Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 12(9): e0183959, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28873450

RESUMEN

A seminal study recently demonstrated that bromide (Br-) has a critical function in the assembly of type IV collagen in basement membrane (BM), and suggested that Br- supplementation has therapeutic potential for BM diseases. Because salts of bromide (KBr and NaBr) have been used as antiepileptic drugs for several decades, repositioning of Br- for BM diseases is probable. However, the effects of Br- on glomerular basement membrane (GBM) disease such as Alport syndrome (AS) and its impact on the kidney are still unknown. In this study, we administered daily for 16 weeks 75 mg/kg or 250 mg/kg (within clinical dosage) NaBr or NaCl (control) via drinking water to 6-week-old AS mice (mouse model of X-linked AS). Treatment with 75 mg/kg NaBr had no effect on AS progression. Surprisingly, compared with 250 mg/kg NaCl, 250 mg/kg NaBr exacerbated the progressive proteinuria and increased the serum creatinine and blood urea nitrogen in AS mice. Histological analysis revealed that glomerular injury, renal inflammation and fibrosis were exacerbated in mice treated with 250 mg/kg NaBr compared with NaCl. The expressions of renal injury markers (Lcn2, Lysozyme), matrix metalloproteinase (Mmp-12), pro-inflammatory cytokines (Il-6, Il-8, Tnf-α, Il-1ß) and pro-fibrotic genes (Tgf-ß, Col1a1, α-Sma) were also exacerbated by 250 mg/kg NaBr treatment. Notably, the exacerbating effects of Br- were not observed in wild-type mice. These findings suggest that Br- supplementation needs to be carefully evaluated for real positive health benefits and for the absence of adverse side effects especially in GBM diseases such as AS.


Asunto(s)
Bromuros/efectos adversos , Enfermedades Renales/metabolismo , Cirrosis Hepática , Nefritis Hereditaria/metabolismo , Animales , Nitrógeno de la Urea Sanguínea , Bromuros/farmacología , Creatinina/sangre , Modelos Animales de Enfermedad , Membrana Basal Glomerular/patología , Riñón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Nefritis/patología , Nitrógeno/sangre , Compuestos de Potasio/efectos adversos , Compuestos de Potasio/farmacología , Proteinuria/metabolismo , Compuestos de Sodio/efectos adversos , Compuestos de Sodio/farmacología
2.
Clin Exp Nephrol ; 21(6): 952-960, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28176019

RESUMEN

BACKGROUND: Alport syndrome (AS) is a hereditary kidney disease caused by mutation of type IV collagen. Loss of collagen network induces collapse of glomerular basement membrane (GBM) structure. The previous studies showed that upregulation of some tyrosine kinase receptors signaling accompanied GBM disorder in AS mouse model. EGFR signaling is one of the well-known receptor kinase signaling that is involved in glomerular diseases. However, whether EGFR signaling is relevant to AS progression is still uninvestigated. Here, we determined the involvement of EGFR in AS and the effect of suppressing EGFR signaling by erlotinib treatment on AS progression. METHODS: Phosphorylated EGFR expression was investigated by Western blotting analysis and immunostaining of kidney tissues of Col4a5 mutant mice (a mouse model of X-linked AS). To check the effect of blocking EGFR signaling in AS, we administered erlotinib to AS mice once a day (10 mg/kg/day) orally for 18 weeks. Renal function parameters (proteinuria, serum creatinine, and BUN) and renal histology were assessed, and the gene expressions of inflammatory cytokines were analyzed in renal tissues. RESULTS: Phosphorylated EGFR expression was upregulated in AS mice kidney tissues. Erlotinib slightly reduced the urinary protein and suppressed the expression of renal injury markers (Lcn2, Lysozyme) and inflammatory cytokines (Il-6, Il-1ß and KC). Erlotinib did not improve renal pathology, such as glomerular sclerosis and fibrosis. CONCLUSION: These findings suggest that EGFR signaling is upregulated in kidney, but although inhibiting this signaling pathway suppressed renal inflammatory cytokines, it did not ameliorate renal dysfunction in AS mouse model.


Asunto(s)
Citocinas/metabolismo , Receptores ErbB/metabolismo , Clorhidrato de Erlotinib/uso terapéutico , Riñón/efectos de los fármacos , Nefritis Hereditaria/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Receptores ErbB/antagonistas & inhibidores , Clorhidrato de Erlotinib/farmacología , Femenino , Riñón/patología , Masculino , Ratones , Nefritis Hereditaria/metabolismo , Nefritis Hereditaria/patología
3.
PLoS One ; 7(8): e43852, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22937108

RESUMEN

Alport syndrome is a hereditary glomerulopathy with proteinuria and nephritis caused by defects in genes encoding type IV collagen in the glomerular basement membrane. All male and most female patients develop end-stage renal disease. Effective treatment to stop or decelerate the progression of proteinuria and nephritis is still under investigation. Here we showed that combination treatment of mild electrical stress (MES) and heat stress (HS) ameliorated progressive proteinuria and renal injury in mouse model of Alport syndrome. The expressions of kidney injury marker neutrophil gelatinase-associated lipocalin and pro-inflammatory cytokines interleukin-6, tumor necrosis factor-α and interleukin-1ß were suppressed by MES+HS treatment. The anti-proteinuric effect of MES+HS treatment is mediated by podocytic activation of phosphatidylinositol 3-OH kinase (PI3K)-Akt and heat shock protein 72 (Hsp72)-dependent pathways in vitro and in vivo. The anti-inflammatory effect of MES+HS was mediated by glomerular activation of c-jun NH(2)-terminal kinase 1/2 (JNK1/2) and p38-dependent pathways ex vivo. Collectively, our studies show that combination treatment of MES and HS confers anti-proteinuric and anti-inflammatory effects on Alport mice likely through the activation of multiple signaling pathways including PI3K-Akt, Hsp72, JNK1/2, and p38 pathways, providing a novel candidate therapeutic strategy to decelerate the progression of patho-phenotypes in Alport syndrome.


Asunto(s)
Terapia por Estimulación Eléctrica , Respuesta al Choque Térmico , Calor/uso terapéutico , Nefritis Hereditaria/terapia , Nefritis/terapia , Proteinuria/terapia , Animales , Línea Celular , Células Cultivadas , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Riñón/metabolismo , Riñón/patología , Masculino , Ratones , Nefritis/metabolismo , Nefritis/patología , Nefritis Hereditaria/metabolismo , Nefritis Hereditaria/patología , Permeabilidad , Podocitos/metabolismo , Podocitos/patología , Proteinuria/metabolismo , Proteinuria/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
4.
Pediatr Nephrol ; 21(12): 1824-9, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17039334

RESUMEN

Recent studies indicate that adding the mineralocorticoid receptor antagonist spironolactone (SP) to angiotensin converting enzyme inhibitors (ACEI) or ACEI and angiotensin receptor blocker (ARB), which is known as a triple blockade, enhances the more beneficial effects on urinary protein excretion of patients with chronic kidney diseases. In this study, we explored the effects of SP on urinary protein excretion in patients with Alport syndrome featuring persistent proteinuria in spite of the long-term use of ACEI (lisinopril) or both ACEI and ARB (candesartan). Five patients with Alport syndrome were enrolled and SP treatment (25 mg/day) was started. At the start of SP administration, all patients showed good renal function and none of them suffered from hypertension. We decided to assess the effect of SP by determining the morning urinary protein/creatinine ratio (U-P/C) and estimated glomerular filtration rate (EGFR). After SP treatment was started, U-P/C was significantly reduced at 3, 6, 12 and 18 months, while EGFR did not change. The drop in systolic and diastolic blood pressure was statistically significant and serum potassium level was slightly elevated. None of the patients showed signs of severe hyperkalemia (>5.0 mEq/l). These results suggest that aldosterone receptor blockade combined with ACEI and ARB therapy offers a valuable adjuvant treatment for the reduction of proteinuria in patients with Alport syndrome as in those with other chronic kidney diseases. SP can thus be expected to constitute a good renoprotective agent for Alport syndrome. These preliminary data indicate that large-scale trials of this therapy should be done.


Asunto(s)
Aldosterona/metabolismo , Antagonistas de Receptores de Mineralocorticoides/farmacología , Nefritis Hereditaria/tratamiento farmacológico , Espironolactona/farmacología , Adolescente , Adulto , Niño , Femenino , Tasa de Filtración Glomerular/efectos de los fármacos , Humanos , Masculino , Nefritis Hereditaria/metabolismo , Proteinuria/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA