Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ethnopharmacol ; 302(Pt A): 115867, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36341818

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Wuzi-Yanzong-Wan (WZYZW) is a classic Chinese herbal preparation, which has a significant clinical efficacy in tonifying the kidney and benefiting the sperm, and is widely used in the treatment of oligoasthenospermia with a long history. TAp73 inhibition results in the decrease of sperm quality, but the therapeutic mechanism of WZYZW on oligoasthenospermia caused by TAp73 gene inhibition remains elusive. AIMS OF STUDY: The purpose of this study is to investigate whether TAp73 suppression leads to oligoasthenospermia and the application of WZYZW treatment in condition of TAp73 suppression. METHODOLOGY: C57BL/6 male mice were injected with Pifithrin-α (2.5 mg/kg) intraperitoneally for 30 days to induce TAp73 suppression model, with WZYZW at 1.0, 2.0 and 4.0 g/kg were administrated in parallel. The blood, testis and epididymis were collected, with organ coefficient calculated. Makler sperm counter was used to analyze the density, motility, survival and malformation rate of sperm. Apoptosis of sperm was analyzed by flow cytometry. Serum hormone levels were determined using ELISA. HE staining and transmission electron microscopy (TEM) were used to observe histopathological changes of testis in blood-testis barrier (BTB), ectoplasmic specialization (ES) and other cell junctions. Expressions of cell adhesion factors including TAp73, Integrin-α6, N-cadherin, Nectin-2 and Occludin were determined by RT-PCR and western blotting. RESULTS: Compared to control mice, TAp73 inhibition dramatically decreased the epididymal coefficient, sperm quality, and serum testosterone (T) level, while increasing apoptosis in sperm in mice. HE staining and TEM showed that the tight junction (TJ) and apical ES structure were seriously abnormal in the testis in mice with TAp73 inhibition. Additionally, the expression of Occludin protein was elevated, while that of TAp73, Integrin-α6, N-cadherin, and Nectin-2 reduced in model mice. WZYZW treatment ameliorated testicular spermatogenic dysfunctions in TAp73 suppressed mice, restoring the decreased sperm quality, serum T level and testicular histopathological changes of TJ and ES, as well as decreasing sperm malformation rate and apoptosis. Moreover, WZYZW reversed the expressions of Occludin, TAp73, Integrin-α6, N-cadherin and Nectin-2 in TAp73 suppressed mice. CONCLUSIONS: By impairing spermatogenesis and maturation, TAp73 inhibition led to oligoasthenospermia in mice. WZYZW could rescue the oligoasthenospermia associated with TAp73 inhibition via affecting the dynamic remodeling of cellular junctions in testicular tissues in mice.


Asunto(s)
Semen , Testículo , Masculino , Ratones , Animales , Nectinas/metabolismo , Ocludina/metabolismo , Ratones Endogámicos C57BL , Testículo/metabolismo , Espermatogénesis , Uniones Intercelulares , Cadherinas/genética , Cadherinas/metabolismo , Integrinas/metabolismo
2.
Sci Rep ; 10(1): 21314, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33277582

RESUMEN

An intra-hippocampus injection of kainic acid serves as a model of status epilepticus and the subsequent development of temporal lobe epilepsy. Matrix metalloproteinase-9 (MMP-9) is an enzyme that controls remodeling of the extracellular milieu under physiological and pathological conditions. In response to brain insult, MMP-9 contributes to pathological synaptic plasticity that may play a role in the progression of an epileptic condition. Marimastat is a metalloproteinase inhibitor that was tested in clinical trials of cancer. The present study assessed whether marimastat can impair the development of epilepsy. The inhibitory efficacy of marimastat was initially tested in neuronal cultures in vitro. As a marker substrate, we used nectin-3. Next, we investigated the blood-brain barrier penetration of marimastat using mass spectrometry and evaluated the therapeutic potential of marimastat against seizure outcomes. We found that marimastat inhibited the cleavage of nectin-3 in hippocampal neuronal cell cultures. Marimastat penetrated the blood-brain barrier and exerted an inhibitory effect on metalloproteinase activity in the brain. Finally, marimastat decreased some seizure parameters, such as seizure score and number, but did not directly affect status epilepticus. The long-term effects of marimastat were evident up to 6 weeks after kainic acid administration, in which marimastat still inhibited seizure duration.


Asunto(s)
Ácidos Hidroxámicos/uso terapéutico , Inhibidores de la Metaloproteinasa de la Matriz/uso terapéutico , Estado Epiléptico/tratamiento farmacológico , Animales , Barrera Hematoencefálica/metabolismo , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Ácidos Hidroxámicos/farmacocinética , Ácido Kaínico , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Inhibidores de la Metaloproteinasa de la Matriz/farmacocinética , Ratones Endogámicos C57BL , Nectinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA