Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Eur J Pharmacol ; 968: 176401, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38331340

RESUMEN

Glioblastoma (GBM) is one of the most common intracranial primary malignancies with the highest mortality rate, and there is a lack of effective treatments. In this study, we examined the anti-GBM activity of Tenacissoside H (TH), an active component isolated from the traditional Chinese medicine Marsdenia tenacissima (Roxb.) Wight & Arn (MT), and investigated the potential mechanism. Firstly, we found that TH decreased the viability of GBM cells by inducing cell cycle arrest and apoptosis, and inhibited the migration of GBM cells. Furthermore, combined with the Gene Expression Omnibus database (GEO) and network pharmacology as well as molecular docking, TH was shown to inhibit GBM progression by directly regulating the PI3K/Akt/mTOR pathway, which was further validated in vitro. In addition, the selective PI3K agonist 740 y-p partially restored the inhibitory effects of TH on GBM cells. Finally, TH inhibited GBM progression in an orthotopic transplantation model by inactivating the PI3K/Akt/mTOR pathway in vivo. Conclusively, our results suggest that TH represses GBM progression by inhibiting the PI3K/Akt/mTOR signaling pathway in vitro and in vivo, and provides new insight for the treatment of GBM patients.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias Encefálicas/genética , Proliferación Celular
2.
J Neurooncol ; 166(3): 419-430, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38277015

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most common primary brain tumor in adults. Despite extensive research and clinical trials, median survival post-treatment remains at 15 months. Thus, all opportunities to optimize current treatments and improve patient outcomes should be considered. A recent retrospective clinical study found that taking TMZ in the morning compared to the evening was associated with a 6-month increase in median survival in patients with MGMT-methylated GBM. Here, we hypothesized that TMZ efficacy depends on time-of-day and O6-Methylguanine-DNA Methyltransferase (MGMT) activity in murine and human models of GBM. METHODS AND RESULTS: In vitro recordings using real-time bioluminescence reporters revealed that GBM cells have intrinsic circadian rhythms in the expression of the core circadian clock genes Bmal1 and Per2, as well as in the DNA repair enzyme, MGMT. Independent measures of MGMT transcript levels and promoter methylation also showed daily rhythms intrinsic to GBM cells. These cells were more susceptible to TMZ when delivered at the daily peak of Bmal1 transcription. We found that in vivo morning administration of TMZ also decreased tumor size and increased body weight compared to evening drug delivery in mice bearing GBM xenografts. Finally, inhibition of MGMT activity with O6-Benzylguanine abrogated the daily rhythm in sensitivity to TMZ in vitro by increasing sensitivity at both the peak and trough of Bmal1 expression. CONCLUSION: We conclude that chemotherapy with TMZ can be dramatically enhanced by delivering at the daily maximum of tumor Bmal1 expression and minimum of MGMT activity and that scoring MGMT methylation status requires controlling for time of day of biopsy.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Animales , Ratones , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/patología , Temozolomida/farmacología , Temozolomida/uso terapéutico , Dacarbazina/uso terapéutico , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , O(6)-Metilguanina-ADN Metiltransferasa/genética , Estudios Retrospectivos , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Metilación , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Metilación de ADN , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
3.
BMC Cancer ; 24(1): 83, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225549

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most common adult malignant brain tumour, with an incidence of 5 per 100,000 per year in England. Patients with tumours showing O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation represent around 40% of newly diagnosed GBM. Relapse/tumour recurrence is inevitable. There is no agreed standard treatment for patients with GBM, therefore, it is aimed at delaying further tumour progression and maintaining health-related quality of life (HRQoL). Limited clinical trial data exist using cannabinoids in combination with temozolomide (TMZ) in this setting, but early phase data demonstrate prolonged overall survival compared to TMZ alone, with few additional side effects. Jazz Pharmaceuticals (previously GW Pharma Ltd.) have developed nabiximols (trade name Sativex®), an oromucosal spray containing a blend of cannabis plant extracts, that we aim to assess for preliminary efficacy in patients with recurrent GBM. METHODS: ARISTOCRAT is a phase II, multi-centre, double-blind, placebo-controlled, randomised trial to assess cannabinoids in patients with recurrent MGMT methylated GBM who are suitable for treatment with TMZ. Patients who have relapsed ≥ 3 months after completion of initial first-line treatment will be randomised 2:1 to receive either nabiximols or placebo in combination with TMZ. The primary outcome is overall survival time defined as the time in whole days from the date of randomisation to the date of death from any cause. Secondary outcomes include overall survival at 12 months, progression-free survival time, HRQoL (using patient reported outcomes from QLQ-C30, QLQ-BN20 and EQ-5D-5L questionnaires), and adverse events. DISCUSSION: Patients with recurrent MGMT promoter methylated GBM represent a relatively good prognosis sub-group of patients with GBM. However, their median survival remains poor and, therefore, more effective treatments are needed. The phase II design of this trial was chosen, rather than phase III, due to the lack of data currently available on cannabinoid efficacy in this setting. A randomised, double-blind, placebo-controlled trial will ensure an unbiased robust evaluation of the treatment and will allow potential expansion of recruitment into a phase III trial should the emerging phase II results warrant this development. TRIAL REGISTRATION: ISRCTN: 11460478. CLINICALTRIALS: Gov: NCT05629702.


Asunto(s)
Neoplasias Encefálicas , Cannabinoides , Glioblastoma , Adulto , Humanos , Antineoplásicos Alquilantes/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Cannabinoides/uso terapéutico , Ensayos Clínicos Fase II como Asunto , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/patología , Estudios Multicéntricos como Asunto , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto , Temozolomida/uso terapéutico
4.
J Exp Clin Cancer Res ; 43(1): 1, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38163890

RESUMEN

BACKGROUND: Ceramide metabolism is crucial in the progress of brain metastasis (BM). However, it remains unexplored whether targeting ceramide metabolism may arrest BM. METHODS: RNA sequencing was applied to screen different genes in primary and metastatic foci and whole-exome sequencing (WES) to seek crucial abnormal pathway in BM + and BM-patients. Cellular arrays were applied to analyze the permeability of blood-brain barrier (BBB) and the activation or inhibition of pathway. Database and Co-Immunoprecipitation (Co-IP) assay were adopted to verify the protein-protein interaction. Xenograft and zebrafish model were further employed to verify the cellular results. RESULTS: RNA sequencing and WES reported the involvement of RPTOR and ceramide metabolism in BM progress. RPTOR was significantly upregulated in BM foci and increased the permeability of BBB, while RPTOR deficiency attenuated the cell invasiveness and protected extracellular matrix. Exogenous RPTOR boosted the SPHK2/S1P/STAT3 cascades by binding YY1, in which YY1 bound to the regions of SPHK2 promoter (at -353 ~ -365 nt), further promoting the expression of SPHK2. The latter was rescued by YY1 RNAi. Xenograft and zebrafish model showed that RPTOR blockade suppressed BM of non-small cell lung cancer (NSCLC) and impaired the SPHK2/S1P/STAT3 pathway. CONCLUSION: RPTOR is a key driver gene in the brain metastasis of lung cancer, which signifies that RPTOR blockade may serve as a promising therapeutic candidate for clinical application.


Asunto(s)
Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Pez Cebra , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Ceramidas/uso terapéutico , Proteína Reguladora Asociada a mTOR , Factor de Transcripción YY1/genética
5.
PLoS One ; 19(1): e0295698, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38166029

RESUMEN

Glioblastoma multiforme (GBM), a malignant neoplasm originating from glial cells, remains challenging to treat despite the current standard treatment approach that involves maximal safe surgical resection, radiotherapy, and adjuvant temozolomide chemotherapy. This underscores the critical need to identify new molecular targets for improved therapeutic interventions. The current study aimed to explore the somatic mutations and potential therapeutic targets in GBM using somatic mutational information from four distinct GBM datasets including CGGA, TCGA, CPTAC and MAYO-PDX. The analysis included the evaluation of whole exome sequencing (WES) of GBM datasets, tumor mutation burden assessment, survival analysis, drug sensitivity prediction, and examination of domain-specific amino acid changes. The results identified the top ten commonly altered genes in the aforementioned GBM datasets and patients with mutations in OBSCN and AHNAK2 alone or in combination had a more favorable overall survival (OS). Also, the study identified potential drug sensitivity patterns in GBM patients with mutations in OBSCN and AHNAK2, and evaluated the impact of amino acid changes in specific protein domains on the survival of GBM patients. These findings provide important insights into the genetic alterations and somatic interactions in GBM, which could have implications for the development of new therapeutic strategies for this aggressive malignancy.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Medicina de Precisión , Temozolomida/uso terapéutico , Mutación , Aminoácidos/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo
6.
Curr Neurol Neurosci Rep ; 23(12): 849-856, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37921944

RESUMEN

PURPOSE OF REVIEW: Diffuse midline gliomas (DMGs) generally carry a poor prognosis, occur during childhood, and involve midline structures of the central nervous system, including the thalamus, pons, and spinal cord. RECENT FINDINGS: To date, irradiation has been shown to be the only beneficial treatment for DMG. Various genetic modifications have been shown to play a role in the pathogenesis of this disease. Current treatment strategies span targeting epigenetic dysregulation, cell cycle, specific genetic alterations, and the immune microenvironment. Herein, we review the complex features of this disease as it relates to current and past therapeutic approaches.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/metabolismo , Glioma/genética , Glioma/terapia , Sistema Nervioso Central/metabolismo , Médula Espinal/metabolismo , Médula Espinal/patología , Tálamo , Microambiente Tumoral
7.
Cancer Rep (Hoboken) ; 6(10): e1889, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37675821

RESUMEN

BACKGROUND: A form of cancer called astrocytoma can develop in the brain or spinal cord and sometimes causes death. A detailed overview of the precise signaling cascade underlying astrocytoma formation has not yet been revealed, although various factors have been investigated. Therefore, our objective was to unravel and summarize our current understanding of molecular genetics and associated signaling pathways with some possible therapeutic strategies for astrocytoma. RECENT FINDINGS: In general, four different forms of astrocytoma have been identified in individuals, including circumscribed, diffuse, anaplastic, and multiforme glioblastoma, according to a recent literature review. All types of astrocytoma have a direct connection with some oncogenic signaling cascade. Common signaling is MAPK cascade, including Ras-Raf-ERK, up-regulated with activating EGFR/AKT/PTEN/mTOR and PDGFR. Recent breakthrough studies found that BRAF mutations, including KIAA1549: BRAF and BRAF V600E are responsible for astrocytoma progression. Additionally, cancer progression is influenced by mutations in some tumor suppressor genes, such as the Tp53/ATRX and MGMT mutant. As synthetic medications must cross the blood-brain barrier (BBB), modulating signal systems such as miRNA is the primary option for treating patients with astrocytoma. However, available surgery, radiation therapy, and experimental therapies such as adjuvant therapy, anti-angiogenic therapy, and EGFR-targeting antibody drug are the usual treatment for most types of astrocytoma. Similar to conventional anticancer medications, some phytochemicals slow tumor growth by simultaneously controlling several cellular proteins, including those involved in cell cycle regulation, apoptosis, metastatic spread, tyrosine kinase, growth factor receptor, and antioxidant-related proteins. CONCLUSION: In conclusion, cellular and molecular signaling is directly associated with the development of astrocytoma, and a combination of conventional and alternative therapies can improve the malignancy of cancer patients.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología , Astrocitoma/genética , Astrocitoma/terapia , Glioblastoma/genética , Glioblastoma/terapia , Receptores ErbB/genética
8.
JAMA Netw Open ; 6(8): e2329186, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37589977

RESUMEN

Importance: Central nervous system (CNS)-penetrant systemic therapies have significantly advanced care for patients with melanoma brain metastases. However, improved understanding of the molecular landscape and microenvironment of these lesions is needed to both optimize patient selection and advance treatment approaches. Objective: To evaluate how bulk and single-cell genomic features of melanoma brain metastases are associated with clinical outcome and treatment response. Design, Setting, and Participants: This cohort study analyzed bulk DNA sequencing and single nuclear RNA-sequencing data from resected melanoma brain metastases and included 94 consecutive patients with a histopathologically confirmed diagnosis of melanoma brain metastasis who underwent surgical resection at a single National Comprehensive Cancer Network cancer center in San Francisco, California, from January 1, 2009, to December 31, 2022. Exposure: A Clinical Laboratory Improvement Amendments-certified targeted sequencing assay was used to analyze tumor resection specimens, with a focus on BRAF V600E alteration. For frozen pathologic specimens from CNS treatment-naive patients undergoing surgical resection, commercial single nuclear RNA sequencing approaches were used. Main Outcomes and Measures: The primary outcome was overall survival (OS). Secondary outcomes included CNS progression-free survival (PFS), microenvironmental composition with decreased T-cell and macrophage populations, and responses to immunotherapy. Results: To correlate molecular status with clinical outcome, Kaplan-Meier survival analysis of 94 consecutive patients (median age, 64 years [range, 24-82 years]; 70 men [74%]) with targeted BRAF alteration testing showed worse median intracranial PFS (BRAF variant: 3.6 months [IQR, 0.1-30.6 months]; BRAF wildtype: 11.0 months [IQR, 0.8-81.5 months]; P < .001) and OS (BRAF variant: 9.8 months [IQR, 2.5-69.4 months]; BRAF wildtype: 23.2 months [IQR, 1.1-102.5 months]; P = .005; log-rank test) in BRAF V600E variant tumors. Multivariable Cox proportional hazards regression analysis revealed that BRAF V600E status was an independent variable significantly associated with both PFS (hazard ratio [HR], 2.65; 95% CI, 1.54-4.57; P < .001) and OS (HR, 1.96; 95% CI, 1.08-3.55; P = .03). For the 45 patients with resected melanoma brain metastases undergoing targeted DNA sequencing, molecular classification recapitulated The Cancer Genome Atlas groups (NRAS variant, BRAF variant, NF1 variant, and triple wildtype) with no subtype enrichment within the brain metastasis cohort. On a molecular level, BRAF V600E variant lesions were found to have a significantly decreased tumor mutation burden. Moreover, single nuclear RNA sequencing of treatment-naive BRAF V600E variant (n = 3) brain metastases compared with BRAF wildtype (n = 3) brain metastases revealed increased immune cell populations in BRAF wildtype tumors (mean [SD], 11% [4.1%] vs 3% [1.6%] CD45-positive cells; P = .04). Survival analysis of postoperative immunotherapy responses by BRAF status revealed that BRAF wildtype lesions were associated with a response to checkpoint inhibition (median OS: with immunotherapy, undefined; without immunotherapy, 13.0 months [range, 1.1-61.7 months]; P = .001; log-rank test) while BRAF variant lesions (median OS: with immunotherapy, 9.8 months [range, 2.9-39.8 months]; without immunotherapy, 9.5 months [range, 2.5-67.2 months]; P = .81; log-rank test) were not. Conclusions and Relevance: This molecular analysis of patients with resected melanoma brain metastases found that BRAF V600E alteration is an important translational biomarker associated with worse clinical outcomes, differential microenvironmental composition, and benefit from immunotherapy. Patients with BRAF V600E variant melanoma brain metastases may thus benefit from alternative CNS-penetrant systemic regimens.


Asunto(s)
Neoplasias Encefálicas , Melanoma , Masculino , Humanos , Persona de Mediana Edad , Estudios de Cohortes , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Inmunoterapia , Melanoma/genética , Melanoma/terapia , Microambiente Tumoral
9.
Br J Cancer ; 129(8): 1327-1338, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37620410

RESUMEN

BACKGROUND: Patient-derived glioma stem-like cells (GSCs) have become the gold-standard in neuro-oncological research; however, it remains to be established whether loss of in situ microenvironment affects the clinically-predictive value of this model. We implemented a GSC monolayer system to investigate in situ-in vitro molecular correspondence and the relationship between in vitro and patient response to temozolomide (TMZ). METHODS: DNA/RNA-sequencing was performed on 56 glioblastoma tissues and 19 derived GSC cultures. Sensitivity to TMZ was screened across 66 GSC cultures. Viability readouts were related to clinical parameters of corresponding patients and whole-transcriptome data. RESULTS: Tumour DNA and RNA sequences revealed strong similarity to corresponding GSCs despite loss of neuronal and immune interactions. In vitro TMZ screening yielded three response categories which significantly correlated with patient survival, therewith providing more specific prediction than the binary MGMT marker. Transcriptome analysis identified 121 genes related to TMZ sensitivity of which 21were validated in external datasets. CONCLUSION: GSCs retain patient-unique hallmark gene expressions despite loss of their natural environment. Drug screening using GSCs predicted patient response to TMZ more specifically than MGMT status, while transcriptome analysis identified potential biomarkers for this response. GSC drug screening therefore provides a tool to improve drug development and precision medicine for glioblastoma.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Dacarbazina/farmacología , Dacarbazina/uso terapéutico , Evaluación Preclínica de Medicamentos , Biomarcadores , ADN/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Resistencia a Antineoplásicos/genética , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Línea Celular Tumoral , Microambiente Tumoral
10.
Chin Clin Oncol ; 12(3): 23, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37417289

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. Despite enormous research efforts, GBM remains a deadly disease. The standard-of-care treatment for patients with newly diagnosed with GBM as per the National Cancer Comprehensive Cancer Network (NCCN) is maximal safe surgical resection followed by concurrent chemoradiation and maintenance temozolomide (TMZ) with adjuvant tumor treating fields (TTF). TTF is a non-pharmacological intervention that delivers low-intensity, intermediate frequency alternating electric fields that arrests cell proliferation by disrupting the mitotic spindle. TTF have been shown in a large clinical trial to improve patient outcomes when added to radiation and chemotherapy. The SPARE trail (Scalp-sparing radiation with concurrent temozolomide and tumor treating fields) evaluated adding TTF concomitantly to radiation and chemotherapy. METHODS: This study is an exploratory analysis of the SPARE trial looking at the prognostic significance of common GBM molecular alterations, namely MGMT, EGFR, TP53, PTEN and telomerase reverse transcriptase (TERT), in this cohort of patients treated with concomitant TTF with radiation and chemotherapy. RESULTS: As expected, MGMT promoter methylation was associated with improved overall survival (OS) and progression-free survival (PFS) in this cohort. In addition, TERT promoter mutation was associated with improved OS and PFS in this cohort as well. CONCLUSIONS: Leveraging the molecular characterization of GBM alongside advancing treatments such as chemoradiation with TTF presents a new opportunity to improve precision oncology and outcomes for GBM patients.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Temozolomida/farmacología , Temozolomida/uso terapéutico , Antineoplásicos Alquilantes/uso terapéutico , Dacarbazina/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Medicina de Precisión , Biomarcadores , Metilación de ADN
11.
Cancer Cell ; 41(6): 1134-1151.e10, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37172581

RESUMEN

Glioblastomas are aggressive brain tumors that are largely immunotherapy resistant. This is associated with immunosuppression and a dysfunctional tumor vasculature, which hinder T cell infiltration. LIGHT/TNFSF14 can induce high endothelial venules (HEVs) and tertiary lymphoid structures (TLS), suggesting that its therapeutic expression could promote T cell recruitment. Here, we use a brain endothelial cell-targeted adeno-associated viral (AAV) vector to express LIGHT in the glioma vasculature (AAV-LIGHT). We found that systemic AAV-LIGHT treatment induces tumor-associated HEVs and T cell-rich TLS, prolonging survival in αPD-1-resistant murine glioma. AAV-LIGHT treatment reduces T cell exhaustion and promotes TCF1+CD8+ stem-like T cells, which reside in TLS and intratumoral antigen-presenting niches. Tumor regression upon AAV-LIGHT therapy correlates with tumor-specific cytotoxic/memory T cell responses. Our work reveals that altering vascular phenotype through vessel-targeted expression of LIGHT promotes efficient anti-tumor T cell responses and prolongs survival in glioma. These findings have broader implications for treatment of other immunotherapy-resistant cancers.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Ratones , Animales , Glioma/genética , Glioma/terapia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/irrigación sanguínea , Glioblastoma/genética , Fenotipo , Encéfalo , Microambiente Tumoral
12.
Int J Mol Sci ; 24(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37240419

RESUMEN

Glioblastoma (GBM) is a poorly treatable disease due to the fast development of tumor recurrences and high resistance to chemo- and radiotherapy. To overcome the highly adaptive behavior of GBMs, especially multimodal therapeutic approaches also including natural adjuvants have been investigated. However, despite increased efficiency, some GBM cells are still able to survive these advanced treatment regimens. Given this, the present study evaluates representative chemoresistance mechanisms of surviving human GBM primary cells in a complex in vitro co-culture model upon sequential application of temozolomide (TMZ) combined with AT101, the R(-) enantiomer of the naturally occurring cottonseed-derived gossypol. Treatment with TMZ+AT101/AT101, although highly efficient, yielded a predominance of phosphatidylserine-positive GBM cells over time. Analysis of the intracellular effects revealed phosphorylation of AKT, mTOR, and GSK3ß, resulting in the induction of various pro-tumorigenic genes in surviving GBM cells. A Torin2-mediated mTOR inhibition combined with TMZ+AT101/AT101 partly counteracted the observed TMZ+AT101/AT101-associated effects. Interestingly, treatment with TMZ+AT101/AT101 concomitantly changed the amount and composition of extracellular vesicles released from surviving GBM cells. Taken together, our analyses revealed that even when chemotherapeutic agents with different effector mechanisms are combined, a variety of chemoresistance mechanisms of surviving GBM cells must be taken into account.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Gosipol , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Gosipol/farmacología , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Recurrencia Local de Neoplasia/tratamiento farmacológico , Serina-Treonina Quinasas TOR , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico
13.
Cancer ; 129(19): 3010-3022, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37246417

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most common malignant primary brain tumor. Emerging reports have suggested that racial and socioeconomic disparities influence the outcomes of patients with GBM. No studies to date have investigated these disparities controlling for isocitrate dehydrogenase (IDH) mutation and O-6-methylguanine-DNA methyltransferase (MGMT) status. METHODS: Adult patients with GBM were retrospectively reviewed at a single institution from 2008 to 2019. Univariable and multivariable complete survival analyses were performed. A Cox proportional hazards model was used to assess the effect of race and socioeconomic status controlling for a priori selected variables with known relevance to survival. RESULTS: In total, 995 patients met inclusion criteria. Of these, 117 patients (11.7%) were African American (AA). The median overall survival for the entire cohort was 14.23 months. In the multivariable model, AA patients had better survival compared with White patients (hazard ratio [HR], 0.37; 95% confidence interval [CI], 0.2-0.69). The observed survival difference was significant in both a complete case analysis model and a multiple imputations model accounting for missing molecular data and controlling for treatment and socioeconomic status. AA patients with low income (HR, 2.17; 95% CI, 1.04-4.50), public insurance (HR, 2.25; 95% CI, 1.04-4.87), or no insurance (HR, 15.63; 95% CI, 2.72-89.67) had worse survival compared with White patients with low income, public insurance, or no insurance, respectively. CONCLUSIONS: Significant racial and socioeconomic disparities were identified after controlling for treatment, GBM genetic profile, and other variables associated with survival. Overall, AA patients demonstrated better survival. These findings may suggest the possibility of a protective genetic advantage in AA patients. PLAIN LANGUAGE SUMMARY: To best personalize treatment for and understand the causes of glioblastoma, racial and socioeconomic influences must be examined. The authors report their experience at the O'Neal Comprehensive Cancer Center in the deep south. In this report, contemporary molecular diagnostic data are included. The authors conclude that there are significant racial and socioeconomic disparities that influence glioblastoma outcome and that African American patients do better.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Glioblastoma/diagnóstico , Estudios Retrospectivos , Disparidades Socioeconómicas en Salud , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/diagnóstico , Análisis de Supervivencia , Disparidades en Atención de Salud
14.
Eur J Pharmacol ; 948: 175697, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-36997048

RESUMEN

BACKGROUND: Platycodin D (PD) is a major bioactive component of Platycodon grandiflorum, a medicinal herb that is widely used in China, and is effective against various human cancers, including glioblastoma multiforme (GBM). S phase kinase-related protein 2 (Skp2) is oncogenic and overexpressed in various human tumors. It is highly expressed in GBM and its expression is correlated with tumor growth, drug resistance and poor prognosis. In this study, we investigated whether inhibition of glioma progression by PD is mediated by decreasing expression of Skp2. METHODS: Cell Counting Kit-8 (CCK-8) and Transwell assays were used to determine the effects of PD on GBM cell proliferation, migration, and invasion in vitro. mRNA and protein expression were determined by real time polymerase chain reaction (RT-PCR) and western blotting, respectively. The U87 xenograft model was used to verify the anti-glioma effect of PD in vivo. Expression levels of Skp2 protein were analyzed by immunofluorescence staining. RESULTS: PD suppressed proliferation and motility of GBM cells in vitro. The expression of Skp2 in U87 and U251 cells was significantly reduced by PD. PD mainly decreased the cytoplasmic expression of Skp2 in glioma cells. Skp2 protein expression was downregulated by PD, resulting in upregulation of its downstream targets, p21and p27. The inhibitory effect of PD was enhanced by Skp2 knockdown in GBM cells and reversed in cells with Skp2 overexpression. CONCLUSION: PD suppresses glioma development by regulation of Skp2 in GBM cells.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Neoplasias Encefálicas/genética , Glioma/patología , Proliferación Celular , Línea Celular Tumoral , Movimiento Celular , Regulación Neoplásica de la Expresión Génica
15.
J Neurooncol ; 162(3): 525-533, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36940053

RESUMEN

PURPOSE: The understanding of cognitive symptoms in patients with IDH-Mutant gliomas (IDH-Mut) is rapidly developing. In this article, we summarize the neuroscientific knowledge base regarding the influence of IDH-Mut tumors and their treatment on cognition and provide guidance regarding the management of these symptoms in patients. METHODS: We performed a review of peer reviewed publications relevant to IDH-Mut glioma and cognitive outcomes and provide an overview of the literature as well as a case example to clarify management strategies. RESULTS: At the time of presentation, patients with IDH-Mut gliomas have a favorable cognitive profile as compared with those with IDH-wild type (WT) tumors. The relatively low cognitive burden may reflect the slower growth rate of IDH-Mut tumors, which is less disruptive to both local and widespread neural networks. Human connectomic research using a variety of modalities has demonstrated relatively preserved network efficiency in patients with IDH-Mut gliomas as compared with IDH-WT tumors. Risk of cognitive decline from surgery can potentially be mitigated by careful integration of intra-operative mapping. Longer term cognitive risks of tumor treatment, including chemotherapy and radiation, are best managed by instituting neuropsychological assessment as part of the long-term care of patients with IDH-Mutant glioma. A specific timeline for such integrative care is provided. CONCLUSIONS: Given the relative recency of the IDH-mutation based classification of gliomas, as well as the long time course of this disease, a thoughtful and comprehensive strategy to studying patient outcomes and devising methods of cognitive risk reduction is required.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/complicaciones , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neuropsicología , Glioma/complicaciones , Glioma/genética , Glioma/terapia , Isocitrato Deshidrogenasa/genética , Mutación
16.
Int J Mol Sci ; 24(3)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36768856

RESUMEN

Ion channels provide the basis for the nervous system's intrinsic electrical activity. Neuronal excitability is a characteristic property of neurons and is critical for all functions of the nervous system. Glia cells fulfill essential supportive roles, but unlike neurons, they also retain the ability to divide. This can lead to uncontrolled growth and the formation of gliomas. Ion channels are involved in the unique biology of gliomas pertaining to peritumoral pathology and seizures, diffuse invasion, and treatment resistance. The emerging picture shows ion channels in the brain at the crossroads of neurophysiology and fundamental pathophysiological processes of specific cancer behaviors as reflected by uncontrolled proliferation, infiltration, resistance to apoptosis, metabolism, and angiogenesis. Ion channels are highly druggable, making them an enticing therapeutic target. Targeting ion channels in difficult-to-treat brain tumors such as gliomas requires an understanding of their extremely heterogenous tumor microenvironment and highly diverse molecular profiles, both representing major causes of recurrence and treatment resistance. In this review, we survey the current knowledge on ion channels with oncogenic behavior within the heterogeneous group of gliomas, review ion channel gene expression as genomic biomarkers for glioma prognosis and provide an update on therapeutic perspectives for repurposed and novel ion channel inhibitors and electrotherapy.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Glioma/tratamiento farmacológico , Glioma/genética , Canales Iónicos/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Convulsiones , Neuronas/metabolismo , Microambiente Tumoral
17.
J Transl Med ; 21(1): 147, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36829235

RESUMEN

BACKGROUND: Valtrate, a natural compound isolated from the root of Valeriana, exhibits antitumor activity in many cancers through different mechanisms. However, its efficacy for the treatment of glioblastoma (GBM), a tumor type with a poor prognosis, has not yet been rigorously investigated. METHODS: GBM cell lines were treated with valtrate and CCK-8, colony formation and EdU assays, flow cytometry, and transwell, 3D tumor spheroid invasion and GBM-brain organoid co-culture invasion assays were performed to assess properties of proliferation, viability, apoptosis and invasion/migration. RNA sequencing analysis on valtrate-treated cells was performed to identify putative target genes underlying the antitumor activity of the drug in GBM cells. Western blot analysis, immunofluorescence and immunohistochemistry were performed to evaluate protein levels in valtrate-treated cell lines and in samples obtained from orthotopic xenografts. A specific activator of extracellular signal-regulated kinase (ERK) was used to identify the pathways mediating the effect. RESULTS: Valtrate significantly inhibited the proliferation of GBM cells in vitro by inducing mitochondrial apoptosis and suppressed invasion and migration of GBM cells by inhibiting levels of proteins associated with epithelial mesenchymal transition (EMT). RNA sequencing analysis of valtrate-treated GBM cells revealed platelet-derived growth factor receptor A (PDGFRA) as a potential target downregulated by the drug. Analysis of PDGFRA protein and downstream mediators demonstrated that valtrate inhibited PDGFRA/MEK/ERK signaling. Finally, treatment of tumor-bearing nude mice with valtrate led to decreased tumor volume (fivefold difference at day 28) and enhanced survival (day 27 vs day 36, control vs valtrate-treated) relative to controls. CONCLUSIONS: Taken together, our study demonstrated that the natural product valtrate elicits antitumor activity in GBM cells through targeting PDGFRA and thus provides a candidate therapeutic compound for the treatment of GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Valeriana , Ratones , Animales , Humanos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Valeriana/metabolismo , Ratones Desnudos , Proliferación Celular , Glioblastoma/patología , Transducción de Señal , Iridoides/farmacología , Iridoides/uso terapéutico , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/farmacología , Quinasas de Proteína Quinasa Activadas por Mitógenos/uso terapéutico , Línea Celular Tumoral , Neoplasias Encefálicas/genética , Movimiento Celular
18.
Adv Exp Med Biol ; 1394: 153-180, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36587387

RESUMEN

Brain tumor (BT) is the second most common pediatric cancer, one of the most common cancers among adults, and the major cause of cancer-related morbidity and mortality worldwide. Both genetics and environment can contribute to BT induction. One of the environmental risks is diet which has not been proven as a certain hazard yet. The objective of the current chapter was to review the literature concerning both positive and negative effects of nutrition on BT risk.


Asunto(s)
Neoplasias Encefálicas , Dieta , Adulto , Humanos , Niño , Dieta/efectos adversos , Estado Nutricional , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia
19.
Cancer Gene Ther ; 30(5): 683-693, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36575317

RESUMEN

Glioma is a primary brain tumor with limited treatment approaches and glioblastoma stem cells (GSCs) are manifested with the self-renewal capability and high tumorigenic capacity. This study was performed to investigate the regulatory effect of the SUMO-specific protease 1 (SENP1)/methyltransferase-like 3 (METTL3)/MYC axis on the self-renewal of GSCs mediated by transcription factor Yin Yang 1 (YY1). Following bioinformatics analysis and clinical and cellular experiments, we found that YY1 was highly expressed in GBM tissues and cells, while silencing its expression reduced the self-renewal ability of GSCs. Functionally, YY1 promoted the transcriptional expression of SENP1 by binding to the promoter region of SENP1, while the deSUMOase SENP1 facilitated the methylase activity of m6A through deSUMOylation of the methylase METTL3, thereby promoting the m6A modification of MYC mRNA via METL3 and promoting the expression of MYC. A nude mouse xenograft model of GBM was also constructed to examine the tumorigenicity of GSCs. The obtained findings demonstrated that YY1 promoted tumorigenicity of GSCs by promoting the expression of MYC in vivo. Conclusively, YY1 can transcriptionally upregulate the SUMOylase SENP1 and enhance the methylase activity of METTL3, resulting in the increased m6A modification level of MYC mRNA, thereby promoting the self-renewal of GSCs.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Ratones , Humanos , Glioblastoma/patología , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo , Péptido Hidrolasas/metabolismo , Células Madre Neoplásicas/patología , ARN Mensajero/metabolismo , Neoplasias Encefálicas/genética , Proliferación Celular/genética , Línea Celular Tumoral , Metiltransferasas/metabolismo , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo
20.
Neuro Oncol ; 25(7): 1331-1342, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-36541551

RESUMEN

BACKGROUND: To achieve replicative immortality, most cancers develop a telomere maintenance mechanism, such as reactivation of telomerase or alternative lengthening of telomeres (ALT). There are limited data on the prevalence and clinical significance of ALT in pediatric brain tumors, and ALT-directed therapy is not available. METHODS: We performed C-circle analysis (CCA) on 579 pediatric brain tumors that had corresponding tumor/normal whole genome sequencing through the Open Pediatric Brain Tumor Atlas (OpenPBTA). We detected ALT in 6.9% (n = 40/579) of these tumors and completed additional validation by ultrabright telomeric foci in situ on a subset of these tumors. We used CCA to validate TelomereHunter for computational prediction of ALT status and focus subsequent analyses on pediatric high-grade gliomas (pHGGs) Finally, we examined whether ALT is associated with recurrent somatic or germline alterations. RESULTS: ALT is common in pHGGs (n = 24/63, 38.1%), but occurs infrequently in other pediatric brain tumors (<3%). Somatic ATRX mutations occur in 50% of ALT+ pHGGs and in 30% of ALT- pHGGs. Rare pathogenic germline variants in mismatch repair (MMR) genes are significantly associated with an increased occurrence of ALT. CONCLUSIONS: We demonstrate that ATRX is mutated in only a subset of ALT+ pHGGs, suggesting other mechanisms of ATRX loss of function or alterations in other genes may be associated with the development of ALT in these patients. We show that germline variants in MMR are associated with the development of ALT in patients with pHGG.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Niño , Reparación de la Incompatibilidad de ADN , Homeostasis del Telómero/genética , Proteína Nuclear Ligada al Cromosoma X/genética , Glioma/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Mutación , Telómero/genética , Telómero/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA