Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.798
Filtrar
Más filtros

Intervalo de año de publicación
1.
BMC Cancer ; 24(1): 527, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664630

RESUMEN

BACKGROUND: Tumor Treating Fields (TTFields) Therapy is an FDA-approved therapy in the first line and recurrent setting for glioblastoma. Despite Phase 3 evidence showing improved survival with TTFields, it is not uniformly utilized. We aimed to examine patient and clinician views of TTFields and factors shaping utilization of TTFields through a unique research partnership with medical neuro oncology and medical social sciences. METHODS: Adult glioblastoma patients who were offered TTFields at a tertiary care academic hospital were invited to participate in a semi-structured interview about their decision to use or not use TTFields. Clinicians who prescribe TTFields were invited to participate in a semi-structured interview about TTFields. RESULTS: Interviews were completed with 40 patients with a mean age of 53 years; 92.5% were white and 60% were male. Participants who decided against TTFields stated that head shaving, appearing sick, and inconvenience of wearing/carrying the device most influenced their decision. The most influential factors for use of TTFields were the efficacy of the device and their clinician's opinion. Clinicians (N = 9) stated that TTFields was a good option for glioblastoma patients, but some noted that their patients should consider the burdens and benefits of TTFields as it may not be the desired choice for all patients. CONCLUSIONS: This is the first study to examine patient decision making for TTFields. Findings suggest that clinician support and efficacy data are among the key decision-making factors. Properly understanding the path to patients' decision making is crucial in optimizing the use of TTFields and other therapeutic decisions for glioblastoma patients.


Asunto(s)
Neoplasias Encefálicas , Toma de Decisiones , Glioblastoma , Humanos , Masculino , Persona de Mediana Edad , Neoplasias Encefálicas/terapia , Femenino , Glioblastoma/terapia , Adulto , Anciano , Terapia por Estimulación Eléctrica/métodos , Investigación Cualitativa , Médicos/psicología , Toma de Decisiones Clínicas
2.
CNS Neurosci Ther ; 30(3): e14563, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38481068

RESUMEN

BACKGROUND: Glioblastoma is the most common primary malignant brain tumor in adults. TTFields is a therapy that use intermediate-frequency and low-intensity alternating electric fields to treat tumors. For patients with ndGBM, the addition of TTFields after the concurrent chemoradiotherapy phase of the Stupp regimen can improve prognosis. However, TTFields still has the potential to further prolong the survival of ndGBM patients. AIM: By summarizing the mechanism and application status of TTFields in the treatment of ndGBM, the application prospect of TTFields in ndbm treatment is prospected. METHODS: We review the recent literature and included 76 articles to summarize the mechanism of TTfields in the treatment of ndGBM. The current clinical application status and potential health benefits of TTFields in the treatment of ndGBM are also discussed. RESULTS: TTFields can interfere with tumor cell mitosis, lead to tumor cell apoptosis and increased autophagy, hinder DNA damage repair, induce ICD, activate tumor immune microenvironment, reduce cancer cell metastasis and invasion, and increase BBB permeability. TTFields combines with chemoradiotherapy has made progress, its optimal application time is being explored and the problems that need to be considered when retaining the electrode patches for radiotherapy are further discussed. TTFields shows potential in combination with immunotherapy, antimitotic agents, and PARP inhibitors, as well as in patients with subtentorial gliomas. CONCLUSION: This review summarizes mechanisms of TTFields in the treatment of ndGBM, and describes the current clinical application of TTFields in ndGBM. Through the understanding of its principle and application status, we believe that TTFields still has the potential to further prolong the survival of ndGBM patients. Thus,research is still needed to explore new ways to combine TTFields with other therapies and optimize the use of TTFields to realize its full potential in ndGBM patients.


Asunto(s)
Neoplasias Encefálicas , Terapia por Estimulación Eléctrica , Glioblastoma , Glioma , Adulto , Humanos , Glioblastoma/patología , Terapia Combinada , Glioma/terapia , Terapia por Estimulación Eléctrica/métodos , Pronóstico , Neoplasias Encefálicas/patología , Microambiente Tumoral
3.
Phytomedicine ; 128: 155417, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38518642

RESUMEN

BACKGROUND: The role of the glioblastoma (GBM) microenvironment is pivotal in the development of gliomas. Discovering drugs that can traverse the blood-brain barrier and modulate the tumor microenvironment is crucial for the treatment of GBM. Dioscin, a steroidal saponin derived from various kinds of plants and herbs known to penetrate the blood-brain barrier, has shown its powerful anti-tumor activity. However, little is known about its effects on GBM microenvironment. METHODS: Bioinformatics analysis was conducted to assess the link between GBM patients and their prognosis. Multiple techniques, including RNA sequencing, immunofluorescence staining, Western blot analysis, RNA-immunoprecipitation (RIP) assays, and Chromatin immunoprecipitation (CHIP) analysis were employed to elucidate the mechanism through which Dioscin modulates the immune microenvironment. RESULTS: Dioscin significantly impaired the polarization of macrophages into the M2 phenotype and enhanced the phagocytic ability of macrophages in vitro and in vivo. A strong correlation between high expression of RBM47 in GBM and a detrimental prognosis for patients was demonstrated. RNA-sequencing analysis revealed an association between RBM47 and the immune response. The inhibition of RBM47 significantly impaired the recruitment and polarization of macrophages into the M2 phenotype and enhanced the phagocytic ability of macrophages. Moreover, RBM47 could stabilize the mRNA of inflammatory genes and enhance the expression of these genes by activating the NF-κB pathway. In addition, NF-κB acts as a transcription factor that enhances the transcriptional activity of RBM47. Notably, we found that Dioscin could significantly inhibit the activation of NF-κB and then downregulate the expression of RBM47 and inflammatory genes protein. CONCLUSION: Our study reveals that the positive feedback loop between RBM47 and NF-κB could promote immunosuppressive microenvironment in GBM. Dioscin effectively inhibits M2 polarization in GBM by disrupting the positive feedback loop between RBM47 and NF-κB, indicating its potential therapeutic effects in GBM treatment.


Asunto(s)
Diosgenina , Diosgenina/análogos & derivados , FN-kappa B , Microambiente Tumoral , Diosgenina/farmacología , Humanos , FN-kappa B/metabolismo , Microambiente Tumoral/efectos de los fármacos , Animales , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Glioma/tratamiento farmacológico , Glioma/metabolismo , Ratones , Línea Celular Tumoral , Proteínas de Unión al ARN/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Retroalimentación Fisiológica/efectos de los fármacos
4.
Radiat Oncol ; 19(1): 33, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459584

RESUMEN

BACKGROUND: Radiotherapy (RT) is an important treatment modality for patients with brain malignancies. Traditionally, computed tomography (CT) images are used for RT treatment planning whereas magnetic resonance imaging (MRI) images are used for tumor delineation. Therefore, MRI and CT need to be registered, which is an error prone process. The purpose of this clinical study is to investigate the clinical feasibility of a deep learning-based MRI-only workflow for brain radiotherapy, that eliminates the registration uncertainty through calculation of a synthetic CT (sCT) from MRI data. METHODS: A total of 54 patients with an indication for radiation treatment of the brain and stereotactic mask immobilization will be recruited. All study patients will receive standard therapy and imaging including both CT and MRI. All patients will receive dedicated RT-MRI scans in treatment position. An sCT will be reconstructed from an acquired MRI DIXON-sequence using a commercially available deep learning solution on which subsequent radiotherapy planning will be performed. Through multiple quality assurance (QA) measures and reviews during the course of the study, the feasibility of an MRI-only workflow and comparative parameters between sCT and standard CT workflow will be investigated holistically. These QA measures include feasibility and quality of image guidance (IGRT) at the linear accelerator using sCT derived digitally reconstructed radiographs in addition to potential dosimetric deviations between the CT and sCT plan. The aim of this clinical study is to establish a brain MRI-only workflow as well as to identify risks and QA mechanisms to ensure a safe integration of deep learning-based sCT into radiotherapy planning and delivery. DISCUSSION: Compared to CT, MRI offers a superior soft tissue contrast without additional radiation dose to the patients. However, up to now, even though the dosimetrical equivalence of CT and sCT has been shown in several retrospective studies, MRI-only workflows have still not been widely adopted. The present study aims to determine feasibility and safety of deep learning-based MRI-only radiotherapy in a holistic manner incorporating the whole radiotherapy workflow. TRIAL REGISTRATION: NCT06106997.


Asunto(s)
Neoplasias Encefálicas , Aprendizaje Profundo , Radioterapia de Intensidad Modulada , Humanos , Estudios de Factibilidad , Estudios Retrospectivos , Radioterapia de Intensidad Modulada/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Dosificación Radioterapéutica , Imagen por Resonancia Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Encéfalo/diagnóstico por imagen
5.
Adv Neurobiol ; 36: 445-468, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38468047

RESUMEN

Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) technique able to depict the magnetic susceptibility produced by different substances, such as deoxyhemoglobin, calcium, and iron. The main application of SWI in clinical neuroimaging is detecting microbleedings and venous vasculature. Quantitative analyses of SWI have been developed over the last few years, aimed to offer new parameters, which could be used as neuroimaging biomarkers. Each technique has shown pros and cons, but no gold standard exists yet. The fractal dimension (FD) has been investigated as a novel potential objective parameter for monitoring intratumoral space-filling properties of SWI patterns. We showed that SWI patterns found in different tumors or different glioma grades can be represented by a gradient in the fractal dimension, thereby enabling each tumor to be assigned a specific SWI fingerprint. Such results were especially relevant in the differentiation of low-grade versus high-grade gliomas, as well as from high-grade gliomas versus lymphomas.Therefore, FD has been suggested as a potential image biomarker to analyze intrinsic neoplastic architecture in order to improve the differential diagnosis within clinical neuroimaging, determine appropriate therapy, and improve outcome in patients.These promising preliminary findings could be extended into the field of neurotraumatology, by means of the application of computational fractal-based analysis for the qualitative and quantitative imaging of microbleedings in traumatic brain injury patients. In consideration of some evidences showing that SWI signals are correlated with trauma clinical severity, FD might offer some objective prognostic biomarkers.In conclusion, fractal-based morphometrics of SWI could be further investigated to be used in a complementary way with other techniques, in order to form a holistic understanding of the temporal evolution of brain tumors and follow-up response to treatment, with several further applications in other fields, such as neurotraumatology and cerebrovascular neurosurgery as well.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Fractales , Neoplasias Encefálicas/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Biomarcadores
6.
Phytomedicine ; 127: 155471, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38452695

RESUMEN

BACKGROUND: Glioblastoma (GBM) is notorious for the aggressive behaviors and easily results in chemo-resistance. Studies have shown that the use of herbal medicines as treatments for GBM as limited by the blood-brain barrier (BBB) and glioma stem cells. PURPOSE: The aim of this study was to investigate the relationship between GBM suppression and α-terpineol, the monoterpenoid alcohol derived from Eucalyptus glubulus and Pinus merkusii. STUDY DESIGN: Using serial in-vitro and in-vivo studies to confirm the mechanism of α-terpineol on down-regulating GBM development. METHODS: The 3-[4,5-dimethylthiazol-2-yl)]-2,5-diphenyltetrazolium bromide (MTT) assay was performed to evaluate IC50 of α-terpineol to inhibit GBM cell survival. In order to evaluate the impact of GBM aggressive behaviors by α-terpineol, the analysis of cell migration, invasion and colony formation were implemented. In addition, the ability of tumor spheres and WB of CD44 and OCT3/4 were evaluated under the impression of α-terpineol decreased GBM stemness. The regulation of neoangiogenesis by α-terpineol via the WB of angiogenic factors and human umbilical vein endothelial cells (HUVEC) tube assay. To survey the decided factors of α-terpineol downregulating GBM chemoresistance depended on the impact of O6-methylguanine-DNA methyltransferase (MGMT) expression and autophagy-related factors activation. Additionally, WB and quantitative real-time polymerase chain reaction (qRT/PCR) of KDEL (Lys-Asp-Glu-Leu) containing 2 (KDELC2), endoplasmic reticulum (ER) stress, phosphoinositide 3-kinase (PI3k), mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK) cascade signaling factors were examined to explore the mechanism of α-terpineol inhibiting GBM viability. Finally, the orthotopic GBM mouse model was applied to prove the efficacy and toxicity of α-terpineol on regulating GBM survival. RESULTS: α-terpineol significantly suppressed GBM growth, migration, invasion, angiogenesis and temozolomide (TMZ) resistance. Furthermore, α-terpineol specifically targeted KDELC2 to downregulate Notch and PI3k/mTOR/MAPK signaling pathway. Finally, we also demonstrated that α-terpineol could penetrate the BBB to inhibit GBM proliferation, which resulted in reduced cytotoxicity to vital organs. CONCLUSION: Compared to published literatures, we firstly proved α-terpineol possessed the capability to inhibit GBM through various mechanisms and potentially decreased the occurrence of chemoresistance, making it a promising alternative therapeutic option for GBM in the future.


Asunto(s)
Neoplasias Encefálicas , Monoterpenos Ciclohexánicos , Glioblastoma , Ratones , Animales , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Fosfatidilinositol 3-Quinasas , Células Endoteliales/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Serina-Treonina Quinasas TOR , Fosfatidilinositol 3-Quinasa , Línea Celular Tumoral , Resistencia a Antineoplásicos , Mamíferos
7.
No Shinkei Geka ; 52(2): 335-346, 2024 Mar.
Artículo en Japonés | MEDLINE | ID: mdl-38514123

RESUMEN

What is the most important factor to achieve successful surgery for deep-seated brain tumors with preservation of brain functions? Definitely, it is to identify the tumor origin site at which a tumor arose and select appropriate surgical approaches that immediately lead directly to the site in the early stage of surgery, minimizing damages of cortices and important white matter bundles, and controlling main arterial supply to the tumor. For this, neurosurgeons must have thorough knowledge of brain anatomy and function, and tailor the best surgical approach for each patient, based on three-dimensional anatomical simulation. For lesions situated in the posterior and lower part of the thalamus and extending to the lateral part, two "cross-court" approaches; the occipital transtentorial/falcine and infratentorial supracerebellar transtentorial approaches, provide a wide corridor to even the lateral aspect of the thalamus and early access to the posterior choroidal arteries, usually main feeders of this territory tumors, without damaging any cerebral cortices and major white matter bundles. Here, we describe the selection of approaches for two representative cases and demonstrate surgical procedures and postoperative courses.


Asunto(s)
Neoplasias Encefálicas , Procedimientos Neuroquirúrgicos , Humanos , Procedimientos Neuroquirúrgicos/métodos , Tálamo/diagnóstico por imagen , Tálamo/cirugía , Tálamo/anatomía & histología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Arteria Cerebral Posterior
8.
Clin Nucl Med ; 49(5): 381-386, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38498623

RESUMEN

PURPOSE: MRI is the main imaging modality for pediatric brain tumors, but amino acid PET can provide additional information. Simultaneous PET-MRI acquisition allows to fully assess the tumor and lower the radiation exposure. Although symptomatic posterior fossa tumors are typically resected, the patient management is evolving and will benefit from an improved preoperative tumor characterization. We aimed to explore, in children with newly diagnosed posterior fossa tumor, the complementarity of the information provided by amino acid PET and MRI parameters and the correlation to histopathological results. PATIENTS AND METHODS: Children with a newly diagnosed posterior fossa tumor prospectively underwent a preoperative 11 C-methionine (MET) PET-MRI. Images were assessed visually and semiquantitatively. Using correlation, minimum apparent diffusion coefficient (ADC min ) and contrast enhancement were compared with MET SUV max . The diameter of the enhancing lesions was compared with metabolic tumoral volume. Lesions were classified according to the 2021 World Health Organization (WHO) classification. RESULTS: Ten children were included 4 pilocytic astrocytomas, 2 medulloblastomas, 1 ganglioglioma, 1 central nervous system embryonal tumor, and 1 schwannoma. All lesions showed visually increased MET uptake. A negative moderate correlation was found between ADC min and SUV max values ( r = -0.39). Mean SUV max was 3.8 (range, 3.3-4.2) in WHO grade 4 versus 2.5 (range, 1.7-3.0) in WHO grade 1 lesions. A positive moderate correlation was found between metabolic tumoral volume and diameter values ( r = 0.34). There was no correlation between SUV max and contrast enhancement intensity ( r = -0.15). CONCLUSIONS: Preoperative 11 C-MET PET and MRI could provide complementary information to characterize pediatric infratentorial tumors.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Neoplasias Infratentoriales , Meduloblastoma , Niño , Humanos , Metionina , Fluorodesoxiglucosa F18 , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Racemetionina , Neoplasias Encefálicas/diagnóstico por imagen , Aminoácidos
9.
Phytomedicine ; 128: 155328, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38522316

RESUMEN

BACKGROUND: Glioblastoma (GBM) represents as the most formidable intracranial malignancy. The systematic exploration of natural compounds for their potential applications in GBM therapy has emerged as a pivotal and fruitful avenue of research. PURPOSE: In the present study, a panel of 96 diterpenoids was systematically evaluated as a repository of potential antitumour agents. The primary objective was to discern their potency in overcoming resistance to temozolomide (TMZ). Through an extensive screening process, honatisine, a heptacyclic diterpenoid alkaloid, emerged as the most robust candidate. Notably, honatisine exhibited remarkable efficacy in patient-derived primary and recurrent GBM strains. Subsequently, we subjected this compound to comprehensive scrutiny, encompassing GBM cultured spheres, GBM organoids (GBOs), TMZ-resistant GBM cell lines, and orthotopic xenograft mouse models of GBM cells. RESULTS: Our investigative efforts delved into the mechanistic underpinnings of honatisine's impact. It was discerned that honatisine prompted mitonuclear protein imbalance and elicited the mitochondrial unfolded protein response (UPRmt). This effect was mediated through the selective depletion of mitochondrial DNA (mtDNA)-encoded subunits, with a particular emphasis on the diminution of mitochondrial transcription factor A (TFAM). The ultimate outcome was the instigation of deleterious mitochondrial dysfunction, culminating in apoptosis. Molecular docking and surface plasmon resonance (SPR) experiments validated honatisine's binding affinity to TFAM within its HMG-box B domain. This binding may promote phosphorylation of TFAM and obstruct the interaction of TFAM bound to heavy strand promoter 1 (HSP1), thereby enhancing Lon-mediated TFAM degradation. Finally, in vivo experiments confirmed honatisine's antiglioma properties. Our comprehensive toxicological assessments underscored its mild toxicity profile, emphasizing the necessity for a thorough evaluation of honatisine as a novel antiglioma agent. CONCLUSION: In summary, our data provide new insights into the therapeutic mechanisms underlying honatisine's selective inducetion of apoptosis and its ability to overcome chemotherapy resistance in GBM. These actions are mediated through the disruption of mitochondrial proteostasis and function, achieved by the inhibition of TFAM-mediated mtDNA transcription. This study highlights honatisine's potential as a promising agent for glioblastoma therapy, underscoring the need for further exploration and investigation.


Asunto(s)
ADN Mitocondrial , Diterpenos , Resistencia a Antineoplásicos , Glioblastoma , Temozolomida , Factores de Transcripción , Glioblastoma/tratamiento farmacológico , Humanos , Animales , Resistencia a Antineoplásicos/efectos de los fármacos , Temozolomida/farmacología , Línea Celular Tumoral , Diterpenos/farmacología , Factores de Transcripción/metabolismo , Ratones , ADN Mitocondrial/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Proteínas Mitocondriales/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias Encefálicas/tratamiento farmacológico , Transcripción Genética/efectos de los fármacos , Ratones Desnudos
10.
Br J Cancer ; 130(8): 1365-1376, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38396172

RESUMEN

BACKGROUND: Glioblastoma represents a brain tumor with a notoriously poor prognosis. First-line therapy may include adjunctive Tumor Treating Fields (TTFields) which are electric fields that are continuously delivered to the brain through non-invasive arrays. On a different note, CUSP9v3 represents a drug repurposing strategy that includes 9 repurposed drugs plus metronomic temozolomide. Here, we examined whether TTFields enhance the antineoplastic activity of CUSP9v3 against this disease. METHODS: We performed preclinical testing of a multimodal approach of TTFields and CUSP9v3 in different glioblastoma models. RESULTS: TTFields had predominantly synergistic inhibitory effects on the cell viability of glioblastoma cells and non-directed movement was significantly impaired when combined with CUSP9v3. TTFields plus CUSP9v3 significantly enhanced apoptosis, which was associated with a decreased mitochondrial outer membrane potential (MOMP), enhanced cleavage of effector caspase 3 and reduced expression of Bcl-2 and Mcl-1. Moreover, oxidative phosphorylation and expression of respiratory chain complexes I, III and IV was markedly reduced. CONCLUSION: TTFields strongly enhance the CUSP9v3-mediated anti-glioblastoma activity. TTFields are currently widely used for the treatment of glioblastoma patients and CUSP9v3 was shown to have a favorable safety profile in a phase Ib/IIa trial (NCT02770378) which facilitates transition of this multimodal approach to the clinical setting.


Asunto(s)
Antineoplásicos , Neoplasias Encefálicas , Terapia por Estimulación Eléctrica , Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Reposicionamiento de Medicamentos , Reprogramación Metabólica , Temozolomida/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Terapia Combinada
11.
Phys Med Biol ; 69(8)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38417178

RESUMEN

Objective.Alternating electric fields (AEF) therapy is a treatment modality for patients with glioblastoma. Tumor characteristics such as size, location, and extent of peritumoral edema may affect the AEF strength and distribution. We evaluated the sensitivity of the AEFs in a realistic 3D rat glioma model with respect to these properties.Approach.The electric properties of the peritumoral edema were varied based on calculated and literature-reported values. Models with different tumor composition, size, and location were created. The resulting AEFs were evaluated in 3D rat glioma models.Main results.In all cases, a pair of 5 mm diameter electrodes induced an average field strength >1 V cm-1. The simulation results showed that a negative relationship between edema conductivity and field strength was found. As the tumor core size was increased, the average field strength increased while the fraction of the shell achieving >1.5 V cm-1decreased. Increasing peritumoral edema thickness decreased the shell's mean field strength. Compared to rostrally/caudally, shifting the tumor location laterally/medially and ventrally (with respect to the electrodes) caused higher deviation in field strength.Significance.This study identifies tumor properties that are key drivers influencing AEF strength and distribution. The findings might be potential preclinical implications.


Asunto(s)
Neoplasias Encefálicas , Terapia por Estimulación Eléctrica , Glioblastoma , Glioma , Linfocinas , Humanos , Ratas , Animales , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología , Terapia por Estimulación Eléctrica/métodos , Glioma/terapia , Glioblastoma/patología
12.
Eur J Pharmacol ; 968: 176401, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38331340

RESUMEN

Glioblastoma (GBM) is one of the most common intracranial primary malignancies with the highest mortality rate, and there is a lack of effective treatments. In this study, we examined the anti-GBM activity of Tenacissoside H (TH), an active component isolated from the traditional Chinese medicine Marsdenia tenacissima (Roxb.) Wight & Arn (MT), and investigated the potential mechanism. Firstly, we found that TH decreased the viability of GBM cells by inducing cell cycle arrest and apoptosis, and inhibited the migration of GBM cells. Furthermore, combined with the Gene Expression Omnibus database (GEO) and network pharmacology as well as molecular docking, TH was shown to inhibit GBM progression by directly regulating the PI3K/Akt/mTOR pathway, which was further validated in vitro. In addition, the selective PI3K agonist 740 y-p partially restored the inhibitory effects of TH on GBM cells. Finally, TH inhibited GBM progression in an orthotopic transplantation model by inactivating the PI3K/Akt/mTOR pathway in vivo. Conclusively, our results suggest that TH represses GBM progression by inhibiting the PI3K/Akt/mTOR signaling pathway in vitro and in vivo, and provides new insight for the treatment of GBM patients.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias Encefálicas/genética , Proliferación Celular
13.
J Cancer Surviv ; 18(1): 34-41, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38294603

RESUMEN

PURPOSE: We sought to present the current status of survivorship programs at Dana-Farber Cancer Institute which include the David B. Perini, Jr. Quality of Life Clinic for survivors of childhood cancer, Stop and Shop Neuro-Oncology Outcomes Clinic for pediatric brain tumor survivors, and Adult Survivorship Program for adult cancer survivors including those diagnosed as adults (age 18 years and older) and adult survivors of childhood cancer, in an effort to share best practices as well as challenges. METHODS: Description of programs and discussion. RESULTS: Our institutional programs are detailed regarding their history and the multidisciplinary approach and both consultative and long-term care delivery models for pediatric and adult cancer survivors, with the goal of meeting the spectrum of survivorship care needs, from diagnosis and management of long-term effects of cancer-directed therapy and surveillance for subsequent cancer, to healthy lifestyle promotion and psychosocial support. Program investigators conduct research to understand the risks and unmet needs of cancer survivors, and to develop and test interventions to improve care delivery and medical and psychosocial outcomes. There are also educational initiatives detailed. CONCLUSIONS: Survivorship programs at Dana-Farber are designed to optimize care and outcomes for cancer survivors including conducting quality improvement initiatives and research to further understand and meet the clinical needs of the large, heterogenous, and growing population cancer survivors into the future. IMPLICATIONS FOR CANCER SURVIVORS: Programs like ours as well as those ongoing and planned aim to improve the comprehensive care of diverse cancer survivors.


Asunto(s)
Neoplasias Encefálicas , Supervivientes de Cáncer , Neoplasias , Adulto , Humanos , Niño , Adolescente , Calidad de Vida , Neoplasias/terapia , Neoplasias/psicología , Atención a la Salud , Sobrevivientes
14.
J Neurooncol ; 166(3): 419-430, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38277015

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most common primary brain tumor in adults. Despite extensive research and clinical trials, median survival post-treatment remains at 15 months. Thus, all opportunities to optimize current treatments and improve patient outcomes should be considered. A recent retrospective clinical study found that taking TMZ in the morning compared to the evening was associated with a 6-month increase in median survival in patients with MGMT-methylated GBM. Here, we hypothesized that TMZ efficacy depends on time-of-day and O6-Methylguanine-DNA Methyltransferase (MGMT) activity in murine and human models of GBM. METHODS AND RESULTS: In vitro recordings using real-time bioluminescence reporters revealed that GBM cells have intrinsic circadian rhythms in the expression of the core circadian clock genes Bmal1 and Per2, as well as in the DNA repair enzyme, MGMT. Independent measures of MGMT transcript levels and promoter methylation also showed daily rhythms intrinsic to GBM cells. These cells were more susceptible to TMZ when delivered at the daily peak of Bmal1 transcription. We found that in vivo morning administration of TMZ also decreased tumor size and increased body weight compared to evening drug delivery in mice bearing GBM xenografts. Finally, inhibition of MGMT activity with O6-Benzylguanine abrogated the daily rhythm in sensitivity to TMZ in vitro by increasing sensitivity at both the peak and trough of Bmal1 expression. CONCLUSION: We conclude that chemotherapy with TMZ can be dramatically enhanced by delivering at the daily maximum of tumor Bmal1 expression and minimum of MGMT activity and that scoring MGMT methylation status requires controlling for time of day of biopsy.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Animales , Ratones , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/patología , Temozolomida/farmacología , Temozolomida/uso terapéutico , Dacarbazina/uso terapéutico , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , O(6)-Metilguanina-ADN Metiltransferasa/genética , Estudios Retrospectivos , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Metilación , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Metilación de ADN , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
15.
BMC Cancer ; 24(1): 83, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225549

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most common adult malignant brain tumour, with an incidence of 5 per 100,000 per year in England. Patients with tumours showing O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation represent around 40% of newly diagnosed GBM. Relapse/tumour recurrence is inevitable. There is no agreed standard treatment for patients with GBM, therefore, it is aimed at delaying further tumour progression and maintaining health-related quality of life (HRQoL). Limited clinical trial data exist using cannabinoids in combination with temozolomide (TMZ) in this setting, but early phase data demonstrate prolonged overall survival compared to TMZ alone, with few additional side effects. Jazz Pharmaceuticals (previously GW Pharma Ltd.) have developed nabiximols (trade name Sativex®), an oromucosal spray containing a blend of cannabis plant extracts, that we aim to assess for preliminary efficacy in patients with recurrent GBM. METHODS: ARISTOCRAT is a phase II, multi-centre, double-blind, placebo-controlled, randomised trial to assess cannabinoids in patients with recurrent MGMT methylated GBM who are suitable for treatment with TMZ. Patients who have relapsed ≥ 3 months after completion of initial first-line treatment will be randomised 2:1 to receive either nabiximols or placebo in combination with TMZ. The primary outcome is overall survival time defined as the time in whole days from the date of randomisation to the date of death from any cause. Secondary outcomes include overall survival at 12 months, progression-free survival time, HRQoL (using patient reported outcomes from QLQ-C30, QLQ-BN20 and EQ-5D-5L questionnaires), and adverse events. DISCUSSION: Patients with recurrent MGMT promoter methylated GBM represent a relatively good prognosis sub-group of patients with GBM. However, their median survival remains poor and, therefore, more effective treatments are needed. The phase II design of this trial was chosen, rather than phase III, due to the lack of data currently available on cannabinoid efficacy in this setting. A randomised, double-blind, placebo-controlled trial will ensure an unbiased robust evaluation of the treatment and will allow potential expansion of recruitment into a phase III trial should the emerging phase II results warrant this development. TRIAL REGISTRATION: ISRCTN: 11460478. CLINICALTRIALS: Gov: NCT05629702.


Asunto(s)
Neoplasias Encefálicas , Cannabinoides , Glioblastoma , Adulto , Humanos , Antineoplásicos Alquilantes/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Cannabinoides/uso terapéutico , Ensayos Clínicos Fase II como Asunto , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/patología , Estudios Multicéntricos como Asunto , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto , Temozolomida/uso terapéutico
16.
J Neurooncol ; 166(1): 89-98, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38175460

RESUMEN

INTRODUCTION: Glioblastoma (GBM) is the most common central nervous system malignancy in adults. Despite decades of developments in surgical management, radiation treatment, chemotherapy, and tumor treating field therapy, GBM remains an ultimately fatal disease. There is currently no definitive standard of care for patients with recurrent glioblastoma (rGBM) following failure of initial management. OBJECTIVE: In this retrospective cohort study, we set out to examine the relative effects of bevacizumab and Gamma Knife radiosurgery on progression-free survival (PFS) and overall survival (OS) in patients with GBM at first-recurrence. METHODS: We conducted a retrospective review of all patients with rGBM who underwent treatment with bevacizumab and/or Gamma Knife radiosurgery at Roswell Park Comprehensive Cancer Center between 2012 and 2022. Mean PFS and OS were determined for each of our three treatment groups: Bevacizumab Only, Bevacizumab Plus Gamma Knife, and Gamma Knife Only. RESULTS: Patients in the combined treatment group demonstrated longer post-recurrence median PFS (7.7 months) and median OS (11.5 months) compared to glioblastoma patients previously reported in the literature, and showed improvements in total PFS (p=0.015), total OS (p=0.0050), post-recurrence PFS (p=0.018), and post-recurrence OS (p=0.0082) compared to patients who received either bevacizumab or Gamma Knife as monotherapy. CONCLUSION: This study demonstrates that the combined use of bevacizumab with concurrent stereotactic radiosurgery can have improve survival in patients with rGBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Radiocirugia , Adulto , Humanos , Bevacizumab/uso terapéutico , Glioblastoma/radioterapia , Glioblastoma/tratamiento farmacológico , Radiocirugia/efectos adversos , Estudios Retrospectivos , Neoplasias Encefálicas/tratamiento farmacológico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Resultado del Tratamiento
17.
Int Wound J ; 21(1): e14628, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38272817

RESUMEN

High-grade gliomas (HGGs) may be amenable to the neurosurgical technique known as laser interstitial thermal therapy (LITT), which delivers thermal energy to interstitial brain injuries and wounds with pinpoint accuracy. The purpose of this extensive meta-analysis was to evaluate the effects of LITT on wound complications among patients who have brain tumours. Diverse conclusions emerge from a systematic review of pertinent studies, necessitating a comprehensive examination. The meta-analysis, performed utilizing the meta library provided by the R package meta, reveals an initial significant overall effect (RR: -2.1262, 95% CI [-2.7466, -1.5059], p < 0.0001) accompanied by considerable heterogeneity among studies (I2 = 61.13%). Following analyses that specifically examined the incidence of wounds, a complex correlation was found (RR: 0.0471, 95% CI [0.0264, 0.0842], p < 0.0001), indicating that LITT has a discernible but insignificant effect on the occurrence of wounds. Although the meta-analysis emphasizes a notable decrease in wound complications subsequent to LITT treatment, additional research is warranted due to constraints in standardized reporting, data accessibility, and small sample sizes. The results of this study underscore the need for exhaustive protocols to analyse wound complications in patients with brain tumours undergoing LITT.


Asunto(s)
Neoplasias Encefálicas , Hipertermia Inducida , Terapia por Láser , Humanos , Terapia por Láser/efectos adversos , Terapia por Láser/métodos , Neoplasias Encefálicas/etiología , Neoplasias Encefálicas/cirugía , Rayos Láser , Hipertermia Inducida/efectos adversos , Hipertermia Inducida/métodos , Cicatrización de Heridas
18.
J Med Imaging Radiat Oncol ; 68(2): 167-170, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38185912

RESUMEN

An early-adolescent girl presented with incoordination, headache, vomiting and dysphonia. MRI brain demonstrated diffuse increased T2 and FLAIR signal in bilateral thalami, consistent with anaplastic astrocytomas. A stereotactic burr-hole biopsy provided frozen tissues sections demonstrating an IDH-1 wildtype astrocytoma (anaplastic grade III according to prior WHO classification 2016-21). Chemoradiotherapy was commenced. Bilateral thalamic high-grade astrocytomas are very rare in the paediatric population and require timely diagnosis and interdisciplinary management. CT and MR imaging help point towards this diagnosis in the correct clinical context.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Niño , Femenino , Humanos , Adolescente , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/terapia , Astrocitoma/diagnóstico por imagen , Astrocitoma/terapia , Imagen por Resonancia Magnética/métodos , Tálamo/patología , Biopsia
19.
J Exp Clin Cancer Res ; 43(1): 1, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38163890

RESUMEN

BACKGROUND: Ceramide metabolism is crucial in the progress of brain metastasis (BM). However, it remains unexplored whether targeting ceramide metabolism may arrest BM. METHODS: RNA sequencing was applied to screen different genes in primary and metastatic foci and whole-exome sequencing (WES) to seek crucial abnormal pathway in BM + and BM-patients. Cellular arrays were applied to analyze the permeability of blood-brain barrier (BBB) and the activation or inhibition of pathway. Database and Co-Immunoprecipitation (Co-IP) assay were adopted to verify the protein-protein interaction. Xenograft and zebrafish model were further employed to verify the cellular results. RESULTS: RNA sequencing and WES reported the involvement of RPTOR and ceramide metabolism in BM progress. RPTOR was significantly upregulated in BM foci and increased the permeability of BBB, while RPTOR deficiency attenuated the cell invasiveness and protected extracellular matrix. Exogenous RPTOR boosted the SPHK2/S1P/STAT3 cascades by binding YY1, in which YY1 bound to the regions of SPHK2 promoter (at -353 ~ -365 nt), further promoting the expression of SPHK2. The latter was rescued by YY1 RNAi. Xenograft and zebrafish model showed that RPTOR blockade suppressed BM of non-small cell lung cancer (NSCLC) and impaired the SPHK2/S1P/STAT3 pathway. CONCLUSION: RPTOR is a key driver gene in the brain metastasis of lung cancer, which signifies that RPTOR blockade may serve as a promising therapeutic candidate for clinical application.


Asunto(s)
Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Pez Cebra , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Ceramidas/uso terapéutico , Proteína Reguladora Asociada a mTOR , Factor de Transcripción YY1/genética
20.
Appl Radiat Isot ; 205: 111184, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38215645

RESUMEN

Boron neutron capture therapy (BNCT) combines neutron irradiation with boron compounds that are selectively uptaken by tumor cells. Boronophenylalanine (BPA) is a boron compound used to treat malignant brain tumors. The determination of boron concentration in cells is of great relevance to the field of BNCT. This study was designed to develop a novel method for simultaneously measuring the uptake of BPA by U87 and U251 cells (two brain tumor cell lines) and number of cells using inductively coupled plasma atomic emission spectroscopy (ICP-AES). The results revealed a linear correlation between phosphorus intensity and the numbers of U87 and U251 cells, with correlation coefficients (R2) of 0.9995 and 0.9994, respectively. High accuracy and reliability of phosphorus concentration standard curve were also found. Using this new method, we found that BPA had no significant effect on phosphorus concentration in either U87 or U251 cells. However, BPA increased the boron concentration in U87 and U251 cells in a concentration-dependent manner, with the boron concentration in U87 cells being higher than that in U251 cells. In both U87 and U251 cells, boron was mainly distributed in the cytoplasm and nucleus, accounting for 85% and 13% of the total boron uptake by U87 cells and 86% and 11% of the total boron uptake by U251 cells, respectively. In the U87 and U251 cell-derived xenograft (CDX) animal model, tumor exhibited higher boron concentration values than blood, heart, liver, lung, and brain, with a tumor/blood ratio of 2.87 for U87 cells and 3.11 for U251 cells, respectively. These results suggest that the phosphorus concentration in U87 and U251 cells can represent the number of cells and BPA is easily uptaken by tumor cells as well as in tumor tissue.


Asunto(s)
Terapia por Captura de Neutrón de Boro , Neoplasias Encefálicas , Animales , Humanos , Espectrofotometría Atómica , Boro , Reproducibilidad de los Resultados , Neoplasias Encefálicas/radioterapia , Encéfalo , Compuestos de Boro , Fósforo , Terapia por Captura de Neutrón de Boro/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA