Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(8): e2304082, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37767608

RESUMEN

Bioenergetic deficits are known to be significant contributors to neurodegenerative diseases. Nevertheless, identifying safe and effective means to address intracellular bioenergetic deficits remains a significant challenge. This work provides mechanistic insights into the energy metabolism-regulating function of colloidal Au nanocrystals, referred to as CNM-Au8, that are synthesized electrochemically in the absence of surface-capping organic ligands. When neurons are subjected to excitotoxic stressors or toxic peptides, treatment of neurons with CNM-Au8 results in dose-dependent neuronal survival and neurite network preservation across multiple neuronal subtypes. CNM-Au8 efficiently catalyzes the conversion of an energetic cofactor, nicotinamide adenine dinucleotide hydride (NADH), into its oxidized counterpart (NAD+ ), which promotes bioenergy production by regulating the intracellular level of adenosine triphosphate. Detailed kinetic measurements reveal that CNM-Au8-catalyzed NADH oxidation obeys Michaelis-Menten kinetics and exhibits pH-dependent kinetic profiles. Photoexcited charge carriers and photothermal effect, which result from optical excitations and decay of the plasmonic electron oscillations or the interband electronic transitions in CNM-Au8, are further harnessed as unique leverages to modulate reaction kinetics. As exemplified by this work, Au nanocrystals with deliberately tailored structures and surfactant-free clean surfaces hold great promise for developing next-generation therapeutic agents for neurodegenerative diseases.


Asunto(s)
NAD , Enfermedades Neurodegenerativas , Humanos , NAD/química , Oro/química , Oxidación-Reducción
2.
ChemSusChem ; 15(22): e202200888, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36129761

RESUMEN

Enzymatic processes, particularly those capable of performing redox reactions, have recently been of growing research interest. Substrate specificity, optimal activity at mild temperatures, high selectivity, and yield are among the desirable characteristics of these oxidoreductase catalyzed reactions. Nicotinamide adenine dinucleotide (phosphate) or NAD(P)H-dependent oxidoreductases have been extensively studied for their potential applications like biosynthesis of chiral organic compounds, construction of biosensors, and pollutant degradation. One of the main challenges associated with making these processes commercially viable is the regeneration of the expensive cofactors required by the enzymes. Numerous efforts have pursued enzymatic regeneration of NAD(P)H by coupling a substrate reduction with a complementary enzyme catalyzed oxidation of a co-substrate. While offering excellent selectivity and high total turnover numbers, such processes involve complicated downstream product separation of a primary product from the coproducts and impurities. Alternative methods comprising chemical, electrochemical, and photochemical regeneration have been developed with the goal of enhanced efficiency and operational simplicity compared to enzymatic regeneration. Despite the goal, however, the literature rarely offers a meaningful comparison of the total turnover numbers for various regeneration methodologies. This comprehensive Review systematically discusses various methods of NAD(P)H cofactor regeneration and quantitatively compares performance across the numerous methods. Further, fundamental barriers to enhanced cofactor regeneration in the various methods are identified, and future opportunities are highlighted for improving the efficiency and sustainability of commercially viable oxidoreductase processes for practical implementation.


Asunto(s)
NAD , Niacinamida , Biocatálisis , NAD/química , Oxidación-Reducción , NADP/metabolismo , Oxidorreductasas/metabolismo , Regeneración
3.
MAbs ; 14(1): 2095949, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35867844

RESUMEN

Cluster of differentiation 38 (CD38) is an ecto-enzyme expressed primarily on immune cells that metabolize nicotinamide adenine dinucleotide (NAD+) to adenosine diphosphate ribose or cyclic ADP-ribose and nicotinamide. Other substrates of CD38 include nicotinamide adenine dinucleotide phosphate and nicotinamide mononucleotide, a critical NAD+ precursor in the salvage pathway. NAD+ is an important coenzyme involved in several metabolic pathways and is a required cofactor for the function of sirtuins (SIRTs) and poly (adenosine diphosphate-ribose) polymerases. Declines in NAD+ levels are associated with metabolic and inflammatory diseases, aging, and neurodegenerative disorders. To inhibit CD38 enzyme activity and boost NAD+ levels, we developed TNB-738, an anti-CD38 biparatopic antibody that pairs two non-competing heavy chain-only antibodies in a bispecific format. By simultaneously binding two distinct epitopes on CD38, TNB-738 potently inhibited its enzymatic activity, which in turn boosted intracellular NAD+ levels and SIRT activities. Due to its silenced IgG4 Fc, TNB-738 did not deplete CD38-expressing cells, in contrast to the clinically available anti-CD38 antibodies, daratumumab, and isatuximab. TNB-738 offers numerous advantages compared to other NAD-boosting therapeutics, including small molecules, and supplements, due to its long half-life, specificity, safety profile, and activity. Overall, TNB-738 represents a novel treatment with broad therapeutic potential for metabolic and inflammatory diseases associated with NAD+ deficiencies.Abbreviations: 7-AAD: 7-aminoactinomycin D; ADCC: antibody dependent cell-mediated cytotoxicity; ADCP: antibody dependent cell-mediated phagocytosis; ADPR: adenosine diphosphate ribose; APC: allophycocyanin; cADPR: cyclic ADP-ribose; cDNA: complementary DNA; BSA: bovine serum albumin; CD38: cluster of differentiation 38; CDC: complement dependent cytotoxicity; CFA: Freund's complete adjuvant; CHO: Chinese hamster ovary; CCP4: collaborative computational project, number 4; COOT: crystallographic object-oriented toolkit; DAPI: 4',6-diamidino-2-phenylindole; DNA: deoxyribonucleic acid; DSC: differential scanning calorimetry; 3D: three dimensional; εNAD+: nicotinamide 1,N6-ethenoadenine dinucleotide; ECD: extracellular domain; EGF: epidermal growth factor; FACS: fluorescence activated cell sorting; FcγR: Fc gamma receptors; FITC: fluorescein isothiocyanate; HEK: human embryonic kidney; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; IgG: immunoglobulin; IFA: incomplete Freund's adjuvant; IFNγ: Interferon gamma; KB: kinetic buffer; kDa: kilodalton; KEGG: kyoto encyclopedia of genes and genomes; LDH: lactate dehydrogenase; M: molar; mM: millimolar; MFI: mean fluorescent intensity; NA: nicotinic acid; NAD: nicotinamide adenine dinucleotide; NADP: nicotinamide adenine dinucleotide phosphate; NAM: nicotinamide; NGS: next-generation sequencing; NHS/EDC: N-Hydroxysuccinimide/ ethyl (dimethylamino propyl) carbodiimide; Ni-NTA: nickel-nitrilotriacetic acid; nL: nanoliter; NK: natural killer; NMN: nicotinamide mononucleotide; OD: optical density; PARP: poly (adenosine diphosphate-ribose) polymerase; PBS: phosphate-buffered saline; PBMC: peripheral blood mononuclear cell; PDB: protein data bank; PE: phycoerythrin; PISA: protein interfaces, surfaces, and assemblies: PK: pharmacokinetics; mol: picomolar; RNA: ribonucleic acid; RLU: relative luminescence units; rpm: rotations per minute; RU: resonance unit; SEC: size exclusion chromatography; SEM: standard error of the mean; SIRT: sirtuins; SPR: surface plasmon resonance; µg: microgram; µM: micromolar; µL: microliter.


Asunto(s)
NAD , Sirtuinas , Adenosina Difosfato Ribosa/química , Adenosina Difosfato Ribosa/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , ADP-Ribosa Cíclica , Humanos , Inmunoglobulina G , Leucocitos Mononucleares/metabolismo , NAD/química , NAD/metabolismo , NADP , Niacinamida , Mononucleótido de Nicotinamida , Ribosa
4.
ACS Appl Mater Interfaces ; 13(24): 27934-27944, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34101408

RESUMEN

Due to conventional photodynamic therapy encountering serious problems of phototoxicity and low tissue-penetrating depth of light, other dynamic therapy-based therapeutic methods such as sonodynamic therapy (SDT) are expected to be developed. To improve the therapeutic response to SDT, more effective sonosensitizers are imperative. In this study, a novel water-soluble iridium(III)-porphyrin sonosensitizer (IrTMPPS) was synthesized and used for SDT. IrTMPPS generated ample singlet oxygen (1O2) under US irradiation and especially showed distinguished US-activatable abilities at more than 10 cm deep-tissue depths. Interestingly, under US irradiation, IrTMPPS sonocatalytically oxidized intracellular NADH, which would enhance SDT efficiency by breaking the redox balance in the tumor. Moreover, IrTMPPS displayed great sonocytotoxicity toward various cancer cells, and in vivo experiments demonstrated efficient tumor inhibition and anti-metastasis to the lungs in the presence of IrTMPPS and US irradiation. This report gives a novel idea of metal-based sonosensitizers for sonotherapy by fully taking advantage of non-invasiveness, water solubility, and deep tumor therapy.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Porfirinas/uso terapéutico , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Animales , Antineoplásicos/síntesis química , Antineoplásicos/toxicidad , Línea Celular Tumoral , Iridio/química , Iridio/uso terapéutico , Iridio/toxicidad , Ratones , NAD/química , NAD/metabolismo , Neoplasias/patología , Oxidación-Reducción , Porfirinas/síntesis química , Porfirinas/toxicidad , Fármacos Sensibilizantes a Radiaciones/síntesis química , Fármacos Sensibilizantes a Radiaciones/toxicidad , Oxígeno Singlete/metabolismo , Ondas Ultrasónicas , Pez Cebra
5.
J Med Chem ; 64(9): 5838-5849, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33876629

RESUMEN

Sirtuins are signaling hubs orchestrating the cellular response to various stressors with roles in all major civilization diseases. Sirtuins remove acyl groups from lysine residues of proteins, thereby controlling their activity, turnover, and localization. The seven human sirtuins, SirT1-7, are closely related in structure, hindering the development of specific inhibitors. Screening 170,000 compounds, we identify and optimize SirT1-specific benzoxazine inhibitors, Sosbo, which rival the efficiency and surpass the selectivity of selisistat (EX527). The compounds inhibit the deacetylation of p53 in cultured cells, demonstrating their ability to permeate biological membranes. Kinetic analysis of inhibition and docking studies reveal that the inhibitors bind to a complex of SirT1 and nicotinamide adenine dinucleotide, similar to selisistat. These new SirT1 inhibitors are valuable alternatives to selisistat in biochemical and cell biological studies. Their greater selectivity may allow the development of better targeted drugs to combat SirT1 activity in diseases such as cancer, Huntington's chorea, or anorexia.


Asunto(s)
Benzoxazinas/química , Sirtuina 1/antagonistas & inhibidores , Acetilación/efectos de los fármacos , Amidas/química , Benzoxazinas/metabolismo , Benzoxazinas/farmacología , Sitios de Unión , Carbazoles/química , Carbazoles/metabolismo , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Humanos , Concentración 50 Inhibidora , Cinética , Simulación del Acoplamiento Molecular , NAD/química , NAD/metabolismo , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Sirtuina 1/genética , Sirtuina 1/metabolismo , Relación Estructura-Actividad , Proteína p53 Supresora de Tumor/metabolismo
6.
Int J Nanomedicine ; 15: 275-300, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32021180

RESUMEN

Gold nanoparticles (AuNPs) are extensively studied nanoparticles (NPs) and are known to have profound applications in medicine. There are various methods to synthesize AuNPs which are generally categorized into two main types: chemical and physical synthesis. Continuous efforts have been devoted to search for other more environmental-friendly and economical large-scale methods, such as environmentally friendly biological methods known as green synthesis. Green synthesis is especially important to minimize the harmful chemical and toxic by-products during the conventional synthesis of AuNPs. Green materials such as plants, fungi, microorganisms, enzymes and biopolymers are currently used to synthesize various NPs. Biosynthesized AuNPs are generally safer for use in biomedical applications since they come from natural materials themselves. Multiple surface functionalities of AuNPs allow them to be more robust and flexible when combined with different biological assemblies or modifications for enhanced applications. This review focuses on recent developments of green synthesized AuNPs and discusses their numerous biomedical applications. Sources of green materials with successful examples and other key parameters that determine the functionalities of AuNPs are also discussed in this review.


Asunto(s)
Oro/química , Tecnología Química Verde/métodos , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Animales , Bacterias/química , Sistemas de Liberación de Medicamentos , Hongos/química , Humanos , NAD/química , Fenoles/química , Plantas/química , Proteínas/química , Terpenos/química
7.
Methods Mol Biol ; 2057: 45-59, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31595469

RESUMEN

S-nitrosation as a redox-based posttranslational modification of protein cysteine has emerged as an integral part of signaling pathways of nitric oxide across all types of organisms. Protein S-nitrosation status is controlled by two key mechanisms: by direct denitrosation performed by the thioredoxin/thioredoxin reductase system, and in an indirect way mediated by S-nitrosoglutathione reductase (GSNOR). GSNOR, which has been identified as a key component of S-nitrosothiols catabolism, catalyzes an irreversible decomposition of abundant intracellular S-nitrosothiol, S-nitrosoglutathione (GSNO) to oxidized glutathione using reduced NADH cofactor. In plants, GSNOR has been shown to play important roles in plant growth and development and plant responses to abiotic and biotic stress stimuli. In this chapter, optimized protocols of spectrophotometric measurement of GSNOR enzymatic activity and activity staining in native polyacrylamide gels in plant GSNOR are presented.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Pruebas de Enzimas/métodos , Plantas/enzimología , S-Nitrosotioles/metabolismo , Fluorescencia , NAD/química , Electroforesis en Gel de Poliacrilamida Nativa , Óxido Nítrico/metabolismo , Nitrosación , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/metabolismo , S-Nitrosoglutatión/síntesis química , S-Nitrosoglutatión/química , Coloración y Etiquetado/métodos , Flujo de Trabajo
8.
J Biol Chem ; 294(32): 12077-12090, 2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31213529

RESUMEN

Unlike most other tissues, the colon epithelium is exposed to high levels of H2S derived from gut microbial metabolism. H2S is a signaling molecule that modulates various physiological effects. It is also a respiratory toxin that inhibits complex IV in the electron transfer chain (ETC). Colon epithelial cells are adapted to high environmental H2S exposure as they harbor an efficient mitochondrial H2S oxidation pathway, which is dedicated to its disposal. Herein, we report that the sulfide oxidation pathway enzymes are apically localized in human colonic crypts at the host-microbiome interface, but that the normal apical-to-crypt gradient is lost in colorectal cancer epithelium. We found that sulfide quinone oxidoreductase (SQR), which catalyzes the committing step in the mitochondrial sulfide oxidation pathway and couples to complex III, is a critical respiratory shield against H2S poisoning. H2S at concentrations ≤20 µm stimulated the oxygen consumption rate in colon epithelial cells, but, when SQR expression was ablated, H2S concentrations as low as 5 µm poisoned cells. Mitochondrial H2S oxidation altered cellular bioenergetics, inducing a reductive shift in the NAD+/NADH redox couple. The consequent electron acceptor insufficiency caused uridine and aspartate deficiency and enhanced glutamine-dependent reductive carboxylation. The metabolomic signature of this H2S-induced stress response mapped, in part, to redox-sensitive nodes in central carbon metabolism. Colorectal cancer tissues and cell lines appeared to counter the growth-restricting effects of H2S by overexpressing sulfide oxidation pathway enzymes. Our findings reveal an alternative mechanism for H2S signaling, arising from alterations in mitochondrial bioenergetics that drive metabolic reprogramming.


Asunto(s)
Metabolismo Energético , Sulfuro de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Línea Celular , Proliferación Celular/efectos de los fármacos , Colon/citología , Colon/metabolismo , Colon/patología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Cisteína/química , Cisteína/metabolismo , Metabolismo Energético/efectos de los fármacos , Humanos , Sulfuro de Hidrógeno/química , Sulfuro de Hidrógeno/farmacología , NAD/química , Oxidación-Reducción , Consumo de Oxígeno/efectos de los fármacos , Quinona Reductasas/antagonistas & inhibidores , Quinona Reductasas/genética , Quinona Reductasas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
10.
Langmuir ; 34(20): 5703-5711, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29553272

RESUMEN

Respiratory complex I (CpI) is a key player in the way organisms obtain energy, being an energy transducer, which couples nicotinamide adenine dinucleotide (NADH)/quinone oxidoreduction with proton translocation by a mechanism that remains elusive so far. In this work, we monitored the function of CpI in a biomimetic, supported lipid membrane system assembled on a 4-aminothiophenol (4-ATP) self-assembled monolayer by surface-enhanced infrared absorption spectroscopy. 4-ATP serves not only as a linker molecule to a nanostructured gold surface but also as pH sensor, as indicated by concomitant density functional theory calculations. In this way, we were able to monitor NADH/quinone oxidoreduction-induced transmembrane proton translocation via the protonation state of 4-ATP, depending on the net orientation of CpI molecules induced by two complementary approaches. An associated change of the amide I/amide II band intensity ratio indicates conformational modifications upon catalysis which may involve movements of transmembrane helices or other secondary structural elements, as suggested in the literature [ Di Luca , Proc. Natl. Acad. Sci. U.S.A. , 2017 , 114 , E6314 - E6321 ].


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Protones , Espectrofotometría Infrarroja , Catálisis , Complejo I de Transporte de Electrón/química , NAD/química , Oxidación-Reducción
11.
Biochim Biophys Acta Bioenerg ; 1859(1): 8-18, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28970007

RESUMEN

Biocatalysts that mediate the H2-dependent reduction of NAD+ to NADH are attractive from both a fundamental and applied perspective. Here we present the first biochemical and spectroscopic characterization of an NAD+-reducing [NiFe]­hydrogenase that sustains catalytic activity at high temperatures and in the presence of O2, which usually acts as an inhibitor. We isolated and sequenced the four structural genes, hoxFUYH, encoding the soluble NAD+-reducing [NiFe]­hydrogenase (SH) from the thermophilic betaproteobacterium, Hydrogenophilus thermoluteolus TH-1T (Ht). The HtSH was recombinantly overproduced in a hydrogenase-free mutant of the well-studied, H2-oxidizing betaproteobacterium Ralstonia eutropha H16 (Re). The enzyme was purified and characterized with various biochemical and spectroscopic techniques. Highest H2-mediated NAD+ reduction activity was observed at 80°C and pH6.5, and catalytic activity was found to be sustained at low O2 concentrations. Infrared spectroscopic analyses revealed a spectral pattern for as-isolated HtSH that is remarkably different from those of the closely related ReSH and other [NiFe]­hydrogenases. This indicates an unusual configuration of the oxidized catalytic center in HtSH. Complementary electron paramagnetic resonance spectroscopic analyses revealed spectral signatures similar to related NAD+-reducing [NiFe]­hydrogenases. This study lays the groundwork for structural and functional analyses of the HtSH as well as application of this enzyme for H2-driven cofactor recycling under oxic conditions at elevated temperatures.


Asunto(s)
Proteínas Bacterianas/química , Cupriavidus necator/enzimología , Calor , Hidrógeno/química , Hidrogenasas/química , Hydrogenophilaceae/enzimología , NAD/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cupriavidus necator/genética , Estabilidad de Enzimas , Hidrógeno/metabolismo , Hidrogenasas/genética , Hidrogenasas/metabolismo , Hydrogenophilaceae/genética , NAD/metabolismo
12.
PLoS One ; 12(9): e0184104, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28863176

RESUMEN

Mutations in PANK2 lead to neurodegeneration with brain iron accumulation. PANK2 has a role in the biosynthesis of coenzyme A (CoA) from dietary vitamin B5, but the neuropathological mechanism and reasons for iron accumulation remain unknown. In this study, atypical patient-derived fibroblasts were reprogrammed into induced pluripotent stem cells (iPSCs) and subsequently differentiated into cortical neuronal cells for studying disease mechanisms in human neurons. We observed no changes in PANK2 expression between control and patient cells, but a reduction in protein levels was apparent in patient cells. CoA homeostasis and cellular iron handling were normal, mitochondrial function was affected; displaying activated NADH-related and inhibited FADH-related respiration, resulting in increased mitochondrial membrane potential. This led to increased reactive oxygen species generation and lipid peroxidation in patient-derived neurons. These data suggest that mitochondrial deficiency is an early feature of the disease process and can be explained by altered NADH/FADH substrate supply to oxidative phosphorylation. Intriguingly, iron chelation appeared to exacerbate the mitochondrial phenotype in both control and patient neuronal cells. This raises caution for the use iron chelation therapy in general when iron accumulation is absent.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Enfermedades Mitocondriales/fisiopatología , Neurodegeneración Asociada a Pantotenato Quinasa/fisiopatología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Acetilcoenzima A/química , Adolescente , Biopsia , Encéfalo/metabolismo , Diferenciación Celular , Niño , Coenzima A/metabolismo , Femenino , Fibroblastos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Hierro/química , Cariotipificación , Peroxidación de Lípido , Masculino , Potencial de la Membrana Mitocondrial , Mitocondrias/patología , Mutación , NAD/química , Neuronas/metabolismo , Ácido Pantoténico/química , Fenotipo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Plásmidos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
13.
Proc Natl Acad Sci U S A ; 113(51): 14710-14715, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27911769

RESUMEN

The retinal pigment epithelium (RPE) is a monolayer of pigmented cells that requires an active metabolism to maintain outer retinal homeostasis and compensate for oxidative stress. Using 13C metabolic flux analysis in human RPE cells, we found that RPE has an exceptionally high capacity for reductive carboxylation, a metabolic pathway that has recently garnered significant interest because of its role in cancer cell survival. The capacity for reductive carboxylation in RPE exceeds that of all other cells tested, including retina, neural tissue, glial cells, and a cancer cell line. Loss of reductive carboxylation disrupts redox balance and increases RPE sensitivity to oxidative damage, suggesting that deficiencies of reductive carboxylation may contribute to RPE cell death. Supporting reductive carboxylation by supplementation with an NAD+ precursor or its substrate α-ketoglutarate or treatment with a poly(ADP ribose) polymerase inhibitor protects reductive carboxylation and RPE viability from excessive oxidative stress. The ability of these treatments to rescue RPE could be the basis for an effective strategy to treat blinding diseases caused by RPE dysfunction.


Asunto(s)
Carbono/química , Ojo/embriología , Ácidos Cetoglutáricos/química , Degeneración Macular/metabolismo , Epitelio Pigmentado de la Retina/embriología , Epitelio Pigmentado de la Retina/metabolismo , Anciano de 80 o más Años , Animales , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Ácidos Grasos/química , Femenino , Células HeLa , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Isocitrato Deshidrogenasa/metabolismo , Degeneración Macular/patología , Ratones , NAD/química , Neoplasias/metabolismo , Neoplasias/patología , Oxidación-Reducción , Estrés Oxidativo , Oxígeno/química , Poli(ADP-Ribosa) Polimerasas/metabolismo
14.
Sci Transl Med ; 8(361): 361ra139, 2016 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-27798264

RESUMEN

Neuromuscular diseases are often caused by inherited mutations that lead to progressive skeletal muscle weakness and degeneration. In diverse populations of normal healthy mice, we observed correlations between the abundance of mRNA transcripts related to mitochondrial biogenesis, the dystrophin-sarcoglycan complex, and nicotinamide adenine dinucleotide (NAD+) synthesis, consistent with a potential role for the essential cofactor NAD+ in protecting muscle from metabolic and structural degeneration. Furthermore, the skeletal muscle transcriptomes of patients with Duchene's muscular dystrophy (DMD) and other muscle diseases were enriched for various poly[adenosine 5'-diphosphate (ADP)-ribose] polymerases (PARPs) and for nicotinamide N-methyltransferase (NNMT), enzymes that are major consumers of NAD+ and are involved in pleiotropic events, including inflammation. In the mdx mouse model of DMD, we observed significant reductions in muscle NAD+ levels, concurrent increases in PARP activity, and reduced expression of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme for NAD+ biosynthesis. Replenishing NAD+ stores with dietary nicotinamide riboside supplementation improved muscle function and heart pathology in mdx and mdx/Utr-/- mice and reversed pathology in Caenorhabditis elegans models of DMD. The effects of NAD+ repletion in mdx mice relied on the improvement in mitochondrial function and structural protein expression (α-dystrobrevin and δ-sarcoglycan) and on the reductions in general poly(ADP)-ribosylation, inflammation, and fibrosis. In combination, these studies suggest that the replenishment of NAD+ may benefit patients with muscular dystrophies or other neuromuscular degenerative conditions characterized by the PARP/NNMT gene expression signatures.


Asunto(s)
Músculo Esquelético/fisiopatología , Distrofias Musculares/patología , NAD/química , Poli ADP Ribosilación , Adenosina Difosfato/química , Animales , Caenorhabditis elegans , Línea Celular , Citocinas/química , Fibrosis/patología , Perfilación de la Expresión Génica , Inflamación , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedades Musculares/patología , Nicotinamida Fosforribosiltransferasa/química , Nitrosaminas/química , ARN Mensajero/metabolismo , Tiramina/análogos & derivados , Tiramina/química
15.
J Nutr Biochem ; 33: 28-35, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27260465

RESUMEN

α-Eleostearic acid (α-ESA), or the cis-9, trans-11, trans-13 isomer of conjugated linolenic acid, is a special fatty acid present at high levels in bitter melon seed oil. The aim of this study was to examine the effect of α-ESA on hepatic lipid metabolism. Using H4IIEC3 hepatoma cell line, we showed that α-ESA significantly lowered intracellular triglyceride accumulation compared to α-linolenic acid (LN), used as a fatty acid control, in a dose- and time-dependent manner. The effects of α-ESA on enzyme activities and mRNA profiles in H4IIEC3 cells suggested that enhanced fatty acid oxidation and lowered lipogenesis were involved in α-ESA-mediated triglyceride lowering effects. In addition, α-ESA triggered AMP-activated protein kinase (AMPK) activation without altering sirtuin 1 (SIRT1) protein levels. When cells were treated with vehicle control (VC), LN alone (LN; 100µmol/L) or in combination with α-ESA (LN+α-ESA; 75+25µmol/L) for 24h, acetylation of forkhead box protein O1 was decreased, while the NAD(+)/NADH ratio, mRNA levels of NAMPT and PTGR1 and enzyme activity of nicotinamide phosphoribosyltransferase were increased by LN+α-ESA treatment compared to treatment with LN alone, suggesting that α-ESA activates SIRT1 by increasing NAD(+) synthesis and NAD(P)H consumption. The antisteatosis effect of α-ESA was confirmed in mice treated with a high-sucrose diet supplemented with 1% α-ESA for 5weeks. We conclude that α-ESA favorably affects hepatic lipid metabolism by increasing cellular NAD(+)/NADH ratio and activating PPARα, AMPK and SIRT1 signaling pathways.


Asunto(s)
Suplementos Dietéticos , Regulación Enzimológica de la Expresión Génica , Hepatocitos/metabolismo , Hipolipemiantes/uso terapéutico , Ácidos Linoleicos Conjugados/uso terapéutico , Ácidos Linolénicos/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Activación Enzimática , Hepatocitos/enzimología , Hipertrigliceridemia/sangre , Hipertrigliceridemia/metabolismo , Hipertrigliceridemia/prevención & control , Hipolipemiantes/metabolismo , Ácidos Linoleicos Conjugados/metabolismo , Ácidos Linolénicos/metabolismo , Masculino , Ratones Endogámicos C57BL , Momordica charantia/química , NAD/química , NAD/metabolismo , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Oxidación-Reducción , PPAR alfa/agonistas , PPAR alfa/metabolismo , Ratas , Semillas/química , Transducción de Señal , Sirtuina 1/química , Sirtuina 1/metabolismo , Células Tumorales Cultivadas
16.
Microb Cell Fact ; 14: 167, 2015 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-26474754

RESUMEN

BACKGROUND: There is a strong interest in using photosynthetic cyanobacteria as production hosts for biofuels and chemicals. Recent work has shown the benefit of pathway engineering, enzyme tolerance, and co-factor usage for improving yields of fermentation products. RESULTS: An n-butanol pathway was inserted into a Synechocystis mutant deficient in polyhydroxybutyrate synthesis. We found that nitrogen starvation increased specific butanol productivity up to threefold, but cessation of cell growth limited total n-butanol titers. Metabolite profiling showed that acetyl-CoA increased twofold during nitrogen starvation. Introduction of a phosphoketolase increased acetyl-CoA levels sixfold at nitrogen replete conditions and increased butanol titers from 22 to 37 mg/L at day 8. Flux balance analysis of photoautotrophic metabolism showed that a Calvin-Benson-Bassham-Phosphoketolase pathway had higher theoretical butanol productivity than CBB-Embden-Meyerhof-Parnas and a reduced butanol ATP demand. CONCLUSION: These results demonstrate that phosphoketolase overexpression and modulation of nitrogen levels are two attractive routes toward increased production of acetyl-CoA derived products in cyanobacteria and could be implemented with complementary metabolic engineering strategies.


Asunto(s)
1-Butanol/metabolismo , Acetilcoenzima A/metabolismo , Synechocystis/metabolismo , 1-Butanol/química , Adenosina Trifosfato/metabolismo , Aldehído-Liasas/genética , Aldehído-Liasas/metabolismo , Biomasa , Ingeniería Metabólica , Metaboloma , NAD/química , NAD/metabolismo , Nitrógeno/metabolismo
17.
Bioorg Med Chem ; 23(15): 4952-4969, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26037610

RESUMEN

Optimization of a new series of S-adenosyl-L-homocysteine hydrolase (AdoHcyase) inhibitors based on non-adenosine analogs led to very potent compounds 14n, 18a, and 18b with IC50 values of 13 ± 3, 5.0 ± 2.0, and 8.5 ± 3.1 nM, respectively. An X-ray crystal structure of AdoHcyase with NAD(+) and 18a showed a novel open form co-crystal structure. 18a in the co-crystals formed intramolecular eight membered ring hydrogen bond formations. A single crystal X-ray structure of 14n also showed an intramolecular eight-membered ring hydrogen bond interaction.


Asunto(s)
Adenosilhomocisteinasa/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Adenosina/química , Adenosilhomocisteinasa/genética , Adenosilhomocisteinasa/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Humanos , Enlace de Hidrógeno , Isomerismo , Conformación Molecular , Simulación de Dinámica Molecular , NAD/química , NAD/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Relación Estructura-Actividad
18.
Anal Biochem ; 449: 188-94, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24382396

RESUMEN

Poly(ADP-ribose) polymerase-1 and -2 (PARP1/2) are two key facilitators of DNA repair and are implicated in the pathogenesis of cancers and several chronic diseases. Inhibitors of PARP1/2 have shown powerful therapeutic effects in the treatment of cancer, cerebral ischemia, and inflammation. In addition, evidence from several studies suggests unique functions for PARP2 in genome surveillance, spermatogenesis, adipogenesis, and T cell development, and PARP2-specific inhibitors might have many other applications. To acquire PARP1/2 inhibitors, many high-throughput screening (HTS) assays for PARP1 inhibitors have been developed. However, detailed screening assays for PARP2 inhibitors have not been reported. Herein, three HTS assays for PARP2 inhibitors were developed and validated with reference inhibitors in each case. The results suggest that the HTS assays for PARP2 inhibitors using chemical quantification of NAD(+), biotin-based quantification of PAR, and ELISA quantification of PAR are sensitive, robust, and cost effective.


Asunto(s)
Pruebas de Enzimas/métodos , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas/metabolismo , Biotinilación , Evaluación Preclínica de Medicamentos/métodos , Ensayo de Inmunoadsorción Enzimática , Células HeLa , Humanos , NAD/química , NAD/metabolismo
19.
Artículo en Inglés | MEDLINE | ID: mdl-24110286

RESUMEN

A plethora of data is accumulating from high throughput methods on metabolites, coenzymes, proteins, and nucleic acids and their interactions as well as the signalling and regulatory functions and pathways of the cellular network. The frozen moment viewed in a single discrete time sample requires frequent repetition and updating before any appreciation of the dynamics of component interaction becomes possible. Even then in a sample derived from a cell population, time-averaging of processes and events that occur in out-of-phase individuals blur the detailed complexity of single cell organization. Continuously-grown cultures of yeast can become spontaneously self-synchronized, thereby enabling resolution of far more detailed temporal structure. Continuous on-line monitoring by rapidly responding sensors (O2 electrode and membrane-inlet mass spectrometry for O2, CO2 and H2S; direct fluorimetry for NAD(P)H and flavins) gives dynamic information from time-scales of minutes to hours. Supplemented with capillary electophoresis and gas chromatography mass spectrometry and transcriptomics the predominantly oscillatory behaviour of network components becomes evident, with a 40 min cycle between a phase of increased respiration (oxidative phase) and decreased respiration (reductive phase). Highly pervasive, this ultradian clock provides a coordinating function that links mitochondrial energetics and redox balance to transcriptional regulation, mitochondrial structure and organelle remodelling, DNA duplication and cell division events. Ultimately, this leads to a global partitioning of anabolism and catabolism and the enzymes involved, mediated by a relatively simple ATP feedback loop on chromatin architecture.


Asunto(s)
Metabolismo Energético , Saccharomyces cerevisiae/crecimiento & desarrollo , Adenosina Difosfato/análisis , Adenosina Trifosfato/análisis , Ensamble y Desensamble de Cromatina , Análisis por Conglomerados , ADN/metabolismo , Dinitrocresoles/química , Electroforesis Capilar , Cromatografía de Gases y Espectrometría de Masas , Mitocondrias/química , Mitocondrias/metabolismo , NAD/química , Oxidación-Reducción , Especies Reactivas de Oxígeno/química , Saccharomyces cerevisiae/metabolismo , Transcriptoma
20.
Food Chem ; 141(4): 3851-8, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23993558

RESUMEN

Plant ferritin from legume seeds co-exists with coenzyme NADH (a reduced form of nicotinamide-adenine dinucleotide) in many foodstuffs. In the present study, the interaction of NADH with apo pea seed ferritin (PSF) was investigated by fluorescence resonance energy transfer (FRET), fluorescence titration, transmission electron microscope (TEM), and isothermal titration calorimetry (ITC). We found that NADH molecules bound on the outer surface of PSF close to the 4-fold channels, which was 1.58 nm from tryptophan residue (Trp). Consequently, such binding facilitates iron release from holo PSF, which might have a negative effect on PSF as an iron supplement, while NADH was oxidised into NAD(+). However, the binding of NADH to the protein does not affect the entry of toxic ferrous ions into the apo protein shell, where these ferrous ions were oxidised into less toxic ferric ions. Moreover, NADH binding markedly affects the tertiary structure around Trp residues of PSF. These findings advanced our understanding of the interactions between different naturally occurring components in a complex food system.


Asunto(s)
Coenzimas/metabolismo , Ferritinas/metabolismo , Hierro/metabolismo , NAD/metabolismo , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Semillas/metabolismo , Sitios de Unión , Coenzimas/química , Ferritinas/química , Concentración de Iones de Hidrógeno , Hierro/química , Cinética , Modelos Moleculares , NAD/química , Pisum sativum/química , Proteínas de Plantas/química , Unión Proteica , Semillas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA