Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Ethnopharmacol ; 326: 117909, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38350503

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Gancao Decoction (GCD) is widely used to treat cholestatic liver injury. However, it is unclear whether is related to prevent hepatocellular necroptosis. AIM OF THE STUDY: The purpose of this study is to clarify the therapeutic effects of GCD against hepatocellular necroptosis induced by cholestasis and its active components. MATERIALS AND METHODS: We induced cholestasis model in wild type mice by ligating the bile ducts or in Nlrp3-/- mice by intragastrical administering Alpha-naphthylisothiocyanate (ANIT). Serum biochemical indices, liver pathological changes and hepatic bile acids (BAs) were measured to evaluate GCD's hepatoprotective effects. Necroptosis was assessed by expression of hallmarkers in mice liver. Moreover, the potential anti-necroptotic effect of components from GCD were investigated and confirmed in ANIT-induced cholestasis mice and in primary hepatocytes from WT mouse stimulated with Tumor Necrosis Factor alpha (TNF-α) and cycloheximide (CHX). RESULTS: GCD dose-dependently alleviated hepatic necrosis, reduced serum aminotranferase activity in both BDL and ANIT-induced cholestasis models. More importantly, the expression of hallmarkers of necroptosis, including MLKL, RIPK1 and RIPK3 phosphorylation (p- MLKL, p-RIPK1, p-RIPK3) were reduced upon GCD treatment. Glycyrrhetinic acid (GA), the main bioactive metabolite of GCD, effectively protected against ANIT-induced cholestasis, with decreased expression of p-MLKL, p-RIPK1 and p-RIPK3. Meanwhile, the expression of Fas-associated death domain protein (FADD), long isoform of cellular FLICE-like inhibitory protein (cFLIPL) and cleaved caspase 8 were upregulated upon GA treatment. Moreover, GA significantly increased the expression of active caspase 8, and reduced that of p-MLKL in TNF-α/CHX induced hepatocytes necroptosis. CONCLUSIONS: GCD substantially inhibits necroptosis in cholestatic liver injury. GA is the main bioactive component responsible for the anti-necroptotic effects, which correlates with upregulation of c-FLIPL and active caspase 8.


Asunto(s)
Colestasis , Medicamentos Herbarios Chinos , Ácido Glicirretínico , Glycyrrhiza , Ratones , Animales , Factor de Necrosis Tumoral alfa/farmacología , Caspasa 8 , Necroptosis , Hígado , Colestasis/inducido químicamente , Colestasis/tratamiento farmacológico , Colestasis/patología , Ácido Glicirretínico/farmacología , 1-Naftilisotiocianato/toxicidad
2.
J Nutr Biochem ; 126: 109586, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38262563

RESUMEN

Parkinson's disease (PD) is an incurable neurological disorder that causes typical motor deficits. In this study, we investigated the effects of creatine supplementation and exercise in the subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. We found that 2% creatine supplementation and/or exercise intervention for 4 weeks elicited neurobehavioral recovery and neuroprotective effects regarding dopaminergic cell loss in MPTP-treated mice; this effect implies functional preservation of dopaminergic cells in the substantia nigra, as reflected by tyrosine hydroxylase expression recovery. Creatine and exercise reduced necroptotic activity in dopaminergic cells by lowering mixed lineage kinase domain-like protein (MLKL) modification to active phenotypes (phosphorylation at Ser345 and oligomerization) and phosphorylated receptor-interacting protein kinase 1 (RIPK1) (Ser166-p) and RIPK3 (Ser232-p) levels. In addition, creatine and exercise reduced the MPTP-induced increase in pathogenic α-synuclein forms, such as Ser129 phosphorylation and oligomerization. Furthermore, creatine and exercise had anti-inflammatory and antioxidative effects in MPTP mice, as evidenced by a decrease in microglia activation, NF-κB-dependent pro-inflammatory molecule expression, and increase in antioxidant enzyme expression. These phenotypic changes were associated with the exercise/creatine-induced AMP-activated protein kinase (AMPK)/nuclear factor erythroid 2-related factor 2 (Nrf2) and sirtuin 3 (SIRT3)/forkhead box O3 (FoxO3a) signaling pathways. In all experiments, combining creatine with exercise resulted in considerable improvement over either treatment alone. Consequently, these findings suggest that creatine supplementation with exercise has anti-inflammatory, antioxidative, and anti-α-synucleinopathy effects, thereby reducing necroptotic cell death in a PD mouse model.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratones , Animales , Enfermedad de Parkinson/tratamiento farmacológico , alfa-Sinucleína/metabolismo , Creatina/farmacología , Creatina/uso terapéutico , Necroptosis , Neuronas Dopaminérgicas/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Antiinflamatorios/farmacología , Suplementos Dietéticos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/efectos adversos , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/metabolismo
3.
J Nutr Biochem ; 125: 109563, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38176622

RESUMEN

Selenomethionine (SeMet) as the main form of daily dietary selenium, occupies essential roles in providing antioxidant and anti-inflammatory properties, which alleviates inflammatory liver damage. N6-methyladenosine (m6A) is one of the most prevalent and abundant internal transcriptional modifications that regulate gene expression. To investigate the protective mechanism of SeMet on liver injury and the regulatory effect of m6A methylation modification, we established the model by supplementing dietary SeMet, and LPS as stimulus in laying hens. LMH cells were intervened with SeMet (0.075 µM) and/or LPS (60 µg/mL). Subsequently, histopathology and ultrastructure of liver were observed. Western Blot, qRT-PCR, colorimetry, MeRIP-qPCR, fluorescent probe staining and AO/EB were used to detect total m6A methylation level, m6A methylation level of Nrf2, ROS, inflammatory and necroptosis factors. Studies showed that SeMet suppressed LPS-induced upregulation of total m6A methylation levels and METTL3 expression. Interestingly, SeMet reduced the m6A methylation level of Nrf2, activated antioxidant pathways and alleviated oxidative stress. LMH cells were transfected with 50 µm siMETTL3. SeMet/SiMETTL3 reversed the LPS-induced reduction in Nrf2 mRNA stability, slowed down its degradation rate. Moreover, LPS induced oxidative stress, led to necroptosis and activated NF-κB to promote the expression of inflammatory factors. SeMet/SiMETTL3 alleviated LPS-induced necroptosis and inflammation. Altogether, SeMet enhanced antioxidant and anti-inflammatory capacity by reducing METTL3-mediated m6A methylation levels of Nrf2, ultimately alleviating liver damage. Our findings provided new insights and therapeutic target for the practical application of dietary SeMet in the treatment and prevention of liver inflammation, and supplied a reference for comparative medicine.


Asunto(s)
Antioxidantes , Selenometionina , Animales , Femenino , Selenometionina/farmacología , Antioxidantes/metabolismo , Transducción de Señal , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Lipopolisacáridos/metabolismo , Pollos , Necroptosis , Estrés Oxidativo , Hígado/metabolismo , Inflamación/metabolismo , Antiinflamatorios/farmacología , Metilación
4.
Biol Trace Elem Res ; 202(2): 527-537, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37233925

RESUMEN

Selenium-enriched Cardamine violifolia (SEC), a cruciferous plant, exerts excellent antioxidant and anti-inflammatory capacity, but its effect on hepatic function is unclear. This study investigated the effect and potential mechanism of SEC on hepatic injury induced by lipopolysaccharide (LPS). Twenty-four weaned piglets were randomly allotted to treatment with SEC (0.3 mg/kg Se) and/or LPS (100 µg/kg). After 28 days of the trial, pigs were injected with LPS to induce hepatic injury. These results indicated that SEC supplementation attenuated LPS-induced hepatic morphological injury and reduced aspartate aminotransferase (AST) and alkaline phosphatase (ALP) activities in plasma. SEC also inhibited the expression of pro-inflammatory cytokines such as interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-α) after the LPS challenge. In addition, SEC improved hepatic antioxidant capacity via enhancing glutathione peroxidase (GSH-Px) activity and decreasing malondialdehyde (MDA) concentration. Moreover, SEC downregulated the mRNA expression of hepatic myeloid differentiation factor 88 (MyD88) and nucleotide-binding oligomerization domain proteins 1 (NOD1) and its adaptor molecule receptor interacting protein kinase 2 (RIPK2). SEC also alleviated LPS-induced hepatic necroptosis by inhibiting RIPK1, RIPK3, and mixed-lineage kinase domain-like (MLKL) expression. These data suggest that SEC potentially mitigates LPS-induced hepatic injury via inhibiting Toll-like receptor 4 (TLR4)/NOD2 and necroptosis signaling pathways in weaned piglets.


Asunto(s)
Cardamine , Hepatopatías , Selenio , Porcinos , Animales , Lipopolisacáridos , Selenio/farmacología , Receptor Toll-Like 4/metabolismo , Cardamine/metabolismo , Antioxidantes/farmacología , Necroptosis , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico
5.
Biol Trace Elem Res ; 202(4): 1722-1740, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37422542

RESUMEN

Selenium (Se) deficiency can affect the expression of microRNA (miRNA) and induce necroptosis, apoptosis, etc., resulting in damage to various tissues and organs. Bisphenol A (BPA) exposure can cause adverse consequences such as oxidative stress, endothelial dysfunction, and atherosclerosis. The toxic effects of combined treatment with Se-deficiency and BPA exposure may have a synergistic effect. We replicated the BPA exposure and Se-deficiency model in broiler to investigate whether the combined treatment of Se-deficiency and BPA exposure induced necroptosis and inflammation of chicken vascular tissue via the miR-26A-5p/ADAM17 axis. We found that Se deficiency and BPA exposure significantly inhibited the expression of miR-26a-5p and increased the expression of ADAM17, thereby increasing reactive oxygen species (ROS) production. Subsequently, we discovered that the tumor necrosis factor receptor (TNFR1), which was highly expressed, activated the necroptosis pathway through receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), and mixed-lineage kinase domain-like (MLKL), and regulated the heat shock proteins-related genes expressions and inflammation-related genes expressions after exposure to BPA and selenium deficiency. In vitro, we found that miR-26a-5p knockdown and increased ADAM17 can induce necroptosis by activating the TNFR1 pathway. Similarly, both N-Acetyl-L-cysteine (NAC), Necrostatin-1 (Nec-1), and miR-26a-5p mimic prevented necroptosis and inflammation caused by BPA exposure and Se deficiency. These results suggest that BPA exposure activates the miR-26a-5p/ADAM17 axis and exacerbates Se deficient-induced necroptosis and inflammation through the TNFR1 pathway and excess ROS. This study lays a data foundation for future ecological and health risk assessments of nutrient deficiencies and environmental toxic pollution.


Asunto(s)
Compuestos de Bencidrilo , MicroARNs , Fenoles , Selenio , Animales , Apoptosis , Pollos/metabolismo , Inflamación/inducido químicamente , MicroARNs/genética , MicroARNs/metabolismo , Necroptosis , Proteínas Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores del Factor de Necrosis Tumoral , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Selenio/metabolismo
6.
Arch Biochem Biophys ; 751: 109847, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38052383

RESUMEN

Exposure to lipopolysaccharide (LPS) can lead to inflammation in a variety of tissues and organs. Selenium (Se) plays a crucial role in mitigating inflammatory damage. Compared with inorganic selenium, organic selenium, such as selenomethionine (SeMet), has the advantages of a higher absorption rate and lower toxicity in animals. This study examined the protective effects of SeMet on eggshell gland tissue damage caused by LPS. Hy-Line Brown laying hens were chosen as the experimental animals and were randomly assigned to four groups: control group (C), lipopolysaccharide group (LPS), SeMet group (Se), and SeMet + lipopolysaccharide group (Se + LPS). H&E staining and transmission electron microscope were performed to observe the pathological changes of eggshell glands, oxidative stress related indicators were measured using relevant kits, qRT‒PCR and western blotting were used to evaluate the mRNA and protein levels of the Nrf2 pathway, necroptosis, and inflammation related indicators. The results showed that LPS treatment increased the content of malondialdehyde (MDA), decreased the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX), and decreased the content of glutathione (GSH). LPS increased the levels of Keap1, RIPK1, RIPK3, MLKL, TNF-α, COX-2, and NF-κB, while decreasing the levels of HO-1, NQO1, Nrf2, and Caspase-8. However, SeMet treatment effectively reversed the changes of the above indicators, indicating that SeMet alleviates eggshell gland cell necroptosis-mediated inflammation induced by LPS via regulating the Keap1/Nrf2/HO-1 pathway. This study elucidated the mechanism by which SeMet alleviates LPS-induced eggshell gland tissue damage in Hy-Line Brown laying hens and provided a new direction for expanding the application of SeMet in the feeding and production of laying hens.


Asunto(s)
Selenio , Selenometionina , Femenino , Animales , Selenometionina/farmacología , Selenometionina/metabolismo , Lipopolisacáridos/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Pollos/metabolismo , Selenio/farmacología , Selenio/metabolismo , Cáscara de Huevo/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Necroptosis , Inflamación/metabolismo , Estrés Oxidativo , Glutatión/metabolismo , Antioxidantes/farmacología
7.
J Ethnopharmacol ; 319(Pt 3): 117373, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37923253

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese herb, Sargentodoxa cuneata, is primarily utilized as a crucial herb for managing ulcerative colitis (UC), also known as "Da Xue Teng (DXT)" or "Hong Teng" in Chinese. Nevertheless, the chemical composition, prototype, and metabolite constituents of DXT and its pharmacological mechanism of treatment for UC remain unclear. AIM OF THE STUDY: Necroptosis, a caspase-independent form of programmed cell death, plays a crucial role in the inflammatory pathogenesis of UC. The occurrence of necroptosis in intestinal epithelial cells triggers a robust inflammatory response and disrupts the integrity of both the mucinous barrier and tight junction construction. The objective of our study was to determine the chemical composition of DXT, identify its absorbed active ingredients and metabolites in rat serum, and investigate whether DXT possesses epithelial barrier protective effects by inhibiting necroptosis. MATERIALS AND METHODS: First, the UPLC-Q-TOF/MS was applied to identify the chemical composition of DXT, as well as the absorption components and metabolites of DXT in rat serum. Second, the network pharmacology analysis was further investigated to elucidate the potential targets for treating UC. Finally, the mechanism of action was validated by necroptosis-based experiment in vitro and an in vivo model of colitis. RESULTS: A comprehensive analysis revealed the presence of 31 phytochemicals derived from DXT herb, as well as a total of 39 components in rat serum. Network pharmacology analysis indicated that TNF, EGFR, HSP90, etc. are the potential targets. Experimental in vitro and in vivo verified that the DXT could improve disease activity index, body weight, colon length and intestinal barrier permeability in mice with colitis by inhibiting necroptosis of intestinal epithelial cells. CONCLUSIONS: In this study, the phytochemicals derived from DXT herb and absorption active ingredients and metabolites of DXT in rat serum were analyzed. The biological mechanism of treatment for UC can be elucidated by combining network pharmacology investigation with experimental in vitro and in vivo studies. The findings offered a theoretical basis for comprehending the bioactive substances and the pharmacological process of DXT.


Asunto(s)
Colitis Ulcerosa , Colitis , Ratones , Ratas , Animales , Necroptosis , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Apoptosis
8.
Aging (Albany NY) ; 15(24): 14900-14914, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38126996

RESUMEN

Despite advances in therapeutic strategies, lung cancer remains the leading cause of cancer-related death worldwide. Acetylshikonin is a derivative of the traditional Chinese medicine Zicao and presents a variety of anticancer properties. However, the effects of acetylshikonin on lung cancer have not been fully understood yet. This study explored the mechanisms underlying acetylshikonin-induced cell death in non-small cell lung cancer (NSCLC). Treating NSCLC cells with acetylshikonin significantly reduced cell viability, as evidenced by chromatin condensation and the appearance of cell debris. Acetylshikonin has also been shown to increase cell membrane permeability and induce cell swelling, leading to an increase in the population of necrotic cells. When investigating the mechanisms underlying acetylshikonin-induced cell death, we discovered that acetylshikonin promoted oxidative stress, decreased mitochondrial membrane potential, and promoted G2/M phase arrest in lung cancer cells. The damage to NSCLC cells induced by acetylshikonin resembled results involving alterations in the cell membrane and mitochondrial morphology. Our analysis of oxidative stress revealed that acetylshikonin induced lipid oxidation and down-regulated the expression of glutathione peroxidase 4 (GPX4), which has been associated with necroptosis. We also determined that acetylshikonin induces the phosphorylation of receptor-interacting serine/threonine-protein kinase 1 (RIPK1)/RIPK3 and mixed lineage kinase domain-like kinase (MLKL). Treatment with RIPK1 inhibitors (necrostatin-1 or 7-Cl-O-Nec-1) significantly reversed acetylshikonin-induced MLKL phosphorylation and NSCLC cell death. These results indicate that acetylshikonin activated the RIPK1/RIPK3/MLKL cascade, leading to necroptosis in NSCLC cells. Our findings indicate that acetylshikonin reduces lung cancer cells by promoting G2/M phase arrest and necroptosis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Proteínas Quinasas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Necroptosis , Apoptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
9.
Int. j. morphol ; 41(6): 1816-1823, dic. 2023. ilus, tab
Artículo en Inglés | LILACS | ID: biblio-1528777

RESUMEN

SUMMARY: To evaluate the anti-cancer effects of yeast extract on resistant cells, autophagy and necroptosis were investigated in 5-fluorouracil (5-FU)-resistant colorectal cancer cells. Further underlying characteristics on drug resistance were evaluated, focused on ERK-RSK-ABCG2 linkage. SNU-C5 and 5-FU resistant SNU-C5 (SNU-C5/5-FUR) colorectal cancer cells were adopted for cell viability assay and Western blotting to examine the anti-cancer effects of yeast extract. Yeast extract induced autophagy in SNU-C5 cells with increased Atg7, Atg12-5 complex, Atg16L1, and LC3 activation (LC3-II/LC3-I), but little effects in SNU-C5/5-FUR cells with increased Atg12-5 complex and Atg16L1. Both colorectal cancer cells did not show necroptosis after yeast extract treatment. Based on increased ABCG2 and RSK expression after yeast extract treatment, drug resistance mechanisms were further evaluated. As compared to wild type, SNU-C5/5-FUR cells showed more ABCG2 expression, less RSK expression, and less phosphorylation of ERK. ABCG2 inhibitor, Ko143, treatment induces following changes: 1) more sensitivity at 500 mM 5-FU, 2) augmented proliferation, and 3) less phosphorylation of ERK. These results suggest that protective autophagy in SNU-C5/5-FUR cells with increased ABCG2 expression might be candidate mechanisms for drug resistance. As the ERK responses were different from each stimulus, the feasible mechanisms among ERK-RSK-ABCG2 should be further investigated in 5-FU-resistant CRC cells.


Para evaluar los efectos anticancerígenos del extracto de levadura en células resistentes, se investigaron la autofagia y la necroptosis en células de cáncer colorrectal resistentes al 5-fluorouracilo (5-FU). Además se evaluaron otras características subyacentes de la resistencia a los medicamentos centrándose en el enlace ERK-RSK-ABCG2. Se usaron células de cáncer colorrectal SNU-C5 (SNU-C5/5-FUR) resistentes a SNU-C5 y 5- FU para el ensayo de viabilidad celular y la transferencia Western para examinar los efectos anticancerígenos del extracto de levadura. El extracto de levadura indujo autofagia en células SNU-C5 con mayor activación de Atg7, complejo Atg12-5, Atg16L1 y LC3 (LC3-II/LC3-I), pero pocos efectos en células SNU-C5/5-FUR con aumento de Atg12-5 complejo y Atg16L1. Ambas células de cáncer colorrectal no mostraron necroptosis después del tratamiento con extracto de levadura. Se evaluaron los mecanismos de resistencia a los medicamentos. en base al aumento de la expresión de ABCG2 y RSK después del tratamiento con extracto de levadura.En comparación con las de tipo salvaje, las células SNU-C5/5-FUR mostraron más expresión de ABCG2, menos expresión de RSK y menos fosforilación de ERK. El tratamiento con inhibidor de ABCG2, Ko143, induce los siguientes cambios: 1) más sensibilidad a 5-FU 500 mM, 2) proliferación aumentada y 3) menos fosforilación de ERK. Estos resultados sugieren que la autofagia protectora en células SNU-C5/5-FUR con mayor expresión de ABCG2 podría ser un mecanismo candidato para la resistencia a los medicamentos. Como las respuestas de ERK fueron diferentes de cada estímulo, los mecanismos factibles entre ERK-RSK- ABCG2 deberían investigarse más a fondo en células CCR resistentes a 5-FU.


Asunto(s)
Autofagia , Extractos Vegetales/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Antineoplásicos/farmacología , Levaduras , Células Tumorales Cultivadas , Supervivencia Celular/efectos de los fármacos , Western Blotting , Resistencia a Antineoplásicos , Proteínas Quinasas S6 Ribosómicas 90-kDa , Electroforesis , Fluorouracilo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Necroptosis
10.
Res Vet Sci ; 164: 105044, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37806098

RESUMEN

Cadmium (Cd) is toxic non-essential heavy metal that precipitates adverse health effects in humans and animals, but the effect of Cd on lymph node toxicity of piglets is still unclear. In order to explore the possible molecular mechanism of Cd toxicity to lymph nodes of piglets, ten 6-week-old male weaned piglets were randomly divided into two groups, C group and Cd group. Group C was fed with basal diet, while group Cd was fed with basal diet supplemented with CdCl2 (20 mg/kg) for 40 days, the pigs were euthanized and the mesenteric, inguinal and submandibular lymph nodes (MLN, ILN, SLN) were collected. The results indicated that Cd could induce the inflammatory cell infiltration, microvascular hemorrhage, microthrombosis and cell necrosis in MLN, ILN and SLN of piglets, induced Cytochrome P450 proteins (CYP1A1、CYP2E1、CYP2A1 and CYP3A2) mRNA levels and the protein levels of Vitamin D receptor (VDR) and cAMP response element binding protein 1 (CREB1). In addition, Cd exposure upregulated the mRNA and protein levels of dynamin-related protein 1 (DRP1), receptor-interacting protein kinase 3 (RIP3), mixed lineage kinase domain-like protein (MLKL), and increased tumor necrosis factor-α (TNFα), interferon-γ (IFNγ), interleukin-2 (IL-2), interleukin-4 (IL-4), cyclooxygenase 2 (COX-2) protein levels, and the damage degree of three kinds of lymph nodes was similar after Cd exposure. In general, these results manifest that Cd exposure regulates VDR/CREB1 pathway, activates CYP450s, induces necroptosis of lymph nodes, and leads to inflammation.


Asunto(s)
Cadmio , Enfermedades de los Porcinos , Porcinos , Animales , Masculino , Cadmio/toxicidad , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Inflamación/inducido químicamente , Inflamación/veterinaria , Necroptosis , Receptores de Calcitriol/metabolismo , ARN Mensajero/metabolismo , Enfermedades de los Porcinos/inducido químicamente , Ganglios Linfáticos/patología
11.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4137-4146, 2023 Aug.
Artículo en Chino | MEDLINE | ID: mdl-37802782

RESUMEN

Previous studies have shown that high blood glucose-induced chronic microinflammation can cause inflammatory podocyte injury in patients with diabetic kidney disease(DKD). Therein, necroptosis is a new form of podocyte death that is closely associated with renal fibrosis(RF). To explore the effects and mechanisms in vivo of total flavones of Abelmoschus manihot(TFA), an extract from traditional Chinese herbal medicine Abelmoschus manihot for treating kidney diseases, on podocyte necroptosis and RF in DKD, and to further reveal its scientific connotation with multi-pathway and multi-target, the authors randomly divided all rats into four groups: a namely normal group, a model group, a TFA group and a rapamycin(RAP) group. After the modified DKD rat models were successfully established, four group rats were given double-distilled water, TFA suspension and RAP suspension, respectively by gavage every day. At the end of the 4th week of drug treatment, all rats were sacrificed, and the samples of their urine, blood and kidneys were collected. And then, the various indicators related to podocyte necroptosis and RF in the DKD model rats were observed, detected and analyzed, respectively. The results indicated that, general condition, body weight(BW), serum creatinine(Scr), urinary albumin(UAlb), and kidney hypertrophy index(KHI) in these modified DKD model rats were both improved by TFA and RAP. Indicators of RF, including glomerular histomorphological characteristics, fibronectin(FN) and collagen type Ⅰ(collagen Ⅰ) staining extent in glomeruli, as well as the protein expression levels of FN, collagen Ⅰ, transforming growth factor-ß1(TGF-ß1) and Smad2/3 in the kidneys were improved respectively by TFA and RAP. Podocyte damage, including foot process form and the protein expression levels of podocin and CD2AP in the kidneys was improved by TFA and RAP. In addition, tumor necrosis factor-α(TNF-α)-mediated podocyte necroptosis in the kidneys, including the morphological characteristics of podocyte necroptosis, the extent and levels of the protein expression of TNF-α and phosphorylated mixed lineage kinase domain like pseudokinase(p-MLKL) was improved respectively by TFA and RAP. Among them, RAP had the better effect on p-MLKL. More importantly, the activation of the receptor interacting serine/threonine protein kinase 1(RIPK1)/RIPK3/MLKL signaling axis in the kidneys, including the expression levels of its key signaling molecules, such as phosphorylated receptor interacting serine/threonine protein kinase 1(p-RIPK1), p-RIPK3, p-MLKL and cysteinyl aspartate specific proteinase-8(caspase-8) was improved respectively by TFA and RAP. Among them, the effect of TFA on p-RIPK1 was superior. On the whole, in this study, the authors demonstrated that TFA alleviates podocyte necroptosis and RF in DKD through inhibiting the activation of the TNF-α-mediated RIPK1/RIPK3/MLKL signaling axis in diabetic kidneys. The authors' findings provide new pharmacological evidence to reveal the scientific connotation of TFA in treating RF in DKD in more depth.


Asunto(s)
Abelmoschus , Diabetes Mellitus , Nefropatías Diabéticas , Flavonas , Podocitos , Humanos , Ratas , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Flavonas/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Necroptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Fibrosis , Treonina/farmacología , Colágeno/metabolismo , Serina/farmacología , Diabetes Mellitus/tratamiento farmacológico
12.
Mol Brain ; 16(1): 74, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37904209

RESUMEN

Necroptosis is known to play an important role in the pathophysiology of cerebral ischemia; however, its role in the occurrence of secondary thalamic injury after focal cerebral infarction and the mechanism about how mixed lineage kinase domain-like (MLKL) executes necroptosis in this pathophysiology are still unclear. In this study, Sprague-Dawley rats were subjected to distal branch of middle cerebral artery occlusion (dMCAO). The expression of MLKL, connexin 43 (Cx43) and Von Hippel-Lindau (VHL) in vitro and in vivo were assessed by Western blot. Bioinformatic methods were used to predict the potential binding sites where MLKL interacted with Cx43, and the ubiquitination degradation of Cx43 regulated by VHL. The interactions among MLKL, Cx43, VHL, and Ubiquitin were assessed by immunoprecipitation. Dye uptake assay were used to examine the Cx43 hemichannels. Intracellular Ca2+ concentration was measured using Fluo-4 AM. Overexpression and site-directed mutagenesis studies were used to study the mechanisms by which MLKL regulates Cx43 ubiquitinational degradation to mediate neuronal necroptosis. We found that MLKL and Cx43 were upregulated in the ventral posterolateral nucleus (VPN) of the ipsilateral thalamus after dMCAO. In the in vitro experiments MLKL and Cx43 were upregulated after TSZ-mediated necroptosis in SH-SY5Y cells. The interaction between MLKL and Cx43 inhibited the K48-linked ubiquitination of Cx43 in necroptotic SH-SY5Y cells. VHL is an E3 ubiquitin ligase for Cx43, and MLKL competes with VHL for binding to Cx43. Interaction of MLKL Ser454 with Cx43 can trigger the opening of Cx43 hemichannels, causing increased intracellular Ca2+, and cell necroptosis. This innovative study at animal models, cellular, and molecular levels is anticipated to clarify the roles of MLKL and Cx43 in thalamic damage after focal cortical infarction. Our findings may help identify novel targets for neurological recovery after cortical infarction.


Asunto(s)
Conexina 43 , Neuroblastoma , Animales , Humanos , Ratas , Infarto Cerebral , Necroptosis , Neuroblastoma/metabolismo , Proteínas Quinasas/metabolismo , Ratas Sprague-Dawley , Tálamo/metabolismo
13.
Front Endocrinol (Lausanne) ; 14: 1193992, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37745699

RESUMEN

Background: Polycystic ovary syndrome (PCOS), a common endocrine and reproductive disorder, lacks precise diagnostic strategies. Necroptosis was found to be crucial in reproductive and endocrine disorders, but its function in PCOS remains unclear. We aimed to identify differentially diagnostic genes for necroptosis (NDDGs), construct a diagnostic model to assess the progression of PCOS and explore the potential therapeutic drugs. Methods: Gene expression datasets were combined with weighted gene co-expression network analysis (WGCNA) and necroptosis gene sets to screen the differentially expressed genes for PCOS. Least absolute shrinkage and selection operator (LASSO) regression analysis was used to construct a necroptosis-related gene signatures. Independent risk analyses were performed using nomograms. Pathway enrichment of NDDGs was conducted with the GeneMANIA database and gene set enrichment analysis (GSEA). Immune microenvironment analysis was estimated based on ssGSEA algorithm analysis. The Comparative Toxicogenomics Database (CTD) was used to explore potential therapeutic drugs for NDDGs. The expression of NDDGs was validated in GSE84958, mouse model and clinical samples. Results: Four necroptosis-related signature genes, IL33, TNFSF10, BCL2 and PYGM, were identified to define necroptosis for PCOS. The areas under curve (AUC) of receiver operating characteristic curve (ROC) for training set and validation in diagnostic risk model were 0.940 and 0.788, respectively. Enrichment analysis showed that NDDGs were enriched in immune-related signaling pathways such as B cells, T cells, and natural killer cells. Immune microenvironment analysis revealed that NDDGs were significantly correlated with 13 markedly different immune cells. A nomogram was constructed based on features that would benefit patients clinically. Several compounds, such as resveratrol, tretinoin, quercetin, curcumin, etc., were mined as therapeutic drugs for PCOS. The expression of the NDDGs in the validated set, animal model and clinical samples was consistent with the results of the training sets. Conclusion: In this study, 4 NDDGs were identified to be highly effective in assessing the progression and prognosis of PCOS and exploring potential targets for PCOS treatment.


Asunto(s)
Síndrome del Ovario Poliquístico , Animales , Ratones , Femenino , Humanos , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Síndrome del Ovario Poliquístico/genética , Necroptosis/genética , Algoritmos , Área Bajo la Curva , Linfocitos B , Microambiente Tumoral
14.
Anim Biotechnol ; 34(8): 4069-4080, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37688392

RESUMEN

The liver plays crucial roles in material metabolism and immune response. Bacterial endotoxin can cause various liver diseases, thereby causing significant economic losses to pig industry. Tryptophan is an essential amino acid in piglets. However, whether tryptophan can alleviate liver injury and inflammation by regulating necroptosis and pyroptosis has not been clarified. This study aimed to investigate whether dietary tryptophan can alleviate lipopolysaccharide (LPS)-induced liver injury in weaned piglets. 18 weaned piglets were randomly distributed to three treatments, each with 6 replicates: (1) control; (2) LPS-challenged control; (3) LPS + 0.2% tryptophan. After feeding with control or 0.2% tryptophan-supplemented diets for 35 d, pigs were intraperitoneally injected with saline or LPS (100 mg/kg body weight). At 4 h post-injection, blood samples and liver were collected. Results indicated that tryptophan reduced alanine aminotransferase, aspartate aminotransferase, decreased the mRNA expression and protein expression of 70-kDa heat shock proteins. Moreover, tryptophan increased the mRNA expression and protein expression of claudin-1, occludin and zonula occludens and decreased hydrogen peroxide and malondialdehyde contents, and increased catalase, glutathione peroxidase and total superoxide dismutase activities and proinflammatory cytokine levels in the liver. Meanwhile, tryptophan inhibited pyroptosis-related and necroptosis-related protein expression in liver. Collectively, tryptophan could relieve liver damage, increased the antioxidant capacity and reduced inflammation by inhibiting pyroptosis and necroptosis signaling pathways.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Enfermedades de los Porcinos , Porcinos , Animales , Lipopolisacáridos/toxicidad , Triptófano/farmacología , Piroptosis , Necroptosis , Suplementos Dietéticos , Transducción de Señal , Inflamación/inducido químicamente , ARN Mensajero/genética
15.
Cells ; 12(13)2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37443802

RESUMEN

Angelica keiskei Koidzumi (A. keiskei) is used as a traditional medicine, anti-aging agent, and health food, as well as to restore vitality. Xanthoangelol (xanol), a prenylated chalcone, is the predominant constituent of A. keiskei. Oral squamous cell carcinoma (OSCC), the most common malignancy, has a high proliferation rate and frequent metastasis. However, it is unknown whether xanol has anti-OSCC effects on apoptosis, autophagy, and necroptosis. In the present study, we purified xanol from A. keiskei and demonstrated that it suppressed cell proliferation and induced cytotoxicity in human OSCC. Xanol triggered apoptotic cell death by regulating apoptotic machinery molecules but inhibited necroptotic cell death by dephosphorylating the necroptotic machinery molecules RIP1, RIP3, and MLKL in human OSCC. We also found that xanol inhibited the PI3K/AKT/mTOR/p70S6K pathway and induced autophagosome formation by enhancing beclin-1 and LC3 expression levels and reducing p62 expression levels. Furthermore, we showed that xanol prevented the metastatic phenotypes of human OSCC by inhibiting migration and invasion via the reduction of MMP13 and VEGF. Finally, we demonstrated that xanol exerted anticancer effects on tumorigenicity associated with its transformed properties. Taken together, these findings demonstrate the anticancer effects and biological mechanism of action of xanol as an effective phytomedicine for human OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas de Cabeza y Cuello , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas , Necroptosis , Neoplasias de la Boca/genética , Apoptosis , Autofagia
16.
Phytomedicine ; 118: 154943, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37421765

RESUMEN

BACKGROUND: Shikonin, a natural naphthoquinone compound, has a wide range of pharmacological effects, but its anti-tumor effect and underlying mechanisms in bladder cancer remain unclear. PURPOSE: We aimed to investigate the role of shikonin in bladder cancer in vitro and in vivo in order to broaden the scope of shikonin's clinical application. STUDY DESIGN AND METHODS: We performed MTT and colony formation to detect the inhibiting effect of shikonin on bladder cancer cells. ROS staining and flow cytometry assays were performed to detect the accumulation of ROS. Western blotting, siRNA and immunoprecipitation were used to evaluate the effect of necroptosis in bladder cancer cells. Transmission electron microscopy and immunofluorescence were used to examine the effect of autophagy. Nucleoplasmic separation and other pharmacological experimental methods described were used to explore the Nrf2 signal pathway and the crosstalk with necroptosis and autophagy. We established a subcutaneously implanted tumor model and performed immunohistochemistry assays to study the effects and the underlying mechanisms of shikonin on bladder cancer cells in vivo. RESULTS: The results showed that shikonin has a selective inhibitory effect on bladder cancer cells and has no toxicity on normal bladder epithelial cells. Mechanically, shikonin induced necroptosis and impaired autophagic flux via ROS generation. The accumulation of autophagic biomarker p62 elevated p62/Keap1 complex and activated the Nrf2 signaling pathway to fight against ROS. Furthermore, crosstalk between necroptosis and autophagy was present, we found that RIP3 may be involved in autophagosomes and be degraded by autolysosomes. We found for the first time that shikonin-induced activation of RIP3 may disturb the autophagic flux, and inhibiting RIP3 and necroptosis could accelerate the conversion of autophagosome to autolysosome and further activate autophagy. Therefore, on the basis of RIP3/p62/Keap1 complex regulatory system, we further combined shikonin with late autophagy inhibitor(chloroquine) to treat bladder cancer and achieved a better inhibitory effect. CONCLUSION: In conclusion, shikonin could induce necroptosis and impaired autophagic flux through RIP3/p62/Keap1 complex regulatory system, necroptosis could inhibit the process of autophagy via RIP3. Combining shikonin with late autophagy inhibitor could further activate necroptosis via disturbing RIP3 degradation in bladder cancer in vitro and in vivo.


Asunto(s)
Naftoquinonas , Neoplasias de la Vejiga Urinaria , Humanos , Especies Reactivas de Oxígeno/metabolismo , Necroptosis , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Muerte Celular , Naftoquinonas/farmacología , Autofagia , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico
17.
Metallomics ; 15(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37147109

RESUMEN

Selenium performs a variety of biological functions in organisms, including antioxidant and anti-inflammatory effects. This study investigated how selenium deficiency affects weaned calves' intestines. According to Inductively coupled plasma mass spectrometry (ICP-MS) analysis of intestinal selenium concentrations in calves, the Se-D group had a significantly lower concentration of selenium. Hematoxylin-eosin staining showed that the intestinal epithelial cells were detached, the goblet cells were lost, and the intestinal villi were fragmented and loosely arranged in the Se-D group, along with hyperemia and inflammatory infiltration. Of the 22 selenoprotein genes, 9 were downregulated in response to selenium deficiency in Reverse transcription-PCR (RT-PCR), whereas 6 genes were upregulated. In the Se-D group, oxidative stress was detected by measuring redox levels in the intestines. Furthermore, TdT-mediated dUTP Nick-End Labeling (TUNEL) staining, RT-PCR, and Western blotting (WB) results indicated that both intrinsic and extrinsic apoptosis pathways are activated in the intestine during selenium deficiency. Selenium deficiency also induced necroptosis in the intestine through upregulation of MLKL, RIPK1, and RIPK3 mRNA levels. In addition, according to hematoxylin-eosin staining and ELISA, selenium-deficient calves had severe inflammation in their intestines. As a result of RT-PCR and WB analyses, we found that selenium deficiency was associated with nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Our study suggested that weaned calves' intestines are affected by selenium deficiency, which causes oxidative stress, inflammation, apoptosis, and necroptosis.


Asunto(s)
Selenio , Animales , Bovinos , Selenio/metabolismo , Necroptosis , Eosina Amarillenta-(YS)/farmacología , Hematoxilina/farmacología , Intestinos , Apoptosis , Estrés Oxidativo , Inflamación/metabolismo
18.
Biomed Pharmacother ; 164: 114918, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37216705

RESUMEN

Sorafenib, a multikinase inhibitor, is a first-line treatment for advanced hepatocellular carcinoma, but its long-term effectiveness is limited by the emergence of resistance mechanisms. One such mechanism is the reduction of microvessel density and intratumoral hypoxia caused by prolonged sorafenib treatment. Our research has demonstrated that HSP90 plays a critical role in conferring resistance to sorafenib in HepG2 cells under hypoxic conditions and N-Nitrosodiethylamine-exposed mice as well. This occurs through the inhibition of necroptosis on the one hand and the stabilization of HIF-1α on the other hand. To augment the effects of sorafenib, we investigated the use of ganetespib, an HSP90 inhibitor. We found that ganetespib activated necroptosis and destabilized HIF-1α under hypoxia, thus enhancing the effectiveness of sorafenib. Additionally, we discovered that LAMP2 aids in the degradation of MLKL, which is the mediator of necroptosis, through the chaperone-mediated autophagy pathway. Interestingly, we observed a significant negative correlation between LAMP2 and MLKL. These effects resulted in a reduction in the number of surface nodules and liver index, indicating a regression in tumor production rates in mice with HCC. Furthermore, AFP levels decreased. Combining ganetespib with sorafenib showed a synergistic cytotoxic effect and resulted in the accumulation of p62 and inhibition of macroautophagy. These findings suggest that the combined therapy of ganetespib and sorafenib may offer a promising approach for the treatment of hepatocellular carcinoma by activating necroptosis, inhibiting macroautophagy, and exhibiting a potential antiangiogenic effect. Overall, continued research is critical to establish the full therapeutic potential of this combination therapy.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Sorafenib/farmacología , Sorafenib/uso terapéutico , Carcinoma Hepatocelular/patología , Necroptosis , Neoplasias Hepáticas/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Hipoxia/tratamiento farmacológico , Línea Celular Tumoral , Resistencia a Antineoplásicos
19.
J Ethnopharmacol ; 312: 116454, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37059246

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Polyrhachis vicina Roger (P. vicina), a traditional Chinese medicinal animal, has been used to treat rheumatoid arthritis, hepatitis, cancer, and other conditions. Due to its anti-inflammatory properties, our previous pharmacological investigations have demonstrated that it is effective against cancer, depression, and hyperuricemia. Nevertheless, the key active components and targets of P. vicina in cancers are still unexplored. AIM OF THE STUDY: The study aimed to evaluate the pharmacological treatment mechanism of the active fraction of P. vicina (AFPR) in treating colorectal cancer (CRC) and to further reveal its active ingredients and key targets. METHODS: To examine the inhibitory impact of AFPR on CRC growth, tumorigenesis assays, cck-8 assays, colony formation assays, and MMP detection were utilized. The primary components of AFPR were identified by GC-MS analysis. The network pharmacology, molecular docking, qRT-PCR, western blotting, CCK-8 assays, colony formation assay, Hoechst staining, Annexin V-FITC/PI double staining, and MMP detection were performed to pick out the active ingredients and potential key targets of AFPR. The function of Elaidic acid on necroptosis was investigated through siRNA interference and the utilization of inhibitors. Elaidic acid's effectiveness to suppress CRC growth in vivo was assessed using a tumorigenesis experiment. RESULTS: Studies confirmed that AFPR prevented CRC from growing and evoked cell death. Elaidic acid was the main bioactive ingredient in AFPR that targeted ERK. Elaidic acid greatly affected the ability of SW116 cells to form colonies, produce MMP, and undergo necroptosis. Additionally, Elaidic acid promoted necroptosis predominantly by activating ERK/RIPK1/RIPK3/MLKL. CONCLUSION: According to our findings, Elaidic acid is the main active component of AFPR, which induced necroptosis in CRC through the activation of ERK. It represents a promising alternative therapeutic option for CRC. This work provided experimental support for the therapeutic application of P. vicina Roger in the treatment of CRC.


Asunto(s)
Neoplasias Colorrectales , Necroptosis , Animales , Simulación del Acoplamiento Molecular , Sincalida , Neoplasias Colorrectales/tratamiento farmacológico , Carcinogénesis
20.
Fish Shellfish Immunol ; 135: 108682, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36924910

RESUMEN

4-tert-butylphenol (4-tBP) is a monomer widely used in the synthesis of industrial chemicals, and posed a high risk to aquatic animals. Our study focused on toxic phenotype and mechanism of detoxification in grass carp hepatocytes (L8824) after 4-tBP-treatment. In this experiment, L8824 displayed hallmark phenotypes of apoptosis and necroptosis after 4-tBP exposure, as evidenced by changes in cell morphology, increased rates of apoptosis and necrosis, the loss of MMP, the accumulation of ROS, and changes in associated factors (PARP1, JNK, Bid, Bcl-2, Bax, AIFM1, CytC, Caspase 9, APAF1, Caspase 3, TNF-α, TNFR1, RIPK1, RIPK3, and MLKL). Furthermore, we found that 4-tBP-induced apoptosis and necroptosis were reversed by pretreating with N-Acetylcysteine (a ROS scavenger) and 3-Aminobenzamide (a PARP1 inhibitor), indicating that 4-tBP induced the onset of mitochondrial apoptosis and necroptosis in L8824 via activating ROS-PARP1 axis. Nano-selenium (Nano-Se) is a novel form of Se with a noteworthy antioxidant capacity. Here, Nano-Se was found to have preventive, therapeutic, and resistance effects on 4-tBP-induced L8824 apoptosis and necroptosis. Nano-Se co-treatment with 4-tBP was an optimal way to alleviate 4-tBP-induced apoptosis and necroptosis. We demonstrated for the first time that Nano-Se protected L8824 against 4-tBP-induced mitochondrial apoptosis and necroptosis through ROS-PARP1 pathway. This study will provide a new theoretical basis for 4-tBP toxicology researches and aquatic animal protection.


Asunto(s)
Selenio , Animales , Especies Reactivas de Oxígeno/metabolismo , Selenio/metabolismo , Necroptosis , Apoptosis , Hepatocitos/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA