Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 321
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Toxicol ; 39(6): 3481-3499, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38456329

RESUMEN

CONTEXT: Qi-dan-dihuang decoction (QDD) has been used to treat diabetic kidney disease (DKD), but the underlying mechanisms are poorly understood. OBJECTIVE: This study reveals the mechanism by which QDD ameliorates DKD. MATERIALS AND METHODS: The compounds in QDD were identified by high-performance liquid chromatography and quadrupole-time-of-flight tandem mass spectrometry (HPLC-Q-TOF-MS). Key targets and signaling pathways were screened through bioinformatics. Nondiabetic Lepr db/m mice were used as control group, while Lepr db/db mice were divided into model group, dapagliflozin group, 1% QDD-low (QDD-L), and 2% QDD-high (QDD-H) group. After 12 weeks of administration, 24 h urinary protein, serum creatinine, and blood urea nitrogen levels were detected. Kidney tissues damage and fibrosis were evaluated by pathological staining. In addition, 30 mmol/L glucose-treated HK-2 and NRK-52E cells to induce DKD model. Cell activity and migration capacity as well as protein expression levels were evaluated. RESULTS: A total of 46 key target genes were identified. Functional enrichment analyses showed that key target genes were significantly enriched in the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and mitogen-activated protein kinase (MAPK) signaling pathways. In addition, in vivo and in vitro experiments confirmed that QDD ameliorated renal fibrosis in diabetic mice by resolving inflammation and inhibiting the epithelial-mesenchymal transition (EMT) via the p38MAPK and AKT-mammalian target of rapamycin (mTOR) pathways. DISCUSSION AND CONCLUSION: QDD inhibits EMT and the inflammatory response through the p38MAPK and AKT/mTOR signaling pathways, thereby playing a protective role in renal fibrosis in DKD.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Medicamentos Herbarios Chinos , Fibrosis , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Medicamentos Herbarios Chinos/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/patología , Transducción de Señal/efectos de los fármacos , Masculino , Diabetes Mellitus Experimental/tratamiento farmacológico , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Ratas , Riñón/efectos de los fármacos , Riñón/patología , Línea Celular , Ratas Sprague-Dawley , Ratones , Humanos
2.
J Ethnopharmacol ; 328: 117863, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38325670

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The JinChan YiShen TongLuo (JCYSTL) formula, a traditional Chinese medicine (TCM), has been used clinically for decades to treat diabetic nephropathy (DN). TCM believes that the core pathogenesis of DN is "kidney deficiency and collateral obstruction," and JCYSTL has the effect of "tonifying kidney and clearing collateral," thus alleviating the damage to kidney structure and function caused by diabetes. From the perspective of modern medicine, mitochondrial damage is an important factor in DN pathogenesis. Our study suggests that the regulation of mitophagy and mitochondrial function by JCYSTL may be one of the internal mechanisms underlying its good clinical efficacy. AIM OF THE STUDY: This study aimed to investigate the mechanisms underlying the renoprotective effects of JCYSTL. MATERIALS AND METHODS: Unilateral nephrectomy combined with low-dose streptozotocin intraperitoneally injected in a DN rat model and high glucose (HG) plus hypoxia-induced HK-2 cells were used to explore the effects of JCYSTL on the HIF-1α/mitophagy pathway, mitochondrial function and apoptosis. RESULTS: JCYSTL treatment significantly decreased albuminuria, serum creatinine, blood urea nitrogen, and uric acid levels and increased creatinine clearance levels in DN rats. In vitro, medicated serum containing JCYSTL formula increased mitochondrial membrane potential (MMP); improved activities of mitochondrial respiratory chain complexes I, III, and IV; decreased the apoptotic cell percentage and apoptotic protein Bax expression; and increased anti-apoptotic protein Bcl-2 expression in HG/hypoxia-induced HK-2 cells. The treatment group exhibited increased accumulation of PINK1, Parkin, and LC3-II and reduced P62 levels in HG/hypoxia-induced HK-2 cells, whereas in PINK1 knockdown HK-2 cells, JCYSTL did not improve the HG/hypoxia-induced changes in Parkin, LC3-II, and P62. When mitophagy was impaired by PINK1 knockdown, the inhibitory effect of JCYSTL on Bax and its promoting effect on MMP and Bcl-2 disappeared. The JCYSTL-treated group displayed significantly higher HIF-1α expression than the model group in vivo, which was comparable to the effects of FG-4592 in DN rats. PINK1 knockdown did not affect HIF-1α accumulation in JCYSTL-treated HK-2 cells exposed to HG/hypoxia. Both JCYSTL and FG-4592 ameliorated mitochondrial morphological abnormalities and reduced the mitochondrial respiratory chain complex activity in the renal tubules of DN rats. Mitochondrial apoptosis signals in DN rats, such as increased Bax and Caspase-3 expression and apoptosis ratio, were weakened by JCYSTL or FG-4592 administration. CONCLUSION: This study demonstrates that the JCYSTL formula activates PINK1/Parkin-mediated mitophagy by stabilizing HIF-1α to protect renal tubules from mitochondrial dysfunction and apoptosis in diabetic conditions, presenting a promising therapy for the treatment of DN.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Medicamentos Herbarios Chinos , Enfermedades Mitocondriales , Ratas , Animales , Nefropatías Diabéticas/patología , Proteína X Asociada a bcl-2 , Apoptosis , Proteínas Proto-Oncogénicas c-bcl-2 , Ubiquitina-Proteína Ligasas/metabolismo , Hipoxia , Proteínas Quinasas/metabolismo
3.
J Ethnopharmacol ; 324: 117745, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38228231

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Jin-Gui-Shen-Qi Wan (JGSQW) is a traditional Chinese medicine formula that has been traditionally used to alleviate urinary system ailments such as frequent urination and polyuria. Clinical studies have indicated that when combined with hypoglycaemic drugs, JGSQW exhibits a synergistic effect and can improve diabetic nephropathy (DN), yet its underlying mechanism and targets remain unclear. AIM OF THE STUDY: This study aims to investigate the therapeutic efficacy of JGSQW and its underlying mechanisms using a DN db/db mouse model. MATERIALS AND METHODS: Ultrahigh-performance liquid chromatography coupled with mass spectrometry was utilized to analyse the primary active compounds, blood levels, and pharmacokinetics of JGSQW. Additionally, the therapeutic effects of JGSQW and metformin on blood glucose levels, lipid levels, renal function, and renal pathology in diabetic nephropathy mice were investigated using a db/db mouse model. Proteomic analysis was carried out to identify the primary target of JGSQW in treating DN. The mechanism of action was verified by western blotting, immunohistochemistry, and immunofluorescence. Then, molecular docking and molecular dynamics, transfection, drug affinity responsive target stability (DARTS) assay and cell thermal migration assay (CETSA) further validated the targeted binding effect. RESULTS: JGSQW combined with metformin significantly improved the blood glucose levels, blood lipids, renal function, and renal pathology of DN mice. JGSQW mainly exerted its therapeutic effect on DN by targeting major histocompatibility complex class II (MHC class II) molecules. Immunohistochemistry results showed that JGSQW inhibited the expression of collagen I, fibronectin, and alpha smooth muscle actin (α-SMA) expression. Immunofluorescence and Western blot results showed that JGSQW inhibited the expression of H2-Ab1 and H2-Aa, which are MHC class II molecules, thereby suppressing CD4+ T-cell infiltration and improving diabetic kidney fibrosis. The binding ability of paeoniflorin to H2-Aa was predicted and verified by molecular, DARTS, and CETSA assays. Treatment with 80 µM paeoniflorin effectively alleviated high glucose-induced injury in the MPC-5 injury model. H2-Aa was overexpressed at this model concentration, and Western blotting further confirmed that paeoniflorin reduced glomerular podocyte fibrosis by regulating H2-Aa. CONCLUSIONS: JGSQW combined with metformin may have a synergistic effect to alleviates renal fibrosis in diabetic nephropathy by downregulating immune complex MHC class II molecules and attenuating the antigen presentation effect of MHC class II on CD4.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Glucósidos , Metformina , Monoterpenos , Ratones , Animales , Nefropatías Diabéticas/patología , Glucemia , Simulación del Acoplamiento Molecular , Proteómica , Transducción de Señal , Fibrosis , Antígenos de Histocompatibilidad Clase II/farmacología , Antígenos de Histocompatibilidad Clase II/uso terapéutico , Metformina/farmacología , Metformina/uso terapéutico
4.
J Toxicol Sci ; 48(11): 597-606, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37914287

RESUMEN

Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD). Although current therapeutic strategies for DKD, including sodium-glucose cotransporter-2 inhibitors and mineralocorticoid receptor antagonists, have shown some degree of efficacy, they have failed to completely halt the progression of DKD to ESRD owing to the complexity of DKD pathogenesis. Elucidating the pathophysiological mechanism of DKD is essential for the development of novel therapeutic strategies. In this study, we investigated the pathophysiological characteristics of uninephrectomized (UNx) KK-Ay mice and examined the effects of salt supplementation on the acceleration of renal injury in these mice. UNx KK-Ay mice exhibited pathophysiological renal abnormalities with glomerular and tubulointerstitial fibrosis. Additionally, salt supplementation exacerbated renal injury, particularly tubular injury. These results suggest that UNx KK-Ay mice are useful models for advanced DKD and that salt exacerbates tubular damage in DKD.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Fallo Renal Crónico , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Ratones , Animales , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/patología , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Riñón , Fallo Renal Crónico/patología , Suplementos Dietéticos
5.
Biomed Pharmacother ; 163: 114598, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37150034

RESUMEN

Diabetic kidney disease (DKD) has become the major cause of chronic kidney disease or end-stage renal disease. There is still a need for innovative treatment strategies for preventing, arresting, treating, and reversing DKD, and a plethora of scientific evidence has revealed that Chinese herbal monomers can attenuate DKD in multiple ways. Astragaloside IV (AS-IV) is one of the active ingredients of Astragalus membranaceus and was selected as a chemical marker in the Chinese Pharmacopeia for quality control purposes. An increasing amount of studies indicate that AS-IV is a promising novel drug for the treatment of DKD. AS-IV has been shown to improve DKD by combating oxidative stress, attenuating endoplasmic reticulum stress, regulating calcium homeostasis, alleviating inflammation, improving vascular function, improving epithelial to mesenchymal transition and so on. This review briefly summarizes the pathogenesis of DKD, systematically reviews the mechanisms by which AS-IV improves DKD, and aims to facilitate related pharmacological research and development to promote the utilization of Chinese herbal monomers in DKD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Saponinas , Triterpenos , Humanos , Nefropatías Diabéticas/patología , Transición Epitelial-Mesenquimal , Saponinas/farmacología , Saponinas/uso terapéutico , Triterpenos/farmacología , Triterpenos/uso terapéutico , Riñón , Diabetes Mellitus/tratamiento farmacológico
6.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166714, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37028606

RESUMEN

Western lifestyle contributes to an overt increase in the prevalence of metabolic anomalies including diabetes mellitus (DM) and obesity. Prevalence of DM is rapidly growing worldwide, affecting many individuals in both developing and developed countries. DM is correlated with the onset and development of complications with diabetic nephropathy (DN), diabetic cardiomyopathy (DC) and diabetic neuropathy being the most devastating pathological events. On the other hand, Nrf2 is a regulator for redox balance in cells and accounts for activation of antioxidant enzymes. Dysregulation of Nrf2 signaling has been shown in various human diseases such as DM. This review focuses on the role Nrf2 signaling in major diabetic complications and targeting Nrf2 for treatment of this disease. These three complications share similarities including the presence of oxidative stress, inflammation and fibrosis. Onset and development of fibrosis impairs organ function, while oxidative stress and inflammation can evoke damage to cells. Activation of Nrf2 signaling significantly dampens inflammation and oxidative damage, and is beneficial in retarding interstitial fibrosis in diabetic complications. SIRT1 and AMPK are among the predominant pathways to upregulate Nrf2 expression in the amelioration of DN, DC and diabetic neuropathy. Moreover, certain therapeutic agents such as resveratrol and curcumin, among others, have been employed in promoting Nrf2 expression to upregulate HO-1 and other antioxidant enzymes in the combat of oxidative stress in the face of DM.


Asunto(s)
Cardiomiopatías , Complicaciones de la Diabetes , Diabetes Mellitus , Nefropatías Diabéticas , Neuropatías Diabéticas , Humanos , Nefropatías Diabéticas/patología , Factor 2 Relacionado con NF-E2/metabolismo , Antioxidantes/uso terapéutico , Neuropatías Diabéticas/etiología , Neuropatías Diabéticas/genética , Fibrosis , Inflamación
7.
Polim Med ; 53(1): 7-18, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36975210

RESUMEN

BACKGROUND: Sida cordifolia and Sida rhombifolia are regarded as useful herbs as they have been shown to be effective, inexpensive and harmless in the prevention of diabetes, and are recognized as valuable therapeutic substances. OBJECTIVES: The purpose of this study was to assess the effect of S. cordifolia and S. rhombifolia in the treatment of diabetic nephropathy using a rat model. MATERIAL AND METHODS: Extracts of S. cordifolia and S. rhombifolia were obtained using the Soxhlet method. The hydroalcoholic extract solvent was used in the following proportions: 70:30, 50:50 and 80:20. The 80:20 hydroalcoholic extract was observed to be the most potent. The inhibitory effects of the extract were determined using the α-amylase assay. The most potent extract also underwent total flavonoid, phenolic and free radical scavenging tests, and was incorporated into an animal study. Diabetes was induced in rats by administering nicotinamide (NAD; 230 mg/kg) and streptozotocin (STZ; 65 mg/kg) intraperitoneally. In addition to a standard control of pioglitazone, the rats received extract dosages of 100 mg/kg/day or 200 mg/kg/day. Body weight, blood glucose, glycated hemoglobin (HbA1c), blood urea nitrogen (BUN), serum albumin, serum creatinine, homeostatic model assessment of insulin resistance (HOMA-IR), and oral glucose tolerance were assessed at various time points. The animals also underwent histopathological examination to observe alterations induced by the treatment. RESULTS: Sida cordifolia was the most successful in lowering blood glucose and HbA1c levels. Renal function indices and antioxidant enzyme levels were regained in a dose-dependent manner. Furthermore, S. cordifolia (200 mg/kg/day) extract, similar to pioglitazone, inhibited the production of advanced glycation byproducts by the kidney. CONCLUSIONS: The effects of various S. cordifolia and S. rhombifolia extracts on rats with diabetic nephropathy were observed. Sida cordifolia may be further explored for the treatment of diabetic nephropathy and, due to its diverse nature, may be utilized for the treatment of a wide range of diseases, as it provided more significant findings.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Sida (Planta) , Ratas , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/patología , Glucemia , Extractos Vegetales , Estreptozocina/uso terapéutico , Hemoglobina Glucada , Pioglitazona/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico
8.
J Ethnopharmacol ; 310: 116405, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-36966849

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ganoderma lucidum (G. lucidum) was regarded as "miraculous herb" by the Chinese and recorded detailly in the "Shen Nong Ben Cao Jing" as a tonic to improve health and prolong life. A proteoglycan (namely, FYGL) was extracted from Ganoderma lucidum, which was a water-soluble hyperbranched proteoglycan, and was found to be able to protect pancreatic tissue against oxidative stress damage. AIM OF THE STUDY: Diabetic kidney disease (DKD) is a complication of diabetes, but the effective treatment is still lack. Chronic hyperglycemia in diabetic patients induce the accumulation of ROS, which injure the renal tissue and lead to the renal dysfunction. In this work, the efficacy and target mechanics of FYGL on diabetic renal function were investigated. MATERIALS AND METHODS: In the present study, the mechanism of the reno-protection of FYGL was analyzed on diabetic db/db mice and rat glomerular mesangial cells (HBZY-1) induced by high glucose (HG) with palmitate (PA) (HG/PA). In vitro, the levels of reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD) were evaluated by commercial kits. the expressions of NOX1 and NOX4, phosphorylation of MAPK and NF-κB, and pro-fibrotic proteins were measured by Western blot. In vivo, diabetic db/db mice were gavaged with FYGL for 8 weeks, body weight and fasting blood glucose (FBG) were tested weekly. On 8th week, the serum, urine and renal tissue were collected for glucose tolerance test (OGTT), redox indicator (SOD, CAT, GSH and MDA), lipid metabolism (TC, TG, LDL and HDL), blood urea nitrogen (BUN), serum creatinine (Scr), uric acid (UA), 8-oxo-deoxyguanosine (8-OHdG), and the changes of histopathology and expression of collagen IV and AGEs. RESULTS: The results in vitro showed that FYGL significantly inhibited the HG/PA-induced HBZY-1 cells proliferation, ROS generation, MDA production, promoted SOD activity, and suppressed NOX1, NOX4, MAPK, NF-κB, and pro-fibrotic proteins expression. In addition, FYGL markedly alleviated blood glucose, antioxidant activity and lipid metabolism, improved renal functions, and relieved renal histopathological abnormalities, especially renal fibrosis. CONCLUSIONS: The antioxidant activity of FYGL can reduce ROS caused by diabetes and protect renal from oxidative stress-induced dysfunction, thereby improving renal function. This study shows that FYGL has the potential to treat diabetic kidney disease.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Reishi , Ratones , Ratas , Animales , Nefropatías Diabéticas/patología , Reishi/metabolismo , Glucemia/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Proteoglicanos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo , Riñón , Fibrosis , Superóxido Dismutasa/metabolismo , Diabetes Mellitus/metabolismo
9.
Front Endocrinol (Lausanne) ; 14: 1142805, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36942026

RESUMEN

Diabetic kidney disease (DKD) is the main cause of end-stage renal disease worldwide, and there is a lack of effective treatment strategies. Autophagy is a highly conserved lysosomal degradation process that maintains homeostasis and energy balance by removing protein aggregates and damaged organelles. Increasing evidence suggests that dysregulated autophagy may contribute to glomerular and tubulointerstitial lesions in the kidney under diabetic conditions. Emerging studies have shown that Chinese herbal medicine and its active compounds may ameliorate diabetic kidney injury by regulating autophagy. In this review, we summarize that dysregulation or insufficiency of autophagy in renal cells, including podocytes, glomerular mesangial cells, and proximal tubular epithelial cells, is a key mechanism for the development of DKD, and focus on the protective effects of Chinese herbal medicine and its active compounds. Moreover, we systematically reviewed the mechanism of autophagy in DKD regulated by Chinese herb compound preparations, single herb and active compounds, so as to provide new drug candidates for clinical treatment of DKD. Finally, we also reviewed the candidate targets of Chinese herbal medicine regulating autophagy for DKD. Therefore, further research on Chinese herbal medicine with autophagy regulation and their targets is of great significance for the realization of new targeted therapies for DKD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Medicamentos Herbarios Chinos , Podocitos , Humanos , Nefropatías Diabéticas/patología , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Riñón/metabolismo , Podocitos/metabolismo , Autofagia , Diabetes Mellitus/metabolismo
10.
Altern Ther Health Med ; 29(4): 52-56, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36947659

RESUMEN

Context: Diabetic nephropathy (DN) is a common microvascular complication in diabetic patients. The pathogenesis of DN is complex. Inflammatory response may play a key role as a common downstream pathway. Objective: The study intended to explore the relationship between the levels of plasma nucleotide-binding oligomeric domain-like receptor protein 3 (NLRP3 inflammasome), interleukin-1ß (IL-1ß), and IL-18 and the progression of type 2 diabetic nephropathy to clarify their relationship with type 2 diabetes mellitus (T2DM) and to provide evidence for clinical treatment. Design: The research team performed a controlled observational study. Setting: The study took place at Baoding No. 1 Central Hospital in Baoding, Hebei, China. Participants: Participants were 153 patients with T2DM who received treatment at the hospital between October 2020 and October 2021. The research team allocated 30 participants without evidence of DN to the control group. Based on the DN stage, the team assigned the 123 remaining participants to one of five observation groups: (1) 32 participants with stage 1 DN to the DN1 group, (2) 31 participants with stage 2 DN to the DN2 group, (3) 30 participants with stage 3 DN to the DN3 group, (4) 30 participants with stage 4 DN to the DN4 group, and (5) 29 participants with stage 5 DN to the DN5 group. Outcome Measures: The research team measured participants' levels of "nucleotide binding oligomeric domain-like receptor protein 3" (NLRP3), interleukin-1 beta (IL-1ß), and IL-18 and used the Spearman rank correlation analysis to determine the correlation between those levels and the DN stages. Results: The levels of NLRP3 , IL-1ß and IL-18 in all the five observation groups were significantly higher than those in the control group (all P < .01). The levels were also significantly higher: (1) in the DN2, DN3, DN4, and DN5 groups than those in the DN1 group (all P < .01); (2) in the DN3, DN4, and DN5 groups than those in the DN2 group (all P < .01); (3) in the DN4 and DN5 groups than those in the DN3 group (all P < .01); and (4) in the DN5 groups than those in the DN4 group (all P < .01). The Spearman rank correlation analysis showed that the NLRP3, IL-1ß, and IL-18 levels were significantly positively correlated with the DN stage (P = .01). Conclusions: NLRP3, IL-1ß and IL-18 played an important role in the progression of T2DM, and their levels increased with the aggravation of DN. Therefore, the plasma levels of NLRP3, IL-1ß and IL-18 can be useful as indicators of the occurrence and development of DN and can provide clinical guidance for the early diagnosis of DN and for the determination and adjustment of treatment plans.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Interleucina-18/uso terapéutico , Interleucina-1beta/metabolismo , Interleucina-1beta/uso terapéutico , Proteína con Dominio Pirina 3 de la Familia NLR/análisis , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
11.
J Ethnopharmacol ; 303: 116031, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36503032

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Shen-Qi-Jiang-Tang granule (SQJTG), a classic traditional Chinese medicine (TCM) prescription, has been widely used in clinical for diabetes, especially type Ⅱ diabetes. Previous anti-diabetic studies stumbled across that SQJTG has a potential kidney protective effect on diabetic nephropathy (DN). However, the protective mechanism of SQJTG on DN still needs to be explored. AIM OF THE STUDY: The purpose of the present study was to explore the therapeutic effect of SQJTG on DN through both bioinformatics analysis and in vivo experiments. METHODS AND MATERIALS: The TCMIP database was used for screening potential compounds and targets of SQJTG, and the GeneCards, OMIM, DrugBank, and TTD databases were used for collecting DN-related genes. Then protein-protein interaction analysis for the common targets of SQJTG and DN was performed by the STRING database. Meanwhile, KEGG and GO were carried out using the Metascape and DAVID databases. In vivo experiments, to testify the potential kidney protective effects of SQJTG, STZ-induced DN mice with different dosages of SQJTG treatment were collected and the renal tissues were detected by H&E, PAS, Masson and TUNEL staining. Immunohistochemistry and immunoblotting were used to assess the proteins' expressions. Flow cytometry and ELISA assay were used to detect the levels of pro-inflammatory cytokines. RESULTS: Among the 338 compounds ascertained by SQJTG, there were 789 related targets as well. Moreover, 1,221 DN-related targets were predicted and 20 core targets were screened by the PPI analyses. According to GO and KEGG pathway analysis, SQJTG may affect DN via the TNF pathway. For the in vivo experiments, renal histomorphological examinations demonstrated that SQJTG treatment significantly ameliorated STZ-induced kidney damage and had a dosage dependence. Meanwhile, mice with DN were found to have dramatic increases in IL-1, TNF-α, IL-6, and IL-12, but markedly decreased after administration of SQJTG. In addition, the protein levels of TNF signaling molecules, like p-P65, p-JNK, and p-p38, showed significantly elevated in kidney tissues of DN mice and attenuated after SQJTG treatment. CONCLUSIONS: SQJTG exerts a kidney protective effect in DN mice via modulating TNF signaling pathways, and it has promising applications for the treatment of DN.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Ratones , Animales , Nefropatías Diabéticas/patología , Diabetes Mellitus Experimental/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
12.
J Ethnopharmacol ; 302(Pt A): 115923, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36375645

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ginsenoside Rg1 (Rg1) is one of the main active components in Panax ginseng C. A. Meyer (ginseng), which has been widely used to delay senescence or improve health conditions for more than 2000 years. Increasing studies have revealed that Rg1 could regulate cell proliferation and differentiation, as well as anti-inflammatory and anti-apoptotic effects, and might have protective effects on many chronic kidney diseases. AIM OF THE STUDY: Diabetic nephropathy (DN) is one of the most dangerous microvascular complications of diabetes and is the leading cause of end-stage renal disease worldwide. However, the role and mechanism of Rg1 against high-glucose and high-fat-induced glomerular fibrosis in DN are not clear. This study aimed to investigate the protective effect of Rg1 on DN and its possible mechanism. MATERIALS AND METHODS: The type 2 diabetes mellitus (T2DM) mice models were established with a high-fat diet (HFD) combined with an intraperitoneal injection of streptozotocin (STZ). Urine protein and serum biochemical indexes were detected by corresponding kits. The kidney was stained with H&E, PAS, and Masson to observe the pathological morphology, glycogen deposition, and fibrosis. The expression of CD36 and p-PLC in the kidney cortex was detected by IHC. The expressions of FN and COL4 were detected by IF. Western blot and PCR were performed to examine protein and mRNA expressions of kidney fibrosis and TRPC6/NFAT2-related pathways in DN mice. Calcium imaging was used to examine the effect of Rg1 on [Ca2+]i in PA + HG-induced human mesangial cells (HMCs). Visualization of the interaction between Rg1 and CD36 was detected by molecular docking. RESULTS: Rg1 treatment for 8 weeks could prominently decrease urinary protein, serum creatinine, and urea nitrogen and downgrade blood lipid levels and renal lipid accumulation in T2DM mice. The pathological results indicated that Rg1 treatment attenuated renal pathological injury and glomerular fibrosis. The further results demonstrated that Rg1 treatment remarkably decreased the expressions of CD36, TRPC6, p-PLC, CN, NFAT2, TGF-ß, p-Smad2/3, COL4, and FN in renal tissues from T2DM mice. Calcium imaging results found that Rg1 downgraded the base levels of [Ca2+]i and ΔRatioF340/F380 after BAPTA and CaCl2 treatment. Molecular docking results showed that Rg1 could interact with CD36 with a good affinity. CONCLUSION: These results revealed that Rg1 could ameliorate renal lipid accumulation, pathological damage, and glomerular fibrosis in T2DM mice. The mechanism may be involved in reducing the overexpression of CD36 and inhibiting the TRPC6/NFAT2 signaling pathway in renal tissues of T2DM mice.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Animales , Humanos , Ratones , Calcio/metabolismo , Antígenos CD36/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Nefropatías Diabéticas/patología , Fibrosis , Riñón , Simulación del Acoplamiento Molecular , Transducción de Señal , Canal Catiónico TRPC6/metabolismo
13.
Sci Rep ; 12(1): 21707, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36522378

RESUMEN

Diabetic nephropathy is characterized by excessive accumulation of extracellular matrix (ECM) leading to renal fibrosis, progressive deterioration of renal function, and eventually to end stage renal disease. Matrix metalloproteinases (MMPs) are known to regulate synthesis and degradation of the ECM. Earlier, we demonstrated that imbalanced MMPs promote adverse ECM remodeling leading to renal fibrosis in type-1 diabetes. Moreover, elevated macrophage infiltration, pro-inflammatory cytokines and epithelial‒mesenchymal transition (EMT) are known to contribute to the renal fibrosis. Various bioactive compounds derived from the medicinal plant, Azadirachta indica (neem) are shown to regulate inflammation and ECM proteins in different diseases. Nimbidiol is a neem-derived diterpenoid that is considered as a potential anti-diabetic compound due to its glucosidase inhibitory properties. We investigated whether Nimbidiol mitigates adverse ECM accumulation and renal fibrosis to improve kidney function in type-1 diabetes and the underlying mechanism. Wild-type (C57BL/6J) and type-1 diabetic (C57BL/6-Ins2Akita/J) mice were treated either with saline or with Nimbidiol (0.40 mg kg-1 d-1) for eight weeks. Diabetic kidney showed increased accumulation of M1 macrophages, elevated pro-inflammatory cytokines and EMT. In addition, upregulated MMP-9 and MMP-13, excessive collagen deposition in the glomerular and tubulointerstitial regions, and degradation of vascular elastin resulted to renal fibrosis in the Akita mice. These pathological changes in the diabetic mice were associated with functional impairments that include elevated resistive index and reduced blood flow in the renal cortex, and decreased glomerular filtration rate. Furthermore, TGF-ß1, p-Smad2/3, p-P38, p-ERK1/2 and p-JNK were upregulated in diabetic kidney compared to WT mice. Treatment with Nimbidiol reversed the changes to alleviate inflammation, ECM accumulation and fibrosis and thus, improved renal function in Akita mice. Together, our results suggest that Nimbidiol attenuates inflammation and ECM accumulation and thereby, protects kidney from fibrosis and dysfunction possibly by inhibiting TGF-ß/Smad and MAPK signaling pathways in type-1 diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Nefropatías Diabéticas , Diterpenos , Ratones , Animales , Nefropatías Diabéticas/patología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Ratones Endogámicos C57BL , Fibrosis , Factor de Crecimiento Transformador beta1/metabolismo , Riñón/metabolismo , Diterpenos/metabolismo , Inflamación/patología , Glucosidasas
14.
Biomed Pharmacother ; 153: 113386, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35834985

RESUMEN

INTRODUCTION: We previously reported that alpha-lipoic acid (ALA) supplementation protects against progression of diabetic kidney disease (DKD). In this study, we aim to investigate whether the mechanism of renal protection by ALA involves renal cystathionine γ-lyase/hydrogen sulfide (CSE/H2S) system in type 2 diabetes mellitus (T2DM). METHODS: Thirty-seven male Sprague-Dawley rats underwent 12 h of overnight fasting. To induce T2DM, 30 of these rats received intraperitoneal administration of nicotinamide (110 mg/kg) and streptozotocin (55 mg/kg). T2DM rats then received either oral administration of ALA (60 mg/kg/day) or intraperitoneal administration of 40 mg/kg/day DL-propargylglycine (PAG, a CSE inhibitor) or both for 6 weeks after which rats were sacrificed and samples collected for analysis. Untreated diabetic and non-diabetic rats served as diabetic and healthy controls respectively. RESULTS: T2DM was characterized by reduced pancreatic ß-cell function and hyperglycemia. Histologically, untreated diabetic rats showed significantly damaged pancreatic islets, glomerular and tubular injury, with elevated levels of renal function markers compared to healthy control rats (p < 0.001). These pathological changes worsened significantly following PAG administration (p < 0.05). While some renal protection was observed in ALA+PAG rats, ALA administration in untreated diabetic rats provided superior protection comparable to healthy control rats, with improved antioxidant status, lipid profile and reduced inflammation. Mechanistically, ALA significantly activated renal CSE/H2S system in diabetic rats, which was markedly suppressed in PAG-treated rats (p < 0.001). CONCLUSION: Our data suggest that ALA protects against DKD development and progression by activating renal CSE/H2S pathway. Hence, CSE/H2S pathway may represent a therapeutic target in the treatment or prevention of DKD in diabetic patients.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Sulfuro de Hidrógeno , Ácido Tióctico , Animales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/patología , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/prevención & control , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Riñón/patología , Masculino , Ratas , Ratas Sprague-Dawley , Ácido Tióctico/farmacología , Ácido Tióctico/uso terapéutico
15.
J Adv Res ; 38: 119-129, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35572411

RESUMEN

Introduction: Although the synthetic vitamin D analogue, Paricalcitol, and omega-3 Fatty acids (ω-3) alleviated diabetic nephropathy (DN), their combination was not previously explored. Objectives: This study measured the potential ameliorative effects of single and dual therapies of Paricalcitol and/or ω-3 against DN. Methods: Forty rats were assigned as follow: negative (NC) and positive (PC) controls, Paricalcitol, ω-3 and Paricalcitol + ω-3 groups. Diabetes was generated by high-fat/high-fructose diet and a single streptozotocin injection (40 mg/kg). DN was confirmed by raised fasting blood glucose (FBG), polyuria, proteinuria, and decreased urine creatinine levels. Paricalcitol intraperitoneal injections (0.25 µg/Kg/day; 5 times/week) and oral ω-3 (415 mg/kg/day; 5 times/week) started at week-9 and for eight weeks. Results: The PC group showed hyperglycaemia, dyslipidaemia, abnormal renal biochemical parameters, elevated caspase-3 expression, and increased apoptosis by TUNEL technique. The mRNAs and proteins of the pathogenic molecules (TGF-ß1/iNOS) and markers of tissue damage (NGAL/KIM-1) augmented substantially in the PC renal tissues relative to the NC group. The oxidative stress (MDA/H2O2/protein carbonyl groups) and pro-inflammatory (IL1ß/IL6/TNF-α) markers increased, whereas the anti-inflammatory (IL10) and anti-oxidative (GSH/GPx1/GR/SOD1/CAT) declined, in the PC renal tissues. The monotherapy groups were associated with ameliorated FBG, lipid profile and renal functions, and diminished TGF-ß1/iNOS/NGAL/KIM-1/Caspase-3 alongside the apoptotic index than the PC group. The oxidative stress and pro-inflammatory markers decreased, whilst the anti-oxidative and anti-inflammatory molecules escalated, in the monotherapy groups than the PC group. Although the Paricalcitol renoprotective actions were better than ω-3, all the biomarkers were abnormal than the NC group. Alternatively, the Paricalcitol + ω-3 protocol exhibited the best improvements in metabolic control, renal functions, oxidative stress, inflammation, and apoptosis. However, FBG and tissue damage were persistently higher in the co-therapy group than controls. Conclusions: Both monotherapies showed modest efficacy against DN, whereas their combination displayed boosted renoprotection, possibly by enhancing renal anti-oxidant and anti-inflammatory pathways.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Ácidos Grasos Omega-3 , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Caspasa 3/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Ergocalciferoles , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/uso terapéutico , Femenino , Humanos , Peróxido de Hidrógeno/metabolismo , Lipocalina 2/uso terapéutico , Masculino , Ratas , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/uso terapéutico
16.
Mol Med ; 28(1): 58, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35596156

RESUMEN

BACKGROUND: Glabridin (Glab) is a bioactive component of licorice that can ameliorate diabetes, but its role in diabetic nephropathy (DN) has seldom been reported. Herein, we explored the effect and underlying mechanism of Glab on DN. METHODS: The bioactive component-target network of licorice against DN was by a network pharmacology approach. The protective effect of Glab on the kidney was investigated by a high-fat diet with streptozotocin induced-diabetic rat model. High glucose-induced NRK-52E cells were used for in vitro studies. The effects of Glab on ferroptosis and VEGF/Akt/ERK pathways in DN were investigated in vivo and in vitro using qRT-PCR, WB, and IHC experiments. RESULTS: Bioinformatics analysis constructed a network comprising of 10 bioactive components of licorice and 40 targets for DN. 13 matching targets of Glab were mainly involved in the VEGF signaling pathway. Glab treatment ameliorated general states and reduced FBG, HOMA-ß, and HOMA-insulin index of diabetic rats. The renal pathological changes and the impaired renal function (the increased levels of Scr, BUN, UREA, KIM-1, NGAL, and TIMP-1) were also improved by Glab. Moreover, Glab repressed ferroptosis by increasing SOD and GSH activity, and GPX4, SLC7A11, and SLC3A2 expression, and decreasing MDA and iron concentrations, and TFR1 expression, in vivo and in vitro. Mechanically, Glab significantly suppressed VEGF, p-AKT, p-ERK1/2 expression in both diabetic rats and HG-induced NRK-52E cells. CONCLUSIONS: This study revealed protective effects of Glab on the kidney of diabetic rats, which might exert by suppressing ferroptosis and the VEGF/Akt/ERK pathway.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Ferroptosis , Glycyrrhiza , Isoflavonas , Fenoles , Animales , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/patología , Ferroptosis/efectos de los fármacos , Glycyrrhiza/metabolismo , Isoflavonas/farmacología , Riñón/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Fenoles/farmacología , Extractos Vegetales/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Factor A de Crecimiento Endotelial Vascular/metabolismo
17.
J Ethnopharmacol ; 293: 115246, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35398500

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine (TCM) has been applied to diabetic kidney disease (DKD). A large number of animal trials each year focus on TCM for DKD, but the evidence for these preclinical studies is not clear. AIM OF THE STUDY: The aim of this study was to study the therapeutic effect of Jiedu Tongluo Baoshen formula (JTBF) on DKD proteinuria and renal protection. At the same time, it is verified that JTBF can reduce podocyte injury by enhancing autophagy function, and then achieve the effect of proteinuria. MATERIALS AND METHODS: We use high performance liquid chromatography to detect and analyze the fingerprint of JTBF to find the chemical composition. Subsequently, we constructed a DKD rat model induced by high-fat diet and streptozocin (HFD + STZ). Urine and blood biochemical automatic analyzer were used to detect 24-h urine protein quantification (24 h-UP) and renal function. The renal pathological changes were observed by H&E and transmission electron microscopy (TEM), and the levels of autophagy-related proteins and mRNA in podocytes were detected by immunohistochemistry, RT-qPCR and Western Blot. The chemical composition of JTBF was screened from traditional Chinese medicine systems pharmacol (TCMSP) and PubChem databases, and the potential targets and associated pathways of JTBF were predicted using kyoto encyclopedia of genes and genomes (KEGG) and protein-protein interaction (PPI) network analysis in network pharmacology, and confirmed in animal experiments and histopathological methods. RESULTS: We discovered 77 active ingredients of JTBF. Through animal experiments, it was found that JTBF reduced 24 h-UP and promoted the expression of podocin, nephrin, and WT-1 in podocytes, thereby reducing podocyte damage. At the same time, JTBF activates the expression of podocyte autophagy-related proteins (beclin-1, LC3 and P62). Subsequently, through network pharmacology predictions, 208 compounds were obtained from JTBF, and phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) was a potential signal pathway. JTBF was obtained in DKD rat kidney tissue to inhibit the expression of PI3K, Akt and mTOR related proteins. CONCLUSIONS: JTBF enhance podocyte autophagy to reduce podocyte damage, thereby effectively treating DKD proteinuria and protecting kidney function.


Asunto(s)
Autofagia , Nefropatías Diabéticas , Medicamentos Herbarios Chinos , Podocitos , Proteinuria , Animales , Proteínas Relacionadas con la Autofagia/metabolismo , Diabetes Mellitus/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/patología , Medicamentos Herbarios Chinos/farmacología , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Podocitos/efectos de los fármacos , Proteinuria/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
18.
Phytother Res ; 36(3): 1338-1352, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35088468

RESUMEN

Diabetes is the most prevalent disorder in the world characterized by uncontrolled high blood glucose levels and nephropathy is one of the chief complications allied with hyperglycemia. Vanillic acid; the main bioactive compound derived from natural sources such as vegetables, fruits and plants possesses various pharmacological activities such as antioxidant, anti-inflammatory and anti-proliferative. The current study was designed to investigate the antidiabetic and renoprotective effects of vanillic acid by its various pharmacological activities. Streptozotocin (50 mg/kg)/nicotinamide (110 mg/kg) was used to induce diabetes in rats. Oral administration of vanillic acid once daily for 6 weeks (25, 50 and 100 mg/kg) significantly reduced the hyperglycemia, increased liver enzymes and normalized lipid profile that was altered in diabetic rats. Moreover, vanillic acid attenuated the impaired renal function as evidenced by a reduction in serum creatinine, urea, uric acid and urinary microproteinuria levels with a concomitant increase in urinary creatinine clearance in the nephropathic rats. Diabetic rats showed a marked increase in thiobarbituric acid reactive substances (TBARS) and superoxide anion generation (SAG) along with decreased reduced glutathione (GSH) in the renal tissue which was ameliorated in the vanillic acid-treated rats. Histopathologically, vanillic acid treatment was associated with reduced damage with normalized structural changes in renal tissue. Furthermore, treatment groups showed the suppression of upregulation of nuclear factor (NF)-κB, tumor necrosis factor (TNF)-α, cyclo-oxygenase (COX)-2 and up-regulation of Nuclear factor-erythroid 2-related factor 2 (Nrf-2) in the renal tissue. In conclusion, vanillic acid's ameliorative impact on diabetic nephropathic rats may be attributed to its powerful free radical scavenging property, down-regulation of NF-κB, TNF-α, COX-2 and up-regulation of Nrf-2 proteins in renal tissue.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Animales , Ciclooxigenasa 2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/patología , Riñón , FN-kappa B/metabolismo , Estrés Oxidativo , Ratas , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba , Ácido Vanílico/metabolismo , Ácido Vanílico/farmacología , Ácido Vanílico/uso terapéutico
19.
J Clin Endocrinol Metab ; 107(1): e1-e24, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34460928

RESUMEN

CONTEXT: The increasing burden of diabetic kidney disease (DKD) has led to the discovery of novel therapies. OBJECTIVE: This review aims to summarize the results of recent clinical trials that test the efficacy of potential therapies for DKD. METHODS: A systematized narrative review was performed utilizing the PubMed, Embase (Ovid), CINAHL, and Cochrane databases (January 2010 to January 2021). The included trials assessed the efficacy of specific medications using renal endpoints in adult participants with type 1 or 2 diabetes. RESULTS: Fifty-three trials were identified. Large, multinational, and high-powered trials investigating sodium-glucose cotransporter 2 (SGLT2) inhibitors demonstrated improved renal outcomes, even in patients with established DKD. Trials examining incretin-related therapies also showed some improvement in renal outcomes. Additionally, mineralocorticoid receptor antagonists exhibited potential with multiple improved renal outcomes in large trials, including those involving participants with established DKD. Atrasentan, baricitinib, ASP8232, PF-04634817, CCX140-B, atorvastatin, fenofibrate, probucol, doxycycline, vitamin D, omega-3 fatty acids, silymarin, turmeric, total glucosides of paeony, and tripterygium wilfordii Hook F extract were all associated with some improved renal endpoints but need further exploration. While bardoxolone methyl was associated with a decrease in albuminuria, high rates of cardiovascular adverse effects curtailed further exploration into this agent. Selonsertib, allopurinol, praliciguat, palosuran, benfotiamine, and diacerein were not associated with improved renal outcomes. CONCLUSION: Trials have yielded promising results in the search for new therapies to manage DKD. SGLT2 inhibitors and incretin-related therapies have demonstrated benefit and were associated with improved cardiovascular outcomes. Mineralocorticoid receptor antagonists are another class of agents with increasing evidence of benefits.


Asunto(s)
Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/tratamiento farmacológico , Incretinas/uso terapéutico , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Animales , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/patología , Humanos , Pronóstico
20.
Acta Pharmacol Sin ; 43(1): 96-110, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34253875

RESUMEN

Diabetic kidney disease (DKD) is one of the microvascular complications of diabetes mellitus and a major cause of end-stage renal disease with limited treatment options. Wogonin is a flavonoid derived from the root of Scutellaria baicalensis Georgi, which has shown a potent renoprotective effect. But the mechanisms of action in DKD are not fully elucidated. In this study, we investigated the effects of wogonin on glomerular podocytes in DKD using mouse podocyte clone 5 (MPC5) cells and diabetic mice model. MPC5 cells were treated with high glucose (30 mM). We showed that wogonin (4, 8, 16 µM) dose-dependently alleviated high glucose (HG)-induced MPC5 cell damage, accompanied by increased expression of WT-1, nephrin, and podocin proteins, and decreased expression of TNF-α, MCP-1, IL-1ß as well as phosphorylated p65. Furthermore, wogonin treatment significantly inhibited HG-induced apoptosis in MPC5 cells. Wogonin reversed HG-suppressed autophagy in MPC5 cells, evidenced by increased ATG7, LC3-II, and Beclin-1 protein, and decreased p62 protein. We demonstrated that wogonin directly bound to Bcl-2 in MPC5 cells. In HG-treated MPC5 cells, knockdown of Bcl-2 abolished the beneficial effects of wogonin, whereas overexpression of Bcl-2 mimicked the protective effects of wogonin. Interestingly, we found that the expression of Bcl-2 was significantly decreased in biopsy renal tissue of diabetic nephropathy patients. In vivo experiments were conducted in STZ-induced diabetic mice, which were administered wogonin (10, 20, 40 mg · kg-1 · d-1, i.g.) every other day for 12 weeks. We showed that wogonin administration significantly alleviated albuminuria, histopathological lesions, and p65 NF-κB-mediated renal inflammatory response. Wogonin administration dose-dependently inhibited podocyte apoptosis and promoted podocyte autophagy in STZ-induced diabetic mice. This study for the first time demonstrates a novel action of wogonin in mitigating glomerulopathy and podocytes injury by regulating Bcl-2-mediated crosstalk between autophagy and apoptosis. Wogonin may be a potential therapeutic drug against DKD.


Asunto(s)
Nefropatías Diabéticas/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Flavanonas/farmacología , Glomérulos Renales/efectos de los fármacos , Podocitos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/administración & dosificación , Flavanonas/administración & dosificación , Inyecciones Intraperitoneales , Glomérulos Renales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Podocitos/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA