated Fahn-Tolosa-Marin Tremor Rating Scale (FTM-TRS) scores pre-/postimplantation or on-/off-stimulation postimplantation, for patients receiving either Vim or PSA DBS. The primary outcome was FTM-TRS score reduction; the secondary outcome was percent reduction in score. We categorized all outcomes as short-term (≤12 months) or long-term (>12 months). RESULTS: For pre-/postimplantation comparisons, 19 and 11 studies met inclusion criteria for short- and long-term follow-ups, respectively. For on-/off-stimulation tremor score comparisons, 8 studies met inclusion criteria for short-term follow-up. Network meta-analysis of pre-/postimplantation tremor scores showed greater tremor reduction with PSA implantation short-term (absolute tremor reduction: PSA: -30.94 [95% confidence interval (CI): -34.93, -26.95]; Vim: -26.26 [95% CI: -33.39, -19.12]; relative tremor reduction: PSA: 63.3% [95% CI: 61.8%-64.8%]; Vim: 57.8% [95% CI: 56.5%-59.0%]). However, there was no difference in efficacy between PSA and Vim DBS when comparing tremor on-versus off-stimulation at short-term follow-up or pre- versus postimplantation tremor reduction long-term. CONCLUSION: Our systematic review highlighted both heterogeneity in scoring systems used and lack of transparency in reporting total scores, limiting direct comparison across studies. We found a modestly superior efficacy with PSA stimulation in the short term, but no difference in tremor reduction long-term.
Asunto(s)
Estimulación Encefálica Profunda , Temblor Esencial , Temblor Esencial/terapia , Humanos , Metaanálisis en Red , Tálamo/cirugía , Resultado del Tratamiento , Temblor/terapia , Núcleos Talámicos Ventrales/fisiologíaRESUMEN
Whisker deafferentation in mice disrupts topographic connectivity from the brainstem to the thalamic ventral posteromedial nucleus (VPM), which represents whisker map, by recruiting "ectopic" axons carrying non-whisker information in VPM. However, mechanisms inducing this plasticity remain largely unknown. Here, we show the role of region-specific microglia in the brainstem principal trigeminal nucleus (Pr5), a whisker sensory-recipient region, in VPM whisker map plasticity. Systemic or local manipulation of microglial activity reveals that microglia in Pr5, but not in VPM, are necessary and sufficient for recruiting ectopic axons in VPM. Deafferentation causes membrane hyperexcitability of Pr5 neurons dependent on microglia. Inactivation of Pr5 neurons abolishes this somatotopic reorganization in VPM. Additionally, microglial depletion prevents deafferentation-induced ectopic mechanical hypersensitivity. Our results indicate that local microglia in the brainstem induce peripheral nerve injury-induced plasticity of map organization in the thalamus and suggest that microglia are potential therapeutic targets for peripheral nerve injury-induced mechanical hypersensitivity.
Asunto(s)
Microglía/citología , Traumatismos de los Nervios Periféricos/patología , Núcleos Talámicos Ventrales/fisiología , Aminopiridinas/farmacología , Animales , Tronco Encefálico/citología , Femenino , Hipersensibilidad/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Neuronas/fisiología , Traumatismos de los Nervios Periféricos/metabolismo , Pirroles/farmacología , Tálamo/fisiología , Núcleos Talámicos Ventrales/efectos de los fármacos , Vibrisas/fisiologíaRESUMEN
Functional MRI (fMRI) has become an important tool for probing network-level effects of deep brain stimulation (DBS). Previous DBS-fMRI studies have shown that electrical stimulation of the ventrolateral (VL) thalamus can modulate sensorimotor cortices in a frequency and amplitude dependent manner. Here, we investigated, using a swine animal model, how the direction and orientation of the electric field, induced by VL-thalamus DBS, affects activity in the sensorimotor cortex. Adult swine underwent implantation of a novel 16-electrode (4 rows x 4 columns) directional DBS lead in the VL thalamus. A within-subject design was used to compare fMRI responses for (1) directional stimulation consisting of monopolar stimulation in four radial directions around the DBS lead, and (2) orientation-selective stimulation where an electric field dipole was rotated 0°-360° around a quadrangle of electrodes. Functional responses were quantified in the premotor, primary motor, and somatosensory cortices. High frequency electrical stimulation through leads implanted in the VL thalamus induced directional tuning in cortical response patterns to varying degrees depending on DBS lead position. Orientation-selective stimulation showed maximal functional response when the electric field was oriented approximately parallel to the DBS lead, which is consistent with known axonal orientations of the cortico-thalamocortical pathway. These results demonstrate that directional and orientation-selective stimulation paradigms in the VL thalamus can tune network-level modulation patterns in the sensorimotor cortex, which may have translational utility in improving functional outcomes of DBS therapy.
Asunto(s)
Estimulación Encefálica Profunda , Corteza Motora/fisiología , Vías Nerviosas/fisiología , Núcleo Subtalámico/fisiología , Animales , Estimulación Encefálica Profunda/métodos , Estimulación Eléctrica/métodos , Femenino , Imagen por Resonancia Magnética/métodos , Porcinos , Tálamo/fisiología , Núcleos Talámicos Ventrales/fisiologíaRESUMEN
Task-related activity in the ventral thalamus, a major target of basal ganglia output, is often assumed to be permitted or triggered by changes in basal ganglia activity through gating- or rebound-like mechanisms. To test those hypotheses, we sampled single-unit activity from connected basal ganglia output and thalamic nuclei (globus pallidus-internus [GPi] and ventrolateral anterior nucleus [VLa]) in monkeys performing a reaching task. Rate increases were the most common peri-movement change in both nuclei. Moreover, peri-movement changes generally began earlier in VLa than in GPi. Simultaneously recorded GPi-VLa pairs rarely showed short-time-scale spike-to-spike correlations or slow across-trials covariations, and both were equally positive and negative. Finally, spontaneous GPi bursts and pauses were both followed by small, slow reductions in VLa rate. These results appear incompatible with standard gating and rebound models. Still, gating or rebound may be possible in other physiological situations: simulations show how GPi-VLa communication can scale with GPi synchrony and GPi-to-VLa convergence, illuminating how synchrony of basal ganglia output during motor learning or in pathological conditions may render this pathway effective. Thus, in the healthy state, basal ganglia-thalamic communication during learned movement is more subtle than expected, with changes in firing rates possibly being dominated by a common external source.
Asunto(s)
Potenciales de Acción/fisiología , Ganglios Basales/fisiología , Análisis y Desempeño de Tareas , Tálamo/fisiología , Animales , Mapeo Encefálico , Simulación por Computador , Bases de Datos como Asunto , Femenino , Globo Pálido/fisiología , Macaca , Microelectrodos , Movimiento , Neuronas/fisiología , Tiempo de Reacción/fisiología , Descanso/fisiología , Núcleos Talámicos Ventrales/fisiologíaRESUMEN
The thalamus is a deep cerebral structure that is crucial for proper neurological functioning as it transmits signals from nearly all pathways in the body. Insult to the thalamus can, therefore, result in complex syndromes involving sensation, cognition, executive function, fine motor control, emotion, and arousal, to name a few. Specific territories in the thalamus that are supplied by deep cerebral arteries have been shown to correlate with clinical symptoms. The aim of this review is to enhance our understanding of the arterial anatomy of the thalamus and the complications that can arise from lesions to it by considering the functions of known thalamic nuclei supplied by each vascular territory.
Asunto(s)
Arteria Basilar/anatomía & histología , Infarto Encefálico/fisiopatología , Círculo Arterial Cerebral/anatomía & histología , Arteria Cerebral Posterior/anatomía & histología , Tálamo/irrigación sanguínea , Núcleos Talámicos Anteriores/anatomía & histología , Núcleos Talámicos Anteriores/irrigación sanguínea , Núcleos Talámicos Anteriores/fisiología , Cuerpos Geniculados/anatomía & histología , Cuerpos Geniculados/irrigación sanguínea , Cuerpos Geniculados/fisiología , Humanos , Núcleos Talámicos Laterales/anatomía & histología , Núcleos Talámicos Laterales/irrigación sanguínea , Núcleos Talámicos Laterales/fisiología , Núcleo Talámico Mediodorsal/anatomía & histología , Núcleo Talámico Mediodorsal/irrigación sanguínea , Núcleo Talámico Mediodorsal/fisiología , Pulvinar/anatomía & histología , Pulvinar/irrigación sanguínea , Pulvinar/fisiología , Tálamo/anatomía & histología , Tálamo/fisiología , Núcleos Talámicos Ventrales/anatomía & histología , Núcleos Talámicos Ventrales/irrigación sanguínea , Núcleos Talámicos Ventrales/fisiologíaRESUMEN
The neural basis of memory is highly distributed, but the thalamus is known to play a particularly critical role. However, exactly how the different thalamic nuclei contribute to different kinds of memory is unclear. Moreover, whether thalamic connectivity with the medial temporal lobe (MTL), arguably the most fundamental memory structure, is critical for memory remains unknown. We explore these questions using an fMRI recognition memory paradigm that taps familiarity and recollection (i.e., the two types of memory that support recognition) for objects, faces, and scenes. We show that the mediodorsal thalamus (MDt) plays a material-general role in familiarity, while the anterior thalamus plays a material-general role in recollection. Material-specific regions were found for scene familiarity (ventral posteromedial and pulvinar thalamic nuclei) and face familiarity (left ventrolateral thalamus). Critically, increased functional connectivity between the MDt and the parahippocampal (PHC) and perirhinal cortices (PRC) of the MTL underpinned increases in reported familiarity confidence. These findings suggest that familiarity signals are generated through the dynamic interaction of functionally connected MTL-thalamic structures.
Asunto(s)
Giro Parahipocampal/diagnóstico por imagen , Corteza Perirrinal/diagnóstico por imagen , Reconocimiento en Psicología/fisiología , Lóbulo Temporal/diagnóstico por imagen , Tálamo/diagnóstico por imagen , Adulto , Núcleos Talámicos Anteriores/diagnóstico por imagen , Núcleos Talámicos Anteriores/fisiología , Femenino , Neuroimagen Funcional , Humanos , Imagen por Resonancia Magnética , Masculino , Núcleo Talámico Mediodorsal/diagnóstico por imagen , Núcleo Talámico Mediodorsal/fisiología , Recuerdo Mental , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Giro Parahipocampal/fisiología , Corteza Perirrinal/fisiología , Pulvinar/diagnóstico por imagen , Pulvinar/fisiología , Lóbulo Temporal/fisiología , Tálamo/fisiología , Núcleos Talámicos Ventrales/diagnóstico por imagen , Núcleos Talámicos Ventrales/fisiología , Adulto JovenRESUMEN
Somatosensory thalamocortical (TC) neurons from the ventrobasal (VB) thalamus are central components in the flow of sensory information between the periphery and the cerebral cortex, and participate in the dynamic regulation of thalamocortical states including wakefulness and sleep. This property is reflected at the cellular level by the ability to generate action potentials in two distinct firing modes, called tonic firing and low-threshold bursting. Although the general properties of TC neurons are known, we still lack a detailed characterization of their morphological and electrical properties in the VB thalamus. The aim of this study was to build biophysically-detailed models of VB TC neurons explicitly constrained with experimental data from rats. We recorded the electrical activity of VB neurons (N = 49) and reconstructed morphologies in 3D (N = 50) by applying standardized protocols. After identifying distinct electrical types, we used a multi-objective optimization to fit single neuron electrical models (e-models), which yielded multiple solutions consistent with the experimental data. The models were tested for generalization using electrical stimuli and neuron morphologies not used during fitting. A local sensitivity analysis revealed that the e-models are robust to small parameter changes and that all the parameters were constrained by one or more features. The e-models, when tested in combination with different morphologies, showed that the electrical behavior is substantially preserved when changing dendritic structure and that the e-models were not overfit to a specific morphology. The models and their analysis show that automatic parameter search can be applied to capture complex firing behavior, such as co-existence of tonic firing and low-threshold bursting over a wide range of parameter sets and in combination with different neuron morphologies.
Asunto(s)
Neuronas/fisiología , Corteza Somatosensorial/fisiología , Tálamo/fisiología , Potenciales de Acción/fisiología , Animales , Fenómenos Biofísicos/fisiología , Biofisica , Corteza Cerebral/fisiología , Dendritas , Femenino , Masculino , Modelos Neurológicos , Ratas , Ratas Wistar , Sueño/fisiología , Núcleos Talámicos Ventrales/fisiología , Vigilia/fisiologíaRESUMEN
Mechanisms underlying remifentanil- (RF-) induced hyperalgesia, a phenomenon that is generally named as opioid-induced hyperalgesia (OIH), still remain elusive. The ventral posterior lateral nucleus (VPL) of the thalamus, a key relay station for the transmission of nociceptive information to the cerebral cortex, is activated by RF infusion. Electroacupuncture (EA) is an effective method for the treatment of pain. This study aimed to explore the role of VPL in the development of OIH and the effect of EA treatment on OIH in rats. RF was administered to rats via the tail vein for OIH induction. Paw withdrawal threshold (PWT) in response to mechanical stimuli and paw withdrawal latency (PWL) to thermal stimulation were tested in rats for the assessment of mechanical allodynia and thermal hyperalgesia, respectively. Spontaneous neuronal activity and local field potential (LFP) in VPL were recorded in freely moving rats using the in vivo multichannel recording technique. EA at 2 Hz frequency (pulse width 0.6 ms, 1-3 mA) was applied to the bilateral acupoints "Zusanli" (ST.36) and "Sanyinjiao" (SP.6) in rats. The results showed that both the PWT and PWL were significantly decreased after RF infusion to rats. Meanwhile, both the spontaneous neuronal firing rate and the theta band oscillation in VPL LFP were increased on day 3 post-RF infusion, indicating that the VPL may promote the development of RF-induced hyperalgesia by regulating the pain-related cortical activity. Moreover, 2 Hz-EA reversed the RF-induced decrease both in PWT and PWL of rats and also abrogated the RF-induced augmentation of the spontaneous neuronal activity and the power spectral density (PSD) of the theta band oscillation in VPL LFP. These results suggested that 2 Hz-EA attenuates the remifentanil-induced hyperalgesia via reducing the excitability of VPL neurons and the low-frequency (theta band) oscillation in VPL LFP.
Asunto(s)
Electroacupuntura/métodos , Hiperalgesia/inducido químicamente , Hiperalgesia/terapia , Núcleos Talámicos Laterales/fisiología , Remifentanilo/toxicidad , Núcleos Talámicos Ventrales/fisiología , Analgésicos Opioides/toxicidad , Animales , Hiperalgesia/fisiopatología , Núcleos Talámicos Laterales/efectos de los fármacos , Masculino , Dolor/inducido químicamente , Dolor/fisiopatología , Manejo del Dolor/métodos , Ratas , Ratas Sprague-Dawley , Resultado del Tratamiento , Núcleos Talámicos Ventrales/efectos de los fármacosRESUMEN
Intracortical electrical micro-stimulation has been applied widely for the attempts on reconstruction of sensory functions. More recently, thalamic electrical stimulation has been proposed as a promising target for somatosensory stimulation. However, the cortical activations and mechanisms evoked by VPM stimulation remained unclear. In this report, the cortical neural responses to electrical stimulations were recorded by optical imaging of intrinsic signals. The impact of stimulation parameters was characterized to illustrate how the VPM stimulation alter cortical activities. Significant increases were found in cortical responses with increased stimulation amplitude or pulse width. However, frequency modulation exhibited significant inhibition with higher frequency stimulation. Our results suggest that optical imaging of intrinsic signals is sensitive and reliable to deep brain stimulations. These results may not only help to understand the modulation effects through thalamocortical pathway, but also show the possibility to use VPM stimulation to evoke frequency-tuned tactile sensations in rats.
Asunto(s)
Sensación/fisiología , Corteza Somatosensorial/fisiología , Tálamo/fisiología , Núcleos Talámicos Ventrales/fisiología , Animales , Conducta Animal/fisiología , Estimulación Encefálica Profunda/métodos , Estimulación Eléctrica/métodos , Neuronas/fisiología , Ratas Sprague-Dawley , Tiempo de ReacciónRESUMEN
BACKGROUND: Chronic migraine (CM) is a highly debilitating disease, and many patients remain refractory to medicinal therapy. Given the convergent nature of neuronal networks in the ventral posteromedial nucleus (VPM) and the evidence of sensitization of pain circuitry in this disease, we hypothesize CM rats will have increased VPM neuronal firing, which can be attenuated using occipital nerve stimulation (ONS). OBJECTIVE: To determine whether VPM firing frequency differs between CM and sham rats, and whether ONS significantly alters firing rates during the application of mechanical stimuli. METHODS: Fourteen male Sprague-Dawley rats were infused with inflammatory media once daily through an epidural cannula for 2 wk to induce a CM state. Sham animals (n = 6) underwent cannula surgery but received no inflammatory media. ONS electrodes were implanted bilaterally and single-unit recordings were performed in the VPM of anesthetized rats during mechanical stimulation of the face and forepaw in the presence and absence of ONS. RESULTS: CM rats had significantly higher neuronal firing rates (P < .001) and bursting activity (P < .01) in response to mechanical stimuli when compared to shams. ONS significantly reduced neuronal firing in the VPM of CM rats during the application of 0.8 g (P = .04), 4.0 g (P = .04), and 15.0 g (P = .02) Von Frey filaments. ONS reduced bursting activity in CM rats during the 4.0 and 15 g filaments (P < .05). No significant changes in bursting activity or firing frequency were noted in sham animals during ONS. CONCLUSION: We demonstrate that neuronal spike frequencies and bursting activity in the VPM are increased in an animal model of CM compared to shams. Our results suggest that the mechanism of ONS may involve attenuation of neurons in the VPM of CM rats during the application of mechanical stimuli.
Asunto(s)
Nervios Craneales/fisiología , Modelos Animales de Enfermedad , Terapia por Estimulación Eléctrica/métodos , Trastornos Migrañosos/terapia , Dimensión del Dolor/métodos , Núcleos Talámicos Ventrales/fisiología , Potenciales de Acción/fisiología , Animales , Enfermedad Crónica , Masculino , Trastornos Migrañosos/fisiopatología , Neuronas/fisiología , Estimulación Física/efectos adversos , Ratas , Ratas Sprague-Dawley , RoedoresRESUMEN
Layer IV (LIV) of the rodent somatosensory cortex contains the somatotopic barrel field. Barrels receive much of the sensory input to the cortex through innervation by thalamocortical axons from the ventral posteromedial nucleus. In the reeler mouse, the absence of cortical layers results in the formation of mispositioned barrel-equivalent clusters of LIV fated neurons. Although functional imaging suggests that sensory input activates the cortex, little is known about the cellular and synaptic properties of identified excitatory neurons of the reeler cortex. We examined the properties of thalamic input to spiny stellate (SpS) neurons in the reeler cortex with in vitro electrophysiology, optogenetics, and subcellular channelrhodopsin-2-assisted circuit mapping (sCRACM). Our results indicate that reeler SpS neurons receive direct but weakened input from the thalamus, with a dispersed spatial distribution along the somatodendritic arbor. These results further document subtle alterations in functional connectivity concomitant of absent layering in the reeler mutant. We suggest that intracortical amplification mechanisms compensate for this weakening in order to allow reliable sensory transmission to the mutant neocortex.
Asunto(s)
Vías Nerviosas/fisiología , Corteza Somatosensorial/fisiología , Tálamo/fisiología , Animales , Ratones Transgénicos , Neocórtex/fisiología , Neuronas/fisiología , Optogenética/métodos , Núcleos Talámicos Ventrales/fisiologíaRESUMEN
OBJECTIVE: To reveal the possible mechanism of changes of 'substantianigra-ventralislateralis-cortex' pathway neural activity during one bout of exhausting exercise through observing the neural activity coherence between different nucleus and the concentration of extra-cellular glutamate (Glu) and gamma-aminobutyric acid (GABA). METHODS: Male Wistar rats were randomly divided into neural activity real-time observation group, substantianigra (SNr) extracellular neurotransmitters observation group, ventralislateralis (VL) extracellular neuro-transmitters observation group and supplementary motor area (SMA) extracellular neurotransmitters observation group, 10 rats in each group. For rats of neural activity real-time observation group, by using LFPs and ECoG recording technique, and self-comparison, we simultaneously recorded the dynamic changes of neural activity of rat SNr, VL and SMA during one bout of exhausting exercise. The dynamic changes of ex-tracellular Glu and GABA in rat SNr, VL and SMA were also observed through microdialysis combined high performance liquid chromatography (HPLC) technique and self-comparison method. RESULTS: Based on the behavioral performance, the exhausting exercise process could be di-vided into 5 different stages, the rest condition, auto exercise period, early fatigue period, exhaustion condition and recovery period. The elec-trophysiological study results showed that, the coherence between neural activity in rat SNr, VL and SMA was significant between 0~30 Hz during all the procedure of exhausting exercise. Compared with the rest condition, the microdialysis study showed that the Glu concentrations and Glu/GABA ratio in SNr were decreased significantly during automatic exercise period (P < 0.05, P < 0.01), the GABA concentrations were increased significantly (P < 0.05, P < 0.01), while, in VL and cortex, the Glu concentrations and Glu/GABA ratio were increased significantly (P < 0.05, P < 0.01), the GABA concentrations were decreased significantly (P < 0.05, P < 0.01). Under early fatigue and ex-haustion conditions, compared with the rest condition,the Glu concentrations and Glu/GABA ratio in SNr were increased significantly (P < 0.05, P < 0.01), the GABA concentrations were decreased significantly (P < 0.05, P < 0.01), while the Glu concentrations and Glu/GABA ratio in VL and cortex were decreased significantly (P < 0.05, P < 0.01), the GABA concentrations were increased significantly (P < 0.05, P < 0.01). CONCLUSIONS: The neural net work communication between 'substantianigra-ventralislateralis-cortex' pathway exists, changes of Glu and GABA in the nucelus of the pathway are one of the factors resulting in the changes of neural activity.
Asunto(s)
Corteza Cerebral/fisiología , Red Nerviosa/fisiología , Neurotransmisores/fisiología , Condicionamiento Físico Animal/fisiología , Núcleos Talámicos Ventrales/fisiología , Animales , Ácido Glutámico/análisis , Masculino , Ratas , Ratas Wistar , Sustancia Negra , Ácido gamma-Aminobutírico/análisisRESUMEN
The parvicellular portion of the ventroposteromedial nucleus (VPMpc) is the part of the thalamus that processes gustatory information. Anatomical evidence shows that the VPMpc receives ascending gustatory inputs from the parabrachial nucleus (PbN) in the brainstem and sends projections to the gustatory cortex (GC). Although taste processing in PbN and GC has been the subject of intense investigation in behaving rodents, much less is known on how VPMpc neurons encode gustatory information. Here we present results from single-unit recordings in the VPMpc of alert rats receiving multiple tastants. Thalamic neurons respond to taste with time-varying modulations of firing rates, consistent with those observed in GC and PbN. These responses encode taste quality as well as palatability. Comparing responses to tastants either passively delivered, or self-administered after a cue, unveiled the effects of general expectation on taste processing in VPMpc. General expectation led to an improvement of taste coding by modulating response dynamics, and single neuron ability to encode multiple tastants. Our results demonstrate that the time course of taste coding as well as single neurons' ability to encode for multiple qualities are not fixed but rather can be altered by the state of the animal. Together, the data presented here provide the first description that taste coding in VPMpc is dynamic and state-dependent. SIGNIFICANCE STATEMENT: Over the past years, a great deal of attention has been devoted to understanding taste coding in the brainstem and cortex of alert rodents. Thanks to this research, we now know that taste coding is dynamic, distributed, and context-dependent. Alas, virtually nothing is known on how the gustatory thalamus (VPMpc) processes gustatory information in behaving rats. This manuscript investigates taste processing in the VPMpc of behaving rats. Our results show that thalamic neurons encode taste and palatability with time-varying patterns of activity and that thalamic coding of taste is modulated by general expectation. Our data will appeal not only to researchers interested in taste, but also to a broader audience of sensory and systems neuroscientists interested in the thalamocortical system.
Asunto(s)
Células Quimiorreceptoras/fisiología , Percepción del Gusto/fisiología , Núcleos Talámicos Ventrales/fisiología , Vigilia/fisiología , Animales , Femenino , Vías Nerviosas/fisiología , Ratas , Ratas Long-Evans , Tálamo/fisiologíaRESUMEN
Thalamic segmentation serves an important function in localizing targets for deep brain stimulation (DBS). However, thalamic nuclei are still difficult to identify clearly from structural MRI. In this study, an improved algorithm based on the fuzzy connectedness framework was developed. Three-dimensional T1-weighted images in axial orientation were acquired through a 3D SPGR sequence by using a 1.5 T GE magnetic resonance scanner. Twenty-five normal images were analyzed using the proposed method, which involved adaptive fuzzy connectedness combined with confidence connectedness (AFCCC). After non-brain tissue removal and contrast enhancement, the seed point was selected manually, and confidence connectedness was used to perform an ROI update automatically. Both image intensity and local gradient were taken as image features in calculating the fuzzy affinity. Moreover, the weight of the features could be automatically adjusted. Thalamus, ventrointermedius (Vim), and subthalamic nucleus were successfully segmented. The results were evaluated with rules, such as similarity degree (SD), union overlap, and false positive. SD of thalamus segmentation reached values higher than 85%. The segmentation results were also compared with those achieved by the region growing and level set methods, respectively. Higher SD of the proposed method, especially in Vim, was achieved. The time cost using AFCCC was low, although it could achieve high accuracy. The proposed method is superior to the traditional fuzzy connectedness framework and involves reduced manual intervention in time saving.
Asunto(s)
Encéfalo/fisiología , Imagen por Resonancia Magnética/métodos , Algoritmos , Mapeo Encefálico/métodos , Medios de Contraste/química , Estimulación Encefálica Profunda , Reacciones Falso Positivas , Lógica Difusa , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional , Reconocimiento de Normas Patrones Automatizadas , Reproducibilidad de los Resultados , Núcleo Subtalámico/fisiología , Tálamo/fisiología , Núcleos Talámicos Ventrales/fisiologíaRESUMEN
To explore the role of oscillatory dynamics of the somatosensory thalamocortical network in perception and decision making, we recorded the simultaneous neuronal activity in the ventral posterolateral nucleus (VPL) of the somatosensory thalamus and primary somatosensory cortex (S1) in two macaque monkeys performing a vibrotactile detection task. Actively detecting a vibrotactile stimulus and reporting its perception elicited a sustained poststimulus beta power increase in VPL and an alpha power decrease in S1, in both stimulus-present and stimulus-absent trials. These oscillatory dynamics in the somatosensory thalamocortical network depended on the behavioral context: they were stronger for the active detection condition than for a passive stimulation condition. Furthermore, contrasting stimulus-present vs. stimulus-absent responses, we found that poststimulus theta power increased in both VPL and S1, and alpha/beta power decreased in S1, reflecting the monkey's perceptual decision but not the motor response per se. Additionally, higher prestimulus alpha power in S1 correlated with an increased probability of the monkey reporting a stimulus, regardless of the actual presence of a stimulus. Thus, we found task-related modulations in oscillatory activity, not only in the neocortex but also in the thalamus, depending on behavioral context. Furthermore, oscillatory modulations reflected the perceptual decision process and subsequent behavioral response. We conclude that these early sensory regions, in addition to their primary sensory functions, may be actively involved in perceptual decision making.