Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
mBio ; 11(2)2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32291298

RESUMEN

Staphylococcus aureus is a major concern in human health care, mostly due to the increasing prevalence of antibiotic resistance. Intracellular localization of S. aureus plays a key role in recurrent infections by protecting the pathogens from antibiotics and immune responses. Peptidoglycan hydrolases (PGHs) are highly specific bactericidal enzymes active against both drug-sensitive and -resistant bacteria. However, PGHs able to effectively target intracellular S. aureus are not yet available. To overcome this limitation, we first screened 322 recombineered PGHs for staphylolytic activity under conditions found inside eukaryotic intracellular compartments. The most active constructs were modified by fusion to different cell-penetrating peptides (CPPs), resulting in increased uptake and enhanced intracellular killing (reduction by up to 4.5 log units) of various S. aureus strains (including methicillin-resistant S. aureus [MRSA]) in different tissue culture infection models. The combined application of synergistic PGH-CPP constructs further enhanced their intracellular efficacy. Finally, synergistically active PGH-CPP cocktails reduced the total S. aureus by more than 2.2 log units in a murine abscess model after peripheral injection. Significantly more intracellular bacteria were killed by the PGH-CPPs than by the PGHs alone. Collectively, our findings show that CPP-fused PGHs are effective novel protein therapeutics against both intracellular and drug-resistant S. aureusIMPORTANCE The increasing prevalence of antibiotic-resistant bacteria is one of the most urgent problems of our time. Staphylococcus aureus is an important human pathogen that has acquired several mechanisms to evade antibiotic treatment. In addition, S. aureus is able to invade and persist within human cells, hiding from the immune response and antibiotic therapies. For these reasons, novel antibacterial strategies against these pathogens are needed. Here, we developed lytic enzymes which are able to effectively target drug-resistant and intracellular S. aureus Fusion of these so-called enzybiotics to cell-penetrating peptides enhanced their uptake and intracellular bactericidal activity in cell culture and in an abscess mouse model. Our results suggest that cell-penetrating enzybiotics are a promising new class of therapeutics against staphylococcal infections.


Asunto(s)
Antibacterianos/uso terapéutico , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/uso terapéutico , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Células 3T3-L1 , Células A549 , Absceso/tratamiento farmacológico , Absceso/microbiología , Animales , Antibacterianos/química , Farmacorresistencia Bacteriana , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , N-Acetil Muramoil-L-Alanina Amidasa/química , N-Acetil Muramoil-L-Alanina Amidasa/uso terapéutico
2.
Appl Microbiol Biotechnol ; 93(2): 633-43, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21720825

RESUMEN

The ability of the bacteriophage-encoded peptidoglycan hydrolases (endolysins) to destroy Gram-positive bacteria from without makes these enzymes promising antimicrobials. Recombinant endolysins from Listeria monocytogenes phages have been shown to rapidly lyse and kill the pathogen in all environments. To determine optimum conditions regarding application of recombinant Listeria phage endolysins in food or production equipments, properties of different Listeria endolysins were studied. Optimum NaCl concentration for the amidase HPL511 was 200 nM and 300 mM for the peptidases HPL118, HPL500, and HPLP35. Unlike most other peptidoglycan hydrolases, all four enzymes exhibited highest activity at elevated pH values at around pH 8-9. Lytic activity was abolished by EDTA and could be restored by supplementation with various divalent metal cations, indicating their role in catalytic function. While substitution of the native Zn(2+) by Ca(2+) or Mn(2+) was most effective in case of HPL118, HPL500, and HPLP35, supplementation with Co(2+) and Mn(2+) resulted in an approximately 5-fold increase in HPL511 activity. Interestingly, the glutamate peptidases feature a conserved SxHxxGxAxD zinc-binding motif, which is not present in the amidases, although they also require centrally located divalent metals for activity. The endolysins HPL118, HPL511, and HPLP35 revealed a surprisingly high thermostability, with up to 35% activity remaining after 30 min incubation at 90°C. The available data suggest that denaturation at elevated temperatures is reversible and may be followed by rapid refolding into a functional state.


Asunto(s)
Bacteriófagos/enzimología , Cationes Bivalentes/metabolismo , Activadores de Enzimas/metabolismo , Listeria monocytogenes/virología , Metales/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/química , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Ácido Edético/metabolismo , Inhibidores Enzimáticos/metabolismo , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Temperatura , Proteínas Virales/química , Proteínas Virales/metabolismo
3.
J Biol Chem ; 278(9): 7059-64, 2003 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-12496260

RESUMEN

Recent studies of peptidoglycan recognition protein (PGRP) have shown that 2 of the 13 Drosophila PGRP genes encode proteins that function as receptors mediating immune responses to bacteria. We show here that another member, PGRP-SC1B, has a totally different function because it has enzymatic activity and thereby can degrade peptidoglycan. A mass spectrometric analysis of the cleavage products demonstrates that the enzyme hydrolyzes the lactylamide bond between the glycan strand and the cross-linking peptides. This result assigns the protein as an N-acetylmuramoyl-l-alanine amidase (EC ), and the corresponding gene is thus the first of this class to be described from a eukaryotic organism. Mutant forms of PGRP-SC1B lacking a potential zinc ligand are enzymatically inactive but retain their peptidoglycan affinity. The immunostimulatory properties of PGRP-SC1B-degraded peptidoglycan are much reduced. This is in striking contrast to lysozyme-digested peptidoglycan, which retains most of its elicitor activity. This points toward a scavenger function for PGRP-SC1B. Furthermore, a sequence homology comparison with phage T7 lysozyme, also an N-acetylmuramoyl-l-alanine amidase, shows that as many as six of the Drosophila PGRPs could belong to this class of proteins.


Asunto(s)
Proteínas Portadoras/fisiología , Drosophila/metabolismo , Animales , Antibacterianos/farmacología , Sitios de Unión , Northern Blotting , Proteínas Portadoras/metabolismo , Línea Celular , Cromatografía Líquida de Alta Presión , Reactivos de Enlaces Cruzados/farmacología , ADN Complementario/metabolismo , Hidrólisis , Insectos , Cinética , Ligandos , Espectrometría de Masas , Muramidasa/metabolismo , Mutación , N-Acetil Muramoil-L-Alanina Amidasa/química , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Péptidos/química , Peptidoglicano/metabolismo , Unión Proteica , ARN/metabolismo , Proteínas Recombinantes/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Factores de Tiempo , Zinc/química
4.
J Mol Biol ; 274(5): 748-56, 1997 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-9405156

RESUMEN

We have crystallized, using several approaches that may be of general interest, T7 RNA polymerase (T7RP) and the T7 RNA polymerase-T7 lysozyme complex (T7RPL) in forms suitable for structure determination by X-ray crystallography. A series of polyhydric alcohols, sugars, amino and methylamino acids, compounds known to stabilize protein structure, were found to be critical for both crystallization and subsequent improvement of the crystal's diffraction resolution. Moreover, optimal crystallogenesis was achieved through an unconventional "reverse" vapor diffusion sitting drop method that is suitable for proteins that are insoluble at low ionic strength.T7RP has been crystallized in an orthorhombic form (I), space group P222, with cell parameters a=220 A, b=205 A, c=67 A and a monoclinic form (II), space group P21, with cell parameters a=229 A, b=205 A, c=70 A, beta=106 degrees. Crystal form I diffracts X-rays to 3.5 A and form II to 6.0 A. Three and six copies of the polymerase are predicted to be in the asymmetric unit forms I and II, respectively. Three monoclinic crystal forms of the T7RPL complex have been obtained in space group C2. Form I has cell parameters a=320 A, b=93 A, c=229 A, beta=129 degrees, form II has parameters a=293 A, b=93 A, c=68 A, beta=93 degrees, and form III has parameters a=270 A, b=93 A, c=63 A, beta=103 degrees. Crystal form I diffracts synchrotron wiggler radiation to 3.2 A and form III to 2.8 A. Calculations of crystal density imply three or four copies of the complex in form I and one copy in the asymmetric unit of forms II and III.


Asunto(s)
Bacteriófago T7/enzimología , Cristalografía por Rayos X/métodos , ARN Polimerasas Dirigidas por ADN/química , N-Acetil Muramoil-L-Alanina Amidasa/química , Aminoácidos , Betaína , Carbohidratos , Carnitina , Cristalización , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , Inhibidores Enzimáticos , Metilaminas , N-Acetil Muramoil-L-Alanina Amidasa/farmacología , Alcoholes del Azúcar , Proteínas Virales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA