Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.192
Filtrar
Más filtros

Intervalo de año de publicación
1.
BMC Complement Med Ther ; 24(1): 174, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664638

RESUMEN

Liver cancer is a common malignant tumor worldwide, traditional Chinese medicine is one of the treatment measures for liver cancer because of its good anti-tumor effects and fewer toxic side effects. Ginsenoside CK (CK) is an active component of ginseng. This study explored the mechanism by which CK induced ferroptosis in liver cancer cells. We found that CK inhibited the proliferation of HepG2 and SK-Hep-1 cells, induced ferroptosis of cells. Ferrostatin-1, an ferroptosis inhibitor, was used to verify the role of CK in inducing ferroptosis of liver cancer cells. Network pharmacological analysis identified the FOXO pathway as a potential mechanism of CK, and western blot showed that CK inhibited p-FOXO1. In cells treated with the FOXO1 inhibitor AS1842856, further verify the involvement of the FOXO pathway in regulating CK-induced ferroptosis in HepG2 and SK-Hep-1 cells. A HepG2 cell-transplanted tumor model was established in nude mice, and CK inhibited the growth of transplanted tumors in nude mice, p-FOXO1 was decreased in tumor tissues, and SLC7A11 and GPX4 expressions were also down-regulated after CK treatment. These findings suggested that CK induces ferroptosis in liver cancer cells by inhibiting FOXO1 phosphorylation and activating the FOXO signaling pathway, thus playing an antitumor role.


Asunto(s)
Ferroptosis , Ginsenósidos , Neoplasias Hepáticas , Ratones Desnudos , Transducción de Señal , Ferroptosis/efectos de los fármacos , Ginsenósidos/farmacología , Humanos , Animales , Ratones , Neoplasias Hepáticas/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Células Hep G2 , Ratones Endogámicos BALB C , Proteína Forkhead Box O1/metabolismo , Línea Celular Tumoral
2.
Int J Nanomedicine ; 19: 3461-3473, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617799

RESUMEN

Purpose: Ivosidenib (IVO), an isocitrate dehydrogenase-1 (IDH1) used for treatment of acute myeloid leukemia (AML) and cholangiocarcinoma. However, poor solubility, low bioavailability, high dose and side effects limit clinical application of IVO. Methods: Ivosidenib-loaded PLGA nanoparticles (IVO-PLGA-NPs) and Ivosidenib-loaded chitosan coated PLGA nanoparticles (IVO-CS-PLGA-NPs) were prepared using emulsification and solvent evaporation method for the treatment of liver cancer. Results: The developed IVO-PLGA-NPs were evaluated for their particle size (171.7±4.9 nm), PDI (0.333), ZP (-23.0±5.8 mV), EE (96.3±4.3%), and DL (9.66±1.1%); similarly, the IVO-CS-PLGA-NPs were evaluated for their particle size (177.3±5.2 nm), PDI (0.311), ZP +25.9±5.7 mV, EE (90.8±5.7%), and DL (9.42±0.7%). The chitosan coating of IVO-PLGA-NPs was evidenced by an increase in mean particle size and positive ZP value. Because of the chitosan coating, the IVO-CS-PLGA-NPs showed a more stable and prolonged release of IVO than IVO-PLGA-NPs. In comparison to pure-IVO, the IVO-PLGA-NPs and IVO-CS-PLGA-NPs were found to be more effective against HepG2 cells, with IC50 values for the MTT assay being approximately half of those of pure-IVO. In HepG2 cells, the expressions of caspase-3, caspase-9, and p53 were significantly (p < 0.05) elevated. Conclusion: Overall, these findings suggest that chitosan coating of IVO-PLGA-NPs improves the delivery and efficacy of ivosidenib in liver cancer treatment.


Asunto(s)
Neoplasias de los Conductos Biliares , Quitosano , Glicina/análogos & derivados , Neoplasias Hepáticas , Nanopartículas , Piridinas , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Conductos Biliares Intrahepáticos
3.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1073-1081, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621914

RESUMEN

The present study aimed to investigate the effect and mechanism of Bupleuri Radix-Paeoniae Radix Alba medicated plasma on HepG2 hepatoma cells by regulating the microRNA-1297(miR-1297)/phosphatase and tensin homologue deleted on chromosome 10(PTEN) signaling axis. Real-time quantitative PCR(RT-qPCR) was carried out to determine the mRNA levels of miR-1297 and PTEN in different hepatoma cell lines. The dual luciferase reporter assay was employed to verify the targeted interaction between miR-1297 and PTEN. The cell counting kit-8(CCK-8) was used to detect cell proliferation, and the optimal concentration and intervention time of the medicated plasma were determined. The cell invasion and migration were examined by Transwell assay and wound healing assay. Cell cycle distribution was detected by PI staining, and the apoptosis of cells was detected by Annexin V-FITC/PI double staining. The mRNA levels of miR-1297, PTEN, protein kinase B(Akt), and phosphatidylinositol 3-kinase(PI3K) were determined by RT-qPCR. Western blot was employed to determine the protein levels of PTEN, Akt, p-Akt, caspase-3, caspase-9, B-cell lymphoma-2(Bcl-2), and Bcl-2-associated X protein(Bax). The results showed that HepG2 cells were the best cell line for subsequent experiments. The dual luciferase reporter assay confirmed that miR-1297 could bind to the 3'-untranslated region(3'UTR) in the mRNA of PTEN. The medicated plasma inhibited the proliferation of HepG2 cells, and the optimal intervention concentration and time were 20% and 72 h. Compared with the blank plasma, the Bupleuri Radix-Paeoniae Radix Alba medicated plasma, miR-1297 inhibitor, miR-1297 inhibitor + medicated plasma all inhibited the proliferation, invasion, and migration of HepG2 cells, increased the proportion of cells in the G_0/G_1 phase, decreased the proportion of cells in the S phase, and increased the apoptosis rate. The medicated plasma down-regulated the mRNA levels of miR-1297, PI3K, and Akt and up-regulated the mRNA level of PTEN. In addition, it up-regulated the protein levels of PTEN, Bax, caspase-3, and caspsae-9 and down-regulated the protein levels of p-Akt, p-PI3K, and Bcl-2. In conclusion, Bupleuri Radix-Paeoniae Radix Alba medicated plasma can inhibit the expression of miR-1297 in HepG2 hepatoma cells, promote the expression of PTEN, and negatively regulate PI3K/Akt signaling pathway, thereby inhibiting the proliferation and inducing the apoptosis of HepG2 cells.


Asunto(s)
Carcinoma Hepatocelular , Medicamentos Herbarios Chinos , Neoplasias Hepáticas , MicroARNs , Paeonia , Extractos Vegetales , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Hep G2 , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Caspasa 3/metabolismo , Proteína X Asociada a bcl-2 , MicroARNs/genética , MicroARNs/metabolismo , Transducción de Señal , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Apoptosis , Proliferación Celular , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , ARN Mensajero , Luciferasas/metabolismo , Luciferasas/farmacología , Línea Celular Tumoral
4.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1295-1309, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621977

RESUMEN

The aim of this study was to explore the mechanism of icaritin-induced ferroptosis in hepatoma HepG2 cells. By bioinformatics screening, the target of icariin's intervention in liver cancer ferroptosis was selected, the protein-protein interaction(PPI) network was constructed, the related pathways were focused, the binding ability of icariin and target protein was evaluated by molecular docking, and the impact on patients' survival prognosis was predicted and the clinical prediction model was built. CCK-8, EdU, and clonal formation assays were used to detect cell viability and cell proliferation; colorimetric method and BODIPY 581/591 C1 fluorescent probe were used to detect the levels of Fe~(2+), MDA and GSH in cells, and the ability of icariin to induce HCC cell ferroptosis was evaluated; RT-qPCR and Western blot detection were used to verify the mRNA and protein levels of GPX4, xCT, PPARG, and FABP4 to determine the expression changes of these ferroptosis-related genes in response to icariin. Six intervention targets(AR, AURKA, PPARG, AKR1C3, ALB, NQO1) identified through bioinformatic analysis were used to establish a risk scoring system that aids in estimating the survival prognosis of HCC patients. In conjunction with patient age and TNM staging, a comprehensive Nomogram clinical prediction model was developed to forecast the 1-, 3-, and 5-year survival of HCC patients. Experimental results revealed that icariin effectively inhibited the activity and proliferation of HCC cells HepG2, significantly modulating levels of Fe~(2+), MDA, and lipid peroxidation ROS while reducing GSH levels, hence revealing its potential to induce ferroptosis in HCC cells. Icariin was found to diminish the expression of GPX4 and xCT(P<0.01), inducing ferroptosis in HCC cells, potentially in relation to inhibition of PPARG and FABP4(P<0.01). In summary, icariin induces ferroptosis in HCC cells via the PPARG/FABP4/GPX4 pathway, providing an experimental foundation for utilizing the traditional Chinese medicine icariin in the prevention or treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Flavonoides , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , PPAR gamma , Células Hep G2 , Modelos Estadísticos , Simulación del Acoplamiento Molecular , Pronóstico , Proteínas de Unión a Ácidos Grasos
5.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1327-1334, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621980

RESUMEN

This study aims to investigate whether baicalin induces ferroptosis in HepG2 cells and decipher the underlying mechanisms based on network pharmacology and cell experiments. HepG2 cells were cultured in vitro and the cell viability was detected by the cell counting kit-8(CCK-8). The transcriptome data of hepatocellular carcinoma were obtained from the Cancer Genome Atlas(TCGA), and the ferroptosis gene data from FerrDb V2. The DEG2 package was used to screen the differentially expressed genes(DEGs), and the common genes between DEGs and ferroptosis genes were selected as the target genes that mediate ferroptosis to regulate hepatocellular carcinoma progression. The functions and structures of the target genes were analyzed by Gene Ontology(GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment with the thresholds of P<0.05 and |log_2(fold change)|>0.5. DCFH-DA probe was used to detect the changes in the levels of cellular reactive oxygen species(ROS) in each group. The reduced glutathione(GSH) assay kit was used to measure the cellular GSH level, and Fe~(2+) assay kit to determine the Fe~(2+) level. Real-time quantitative PCR(RT-PCR) was employed to measure the mRNA levels of glutathione peroxidase 4(GPX4) and solute carrier family 7 member 11(SLC7A11) in each group. Western blot was employed to determine the protein levels of GPX4, SLC7A11, phosphatidylinositol 3-kinase(PI3K), p-PI3K, protein kinase B(Akt), p-Akt, forkhead box protein O3a(FoxO3a), and p-FoxO3a in each group. The results showed that treatment with 200 µmol·L~(-1) baicalin for 48 h significantly inhibited the viability of HepG2 cells. Ferroptosis in hepatocellular carcinoma could be regulated via the PI3K/Akt signaling pathway. The cell experiments showed that baicalin down-regulated the expression of SLC7A11 and GPX4, lowered the GSH level, and increased ROS accumulation and Fe~(2+) production in HepG2 cells. However, ferrostatin-1, an ferroptosis inhibitor, reduced baicalin-induced ROS accumulation, up-regulated the expression of SLC7A11 and GPX4, elevated the GSH level, and decreased PI3K, Akt, and FoxO3a phosphorylation. In summary, baicalin can induce ferroptosis in HepG2 cells by inhibiting the ROS-mediated PI3K/Akt/FoxO3a pathway.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Flavonoides , Neoplasias Hepáticas , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Fosfatidilinositol 3-Quinasas/genética , Especies Reactivas de Oxígeno , Células Hep G2 , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Transducción de Señal
6.
Biointerphases ; 19(2)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38607255

RESUMEN

Hepatocellular carcinoma (HCC) has become an important public health problem, and there are still challenges to overcome in clinical treatment. The nanodrug delivery system (NDDS) has developed tremendously in recent years, and many researchers have explored NDDS for the treatment of HCC. Engineered cell membrane-coated nanoparticles (ECNPs) have emerged, combining the unique functions of cell membranes with the engineering versatility of synthetic nanoparticles (NPs) to effectively deliver therapeutic drugs. It is designed to have the capabilities: specific active targeting, immune evasion, prolonging the circulation blood time, controlled drug release delivery, and reducing drugs systematic toxicity. Thus, ECNPs are a promising bionic tool in the treatment of HCC and have operability to achieve combination and integrated therapy. This review focuses on the mechanism and strategy of ECNPs for the treatment of HCC and summarizes its research progress in the treatment of HCC in recent years.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Membrana Celular , Sistemas de Liberación de Medicamentos
7.
Med Oncol ; 41(5): 106, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575697

RESUMEN

Recent advances in nanotechnology have offered novel ways to combat cancer. By utilizing the reducing capabilities of Lactobacillus acidophilus, silver nanoparticles (AgNPs) are synthesized. The anti-cancer properties of AgNPs have been demonstrated in previous studies against several cancer cell lines; it has been hypothesized that these compounds might inhibit AMPK/mTOR signalling and BCL-2 expression. Consequently, the current research used both in vitro and in silico approaches to study whether Lactobacillus acidophilus AgNPs could inhibit cell proliferation autophagy and promote apoptosis in HepG2 cells. The isolated strain was identified as Lactobacillus acidophilus strain RBIM based on 16 s rRNA gene analysis. Based on our research findings, it has been observed that this particular strain can generate increased quantities of AgNPs when subjected to optimal growing conditions. The presence of silanols, carboxylates, phosphonates, and siloxanes on the surface of AgNPs was confirmed using FTIR analysis. AgNPs were configured using UV-visible spectroscopy at 425 nm. In contrast, it was observed that apoptotic cells exhibited orange-coloured bodies due to cellular shrinkage and blebbing initiated by AgNP treatment, compared to non-apoptotic cells. It is worth mentioning that AgNPs exhibited remarkable selectivity in inducing cell death, specifically in HepG2 cells, unlike normal WI-38 cells. The half-maximum inhibitory concentration (IC50) values for HepG2 and WI-38 cells were 4.217 µg/ml and 154.1 µg/ml, respectively. AgNPs induce an upregulation in the synthesis of inflammation-associated cytokines, including (TNF-α and IL-33), within HepG2 cells. AgNPs co-treatment led to higher glutathione levels and activating pro-autophagic genes such as AMPK.Additionally, it resulted in the suppression of mTOR, MMP-9, BCL-2, and α-SMA gene expression. The docking experiments suggest that the binding of AgNPs to the active site of the AMPK enzyme leads to inhibiting its activity. The inhibition of AMPK ultimately results in the suppression of the mechanistic mTOR and triggers apoptosis in HepG2 cells. In conclusion, the results of our study indicate that the utilization of AgNPs may represent a viable strategy for the eradication of liver cancerous cells through the activation of apoptosis and the enhancement of immune system reactions.


Asunto(s)
Neoplasias Hepáticas , Nanopartículas del Metal , Humanos , Plata/farmacología , Plata/química , Proteínas Quinasas Activadas por AMP , Nanopartículas del Metal/química , Metaloproteinasa 9 de la Matriz , Apoptosis , Neoplasias Hepáticas/tratamiento farmacológico , Serina-Treonina Quinasas TOR , Proteínas Proto-Oncogénicas c-bcl-2 , Extractos Vegetales/química
8.
Drug Des Devel Ther ; 18: 829-843, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38524877

RESUMEN

Tyrosine kinase inhibitors (TKIs) have been recognized as crucial agents for treating various tumors, and one of their key targets is the intracellular site of the vascular endothelial growth factor receptor (VEGFR). While TKIs have demonstrated their effectiveness in solid tumor patients and increased life expectancy, they can also lead to adverse cardiovascular effects including hypertension, thromboembolism, cardiac ischemia, and left ventricular dysfunction. Among the TKIs, sorafenib was the first approved agent and it exerts anti-tumor effects on hepatocellular carcinoma (HCC) and renal cell carcinoma (RCC) by inhibiting angiogenesis and tumor cell proliferation through targeting VEGFR and RAF. Unfortunately, the adverse cardiovascular effects caused by sorafenib not only affect solid tumor patients but also limit its application in curing other diseases. This review explores the mechanisms underlying sorafenib-induced cardiovascular adverse effects, including endothelial dysfunction, mitochondrial dysfunction, endoplasmic reticulum stress, dysregulated autophagy, and ferroptosis. It also discusses potential treatment strategies, such as antioxidants and renin-angiotensin system inhibitors, and highlights the association between sorafenib-induced hypertension and treatment efficacy in cancer patients. Furthermore, emerging research suggests a link between sorafenib-induced glycolysis, drug resistance, and cardiovascular toxicity, necessitating further investigation. Overall, understanding these mechanisms is crucial for optimizing sorafenib therapy and minimizing cardiovascular risks in cancer patients.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Hipertensión , Neoplasias Renales , Neoplasias Hepáticas , Humanos , Sorafenib/efectos adversos , Carcinoma Hepatocelular/patología , Antineoplásicos/efectos adversos , Factor A de Crecimiento Endotelial Vascular , Niacinamida , Compuestos de Fenilurea/efectos adversos , Neoplasias Hepáticas/tratamiento farmacológico , Receptores de Factores de Crecimiento Endotelial Vascular/uso terapéutico , Neoplasias Renales/tratamiento farmacológico , Hipertensión/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/efectos adversos
9.
Chem Biol Interact ; 392: 110926, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38431053

RESUMEN

Metabolic reprogramming enables cancer cells to generate energy mainly through aerobic glycolysis, which is achieved by increasing the expression levels of glycolysis-related enzymes. Therefore, the development of drugs targeting aerobic glycolysis could be an effective strategy for cancer treatment. Icaritin (ICT) is an active ingredient from the Chinese herbal plant Epimedium with several biological activities, but its anti-cancer mechanism remains inconclusive. Using normal hepatocytes and hepatoma cells, our results showed that ICT suppressed cell proliferation and clonal formation and decreased glucose consumption and lactate production in liver cancer cells. In consistent, the mRNA and protein levels of several aerobic glycolysis-related genes were decreased upon ICT treatment. Furthermore, our results demonstrated that the expression levels of the aerobic glycolysis-related proteins were correlated with the p53 status in hepatoma cells. Using PFT-α or siRNA-p53, our results confirmed that ICT regulated aerobic glycolysis in a p53-dependent manner. In addition, ICT was found to stabilize p53 at the post-translational level which might be mediated by inhibiting MDM2 expression and affecting its interaction with p53. Finally, our results demonstrated that ICT increased the levels of ROS that activated p53 via the p38 MAPK pathway. In conclusion, ICT increased intracellular ROS levels in liver cancer cells, which promoted the stabilization and activation of p53, inhibiting the expression of aerobic glycolysis-related genes and glycolysis, and ultimately leading to the suppression of liver cancer development.


Asunto(s)
Carcinoma Hepatocelular , Flavonoides , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Glucólisis , Proliferación Celular , Línea Celular Tumoral
10.
Int Immunopharmacol ; 130: 111769, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38442584

RESUMEN

Radiofrequency ablation (RFA) has been used as an alternative to surgical management of early-stage hepatocellular carcinoma (HCC). However, when large and irregular HCCs are subjected to RFA, a safety margin is usually difficult to obtain, thus causing a sublethal radiofrequency hyperthermia (RFH) at the ablated tumor margin. This study investigated the feasibility of using RFH to enhance the effect of OK-432 on HCC, with the aim to generate a tumor-free margin during RFA of HCC. Our results showed OK-432 could activate the cGAS-STING pathway, and RFH could further enhance the activation. Meanwhile, RFH could induce a high expression of TLR4, and TLR4 might be an upstream molecular of the cGAS-STING pathway. The combined therapy of RFH with OK-432 resulted in a better tumor response, and a prolonged survival compared to the other three treatments. In conclusion, RFH in combination with OK-432 might reduce the residual and recurrent tumor after RFA of large and irregular HCCs, and serve as a new option for other solid malignancies treated by RFA.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Hipertermia Inducida , Neoplasias Hepáticas , Proteínas de la Membrana , Nucleotidiltransferasas , Picibanil , Ablación por Radiofrecuencia , Receptor Toll-Like 4 , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Recurrencia Local de Neoplasia/patología , Picibanil/farmacología , Picibanil/uso terapéutico , Estudios Retrospectivos , Receptor Toll-Like 4/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Animales , Ratones , Línea Celular Tumoral , Ratones Endogámicos C57BL , Masculino
11.
J Ethnopharmacol ; 327: 117994, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437889

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ixeris sonchifolia alias Kudiezi, it was named Ixeris sonchifolia (Bunge) Hance, a synonym for Crepidiastrum sonchifolium (Bunge) Pak & Kawano in the https://www.iplant.cn/. And it was first published in J. Linn. Soc., Bot. 13: 108 (1873), which was named Ixeris sonchifolia (Maxim.) Hance in the MPNS (http://mpns.kew.org). As a widely distributed medicinal and edible wild plant, it possesses unique bitter-cold characteristics and constituents with various pharmacological activities. Its main antitumor substances, same as artemisinin and paclitaxel, are classified as terpenoids and have become research foci in recent years. However, its specific biological activity and role in antitumor treatment remain largely unclear. AIM OF THE STUDY: This study aimed to elucidate the molecular targets and potential mechanisms of hepatocellular carcinoma apoptosis induced by Ixeris sonchifolia. MATERIALS AND METHODS: We used network pharmacology methods to analyze and screen the active ingredients and possible underlying mechanisms of Ixeris sonchifolia in treating liver cancer and employed integrative time- and dose-dependent toxicity, transcriptomics, and molecular biology approaches to comprehensively verify the function of Ixeris sonchifolia extract (IsE) in human hepatoblastoma cell (HepG2) apoptosis and its potential mechanism. RESULTS: A total of 169 common targets were screened by network pharmacology, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that IsE inhibited HepG2 cell activity in a time- and dose-dependent manner. Western blot analysis confirmed that IsE promoted HepG2 cell apoptosis by inhibiting the PI3K/AKT signaling pathway and that the PI3K/AKT inhibitor LY294002 also substantially enhanced IsE-induced apoptosis. The PI3K/AKT signaling pathway exhibited significant differences compared to that in the control group. CONCLUSION: Combining network pharmacology with experimental verification, IsE inhibited mitochondrial function and the PI3K/AKT pathway while inducing hepatoma cell apoptosis. IsE may have promising potential for liver cancer treatment and chemoprevention.


Asunto(s)
Asteraceae , Carcinoma Hepatocelular , Medicamentos Herbarios Chinos , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Farmacología en Red , Apoptosis , Simulación del Acoplamiento Molecular
12.
J Ethnopharmacol ; 327: 118018, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38453100

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine has great potential and advantages in the treatment of liver fibrosis, with Fuzheng Huayu formula (FZHY) serving as a prime example due to its remarkable efficacy in delaying and reversing liver fibrosis while simultaneously improving clinical symptoms for patients. AIM OF THE REVIEW: In this paper, we present a comprehensive review of recent studies on the therapeutic potential of FZHY and its components/ingredients in the treatment of liver fibrosis and cirrhosis, with the aim of providing insights for future research endeavors. MATERIALS AND METHODS: A comprehensive literature search was conducted on FZHY, TCM319, traditional Chinese medicine 319, liver fibrosis and cirrhosis using multiple internationally recognized databases including PubMed, Embase, Springer, Web of science, SciVerse ScienceDirect, Clinical Trails. Gov, CNKI, Wanfang, and VIP. RESULTS: FZHY is widely used clinically for liver fibrosis and cirrhosis caused by various chronic liver diseases, with the effects of improving serum liver function, liver pathological histology, serological indices related to liver fibrosis, decreasing liver stiffness values and portal hypertension, as well as reducing the incidence of hepatocellular carcinoma and morbidity/mortality in patients with cirrhosis. Numerous in vivo and in vitro experiments have demonstrated that FZHY possesses anti-fibrotic effects by inhibiting hepatic stellate cell activation, reducing inflammation, protecting hepatocytes, inhibiting hepatic sinusoidal capillarization and angiogenesis, promoting extracellular matrix degradation, and facilitating liver regeneration. In recent years, there has been a growing focus on investigating the primary active components/ingredients of FZHY, and significant strides have been made in comprehending their synergistic mechanisms that enhance efficacy. CONCLUSION: FZHY is a safe and effective drug for treating liver fibrosis. Future research on FZHY should focus on its active components/ingredients and their synergistic effects, as well as the development of modern cocktail drugs based on its components/ingredients. This will facilitate a more comprehensive understanding of the molecular mechanisms and targets of FZHY in treating liver fibrosis, thereby further guide clinical applications and drug development.


Asunto(s)
Medicamentos Herbarios Chinos , Neoplasias Hepáticas , Humanos , Cirrosis Hepática/metabolismo , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Neoplasias Hepáticas/tratamiento farmacológico
13.
Sci Rep ; 14(1): 6348, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491051

RESUMEN

Hepatocellular carcinoma (HCC) progression is associated with dysfunctional mitochondria and bioenergetics impairment. However, no data about the relationship between mitochondrial supercomplexes (hmwSC) formation and ATP production rates in HCC are available. Our group has developed an adenosine derivative, IFC-305, which improves mitochondrial function, and it has been proposed as a therapeutic candidate for HCC. We aimed to determine the role of IFC-305 on both mitochondrial structure and bioenergetics in a sequential cirrhosis-HCC model in rats. Our results showed that IFC-305 administration decreased the number and size of liver tumors, reduced the expression of tumoral markers, and reestablished the typical architecture of the hepatic parenchyma. The livers of treated rats showed a reduction of mitochondria number, recovery of the mtDNA/nDNA ratio, and mitochondrial length. Also, IFC-305 increased cardiolipin and phosphatidylcholine levels and promoted hmwSC reorganization with changes in the expression levels of hmwSC assembly-related genes. IFC-305 in HCC modified the expression of several genes encoding elements of electron transport chain complexes and increased the ATP levels by recovering the complex I, III, and V activity. We propose that IFC-305 restores the mitochondrial bioenergetics in HCC by normalizing the quantity, morphology, and function of mitochondria, possibly as part of its hepatic restorative effect.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratas , Animales , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Dietilnitrosamina/toxicidad , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Mitocondrias/metabolismo , Adenosina/metabolismo , Metabolismo Energético , Adenosina Trifosfato/metabolismo
14.
Ecotoxicol Environ Saf ; 273: 116161, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38430581

RESUMEN

Di(2-ethylhexyl) phthalate (DEHP) is a worldwide common plasticizer. Nevertheless, DEHP is easily leached out to the environment due to the lack of covalent bonds with plastic. High dose of DEHP exposure is often observed in hemodialysis patients because of the continual usage of plastic medical devices. Although the liver is the major organ that catabolizes DEHP, the impact of long-term DEHP exposure on the sensitivity of liver cancer to chemotherapy remains unclear. In this study, we established long-term DEHP-exposed hepatocellular carcinoma (HCC) cells and two NOD/SCID mice models to investigate the effects and the underlying mechanisms of long-term DEHP exposure on chemosensitivity of HCC. The results showed long-term DEHP exposure potentially increased epithelial-mesenchymal transition (EMT) in HCC cells. Next generation sequencing showed that long-term DEHP exposure increased cell adhesion/migratory related genes expression and blunted sorafenib treatment induced genes alterations. Long-term exposure to DEHP reduced the sensitivity of HCC cells to sorafenib-induced anti-migratory effect by enhancing the EMT transcription factors (slug, twist, and ZEB1) and mesenchymal protein (vimentin) expression. In NOD/SCID mice model, we showed that long-term DEHP-exposed HCC cells exhibited higher growth rate. Regarding the anti-HCC effects of sorafenib, subcutaneous HuH7 tumor grew slowly in sorafenib-treated mice. Nonetheless, the anti-tumor growth effect of sorafenib was not observed in long-term DEHP-exposed mice. Higher mesenchymal markers and proliferating cell nuclear antigen (PCNA) expression were found in sorafenib-treated long-term DEHP-exposed mice. In conclusion, long-term DEHP exposure promoted migratory activity in HCC cells and decreased sorafenib sensitivity in tumor-bearing mice.


Asunto(s)
Carcinoma Hepatocelular , Dietilhexil Ftalato , Neoplasias Hepáticas , Ácidos Ftálicos , Humanos , Ratones , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Sorafenib/farmacología , Sorafenib/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Dietilhexil Ftalato/toxicidad , Ratones SCID , Ratones Endogámicos NOD , Resultado del Tratamiento
15.
Gene ; 912: 148383, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38493972

RESUMEN

Liver cancer is one of the most lethal malignancies and sorafenib resistance is the main treatment obstacle for patients with advanced liver cancer. Developing drugs that sensitize liver cancer patients to sorafenib is of great importance. Lianhua Qingwen (LHQW), a sort of Traditional Chinese Medicine (TCM) approved by the Chinese Food and Drug Administration (CFDA), is reported to exert synergistic effects with oseltamivir against Influenza virus. However, whether LHQW could exhibit anti-liver cancer effects and enhance the efficacy of sorafenib against liver cancer have not been reported. In the present study, the potential anti-liver cancer effects of LHQW and its synergistic effects with sorafenib were investigated via applying network pharmacology, molecular docking, and in vitro experiments. An "ingredient-compound- target-liver cancer" network was constructed which included 12 ingredients, 164 compounds, and 402 targets. AKT1 was identified as the most hub gene and the PI3K/AKT pathway was revealed as the most enriched pathway. Subsequently, the molecular docking results showed that kaempferol, luteolin, and quercetin were screened as the top 3 compounds which showed the tightest binding to AKT1. Further, the in vitro experiments verified that LHQW significantly inhibited liver cancer cell proliferation and induced apoptosis. Western blot assays confirmed that LHQW could attenuate the PI3K/AKT pathway. Interestingly, LHQW showed a synergistic effect with sorafenib against liver cancer via reducing cell viability, inducing apoptosis, and down- regulating PI3K/AKT pathway. This study broadens the potential application of LHQW and provides insights for liver cancer treatment.


Asunto(s)
Medicamentos Herbarios Chinos , Neoplasias Hepáticas , Humanos , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Sorafenib/farmacología , Farmacología en Red , Neoplasias Hepáticas/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
16.
Phytomedicine ; 128: 155338, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38520835

RESUMEN

BACKGROUND: Liver cancer, one of the most common types of cancer worldwide, accounts for millions of cases annually. With its multi-target and wide-ranging therapeutic effects, traditional Chinese medicine has emerged as a potential approach for treating various tumors. Codonopsis pilosula, a traditional herb, is known for its anti-inflammatory and antioxidant properties. In this study, we investigated the potential molecular mechanisms of Codonopsis pilosula in regulating the inhibition of CDK1 and the modulation of PDK1/ß-catenin, which are involved in hepatocellular carcinoma growth and metastasis. STUDY DESIGN/METHODS: Firstly, we screened the active chemical constituents of Codonopsis pilosula and identified their respective target proteins using the Herb database. Then, we applied the GeneCards database and transcriptome sequencing analysis to screen for critical genes associated with the occurrence and development of liver cancer. The intersection of the target proteins and disease-related genes was used to determine the potential targets of Codonopsis pilosula in hepatocellular carcinoma. Protein-protein interaction analysis and GO/KEGG analysis were subsequently performed to uncover the pathways through which Codonopsis pilosula acts on liver cancer. The Huh-7 cell line, exhibiting the highest sensitivity to Codonopsis pilosula polysaccharide solution (CPP) intervention, was chosen for subsequent studies. Cell viability was evaluated using the CCK-8 assay, colony formation assay was conducted to determine cell proliferation capacity, flow cytometry was used to analyze cell cycle, TUNEL staining was performed to assess cell apoptosis, scratch assay was carried out to evaluate cell migration ability, the expression of EMT-related proteins was detected and analyzed, and cell sphere formation assay was conducted to investigate cell stemness. Finally, a liver cancer animal model was established, and different doses of CPP were administered via gavage the next day. The expression levels of CDK1, PDK1, and ß-catenin in mouse liver tissues were detected and analyzed, immunohistochemistry staining was performed to assess the expression of tumor cell proliferation-related proteins Ki67 and PCNA in mouse xenografts, and TUNEL staining was carried out to evaluate cell apoptosis in mouse liver tissues. After intervention with CDK1 expression, the expression levels of CDK1, PDK1, and ß-catenin proteins and mRNA in each group of cells were detected using Western blot and RT-qPCR. RESULTS: Through network pharmacology analysis, transcriptome sequencing, and bioinformatics analysis, 35 target genes through which Codonopsis pilosula acts on liver cancer were identified. Among them, CDK1, with the highest degree in the PPI network, was considered an essential target protein for Codonopsis pilosula in treating liver cancer. In vitro cell experiments revealed that CPP could inhibit the expression of CDK1/PDK1/ß-catenin signaling axis factors, suppress cell proliferation, decrease cell migration ability, influence the EMT process, and reduce cell stemness by inhibiting CDK1 and affecting the PDK1/ß-catenin signaling axis. Similarly, in vivo experiments demonstrated that CPP could regulate the CDK1/PDK1/ß-catenin signaling axis, inhibit tumor growth, and induce cell apoptosis. CONCLUSION: Codonopsis pilosula may inhibit hepatocellular carcinoma growth by suppressing CDK1 and affecting the PDK1/ß-catenin signaling axis, limiting cell EMT and reducing cell stemness. These findings provide insights into the potential therapeutic role of Codonopsis pilosula in liver cancer.


Asunto(s)
Proteína Quinasa CDC2 , Carcinoma Hepatocelular , Codonopsis , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Animales , Humanos , Codonopsis/química , Línea Celular Tumoral , Proteína Quinasa CDC2/metabolismo , Ratones , Proliferación Celular/efectos de los fármacos , beta Catenina/metabolismo , Antineoplásicos Fitogénicos/farmacología , Ratones Desnudos , Ratones Endogámicos BALB C , Masculino , Movimiento Celular/efectos de los fármacos , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Ensayos Antitumor por Modelo de Xenoinjerto , Medicamentos Herbarios Chinos/farmacología
17.
Adv Ther ; 41(4): 1711-1727, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38443649

RESUMEN

INTRODUCTION: Systemic therapies have been associated with clinically significant events (CSEs) in patients with unresectable hepatocellular carcinoma (uHCC). We evaluated the incidence of CSEs (bleeding, clotting, encephalopathy, and portal hypertension), and their impact on healthcare resource utilization (HCRU) and costs, in patients with uHCC treated with first-line (1L) atezolizumab plus bevacizumab (A + B), lenvatinib (LEN), or sorafenib (SOR) in the USA. METHODS: A retrospective cohort study was performed using medical/pharmacy claims from Optum® Clinformatics® Data Mart. Patients diagnosed with HCC who initiated 1L A + B between June 01, 2020 and December 31, 2020 or LEN/SOR between January 01, 2016 and May 31, 2020 were included. Outcomes included incidence rates of CSEs, HCRU, and costs. Subgroup analysis was performed in patients with no CSEs or ≥ 1 CSE. RESULTS: In total, 1379 patients were selected (A + B, n = 271; LEN, n = 217; SOR, n = 891). Clotting (incidence rate per 100 patient-years [PY] 94.9) and bleeding (88.1 per 100 PY) were the most common CSEs in the A + B cohort. The most common CSEs in the LEN cohort were clotting (78.6 per 100 PY) and encephalopathy (66.3 per 100 PY). Encephalopathy (73.0 per 100 PY) and portal hypertension (72.3 per 100 PY) were the most common CSEs in the SOR cohort. Mean total all-cause healthcare costs per patient per month (PPPM) were $32,742, $35,623, and $29,173 in the A + B, LEN, and SOR cohorts, respectively. Mean total all-cause healthcare costs PPPM were higher in patients who had ≥ 1 CSE versus those who did not (A + B $34,304 versus $30,889; LEN $39,591 versus $30,621; SOR $31,022 versus $27,003). CONCLUSION: Despite improved efficacy of 1L systemic therapies, CSEs remain a concern for patients with uHCC, as well as an economic burden to the healthcare system. Newer treatments that reduce the risk of CSEs, while improving long-term survival in patients with uHCC, are warranted.


Certain treatments for liver cancer can cause serious side effects, including bleeding, blood clots, brain injury (encephalopathy), or increased blood flow to the liver (portal hypertension). We used an insurance database to find out how often these events, known as clinically significant events, occurred in people with liver cancer who were given treatments that target the immune system (immunotherapy) or specific proteins involved in cancer growth and survival (targeted therapy). The study included 1379 patients treated with atezolizumab (immunotherapy) plus bevacizumab (targeted therapy), or lenvatinib or sorafenib alone (both targeted therapies), as their first treatment. Clotting and bleeding were the most common clinically significant events in patients treated with atezolizumab plus bevacizumab, whereas clotting and encephalopathy were the most common clinically significant events with lenvatinib, and encephalopathy and portal hypertension were the most common clinically significant events with sorafenib. On average, for every 100 patients treated for 1 year, there were more than 50 of each of these events. Average healthcare costs per patient per month ranged from around $29,000 to around $36,000 in the three different treatment groups, and were higher in people who had at least one clinically significant event. These results suggest that clinically significant events are common in people with liver cancer who are given various types of treatment. As well as raising concerns for patient safety, these events result in higher costs to healthcare systems. Therefore, newer treatments that are less likely to cause clinically significant events, while improving survival in patients with liver cancer, are needed.


Asunto(s)
Encefalopatías , Carcinoma Hepatocelular , Hipertensión Portal , Neoplasias Hepáticas , Compuestos de Fenilurea , Quinolinas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Incidencia , Neoplasias Hepáticas/tratamiento farmacológico , Estudios Retrospectivos , Sorafenib , Hemorragia
18.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474318

RESUMEN

Hepatocellular carcinoma is one of the most common malignant tumors in the world and shows strong metastatic potential. Current medicine for hepatocellular carcinoma therapy is invalid, while Scutellaria baicalensis Georgi exhibits the pharmaceutical potential to treat liver diseases and liver cancer. Herein, we verified the inhibitory properties and the pivotal molecules regimented by Scutellaria baicalensis on advanced hepatocellular carcinoma. At first, the viability of SK-Hep-1 cells was significantly reduced under treatment of Scutellaria baicalensis extract in a dose-dependent manner without affecting the growth of normal hepatocyte. Scutellaria baicalensis extract application could remarkably cause apoptosis of SK-Hep-1 cells through p53/cytochrome C/poly-ADP ribose polymerase cascades and arrest the cell cycle at the G1/S phase by downregulating cyclin-dependent kinases. Meanwhile, administration of Scutellaria baicalensis extract remarkably attenuated the migration capability as well as suppressed matrix metalloproteinase activity of advanced hepatocellular carcinoma cells. The proteome profiles and network analysis particularly implied that exposure to Scutellaria baicalensis extract downregulated the expression of HSP90ß, and the clinical stage of hepatocellular carcinoma is also positively correlated with the HSP90ß level. Combined treatment of Scutellaria baicalensis extract and HSP90ß siRNAs could markedly enhance the ubiquitination activity and the degradation of vimentin to subsequently inhibit the metastatic property of SK-Hep-1 cells. Moreover, application of Scutellaria baicalensis extract and HSP90ß siRNAs depleted phosphorylation of AKT, which stimulated the expression of p53 and consecutively triggered cell apoptosis. These findings suggest that HSP90ß may be a prospective target for the effective therapy of advanced hepatocellular carcinoma via accelerating apoptosis of hepatocellular carcinoma cells and eliciting mesenchymal-epithelial transition with the administration of Scutellaria baicalensis extract.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Extractos Vegetales , Scutellaria baicalensis , Humanos , Apoptosis , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Extractos Vegetales/farmacología , Proteína p53 Supresora de Tumor
19.
PLoS One ; 19(3): e0295090, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38437209

RESUMEN

BACKGROUND: To evaluate the cost-effectiveness of Tislelizumab vs Sorafenib as the first-line treatment of unresectable hepatocellular carcinoma (HCC) from the perspective of the Chinese health service system. METHODS: A lifetime partitioned survival model (PSM) was developed to cost-effectively analyze Tislelizumab vs Sorafenib as the first-line treatment of unresectable HCC. The clinical and safety data were derived from a recently randomized clinical trial (RATIONALE-301). Utilities were collected from the published literature. Costs were obtained from an open-access database (http://www.yaozh.com) and previous studies. The model cycle was 21 days, according to the RATIONALE-301 study, and the simulation period was patients' lifetime. Long-term direct medical costs and quality-adjusted life-years (QALYs) were determined. The incremental cost-effectiveness ratio (ICER) was used as the evaluation index. one-way sensitivity analysis (OSWA) and probabilistic sensitivity analysis (PSA) were used to analyze the uncertainty of parameters and to adjust and verify the stability of the baseline results. RESULTS: The Tislelizumab group generated a cost of $39,746.34 and brought health benefits to 2.146 QALYs, while the cost and utility of the Sorafenib group were $26750.95 and 1.578 QALYs, respectively. The Tislelizumab group increased QALYs by 0.568, the incremental cost was $12995.39, and the ICER was $22869.64/QALY, lower than the willingness to pay threshold (WTP). OSWA results showed that the utility of progressed disease (PD), cost of Camrelizumab, and cost of Tislelizumab were the main factors affecting the ICER. PSA results showed that, within 1000 times the Monte Carlo simulation, the cost of the Tislelizumab group was lower than three times the per capita gross domestic product (GDP) of China ($37653/QALY). The cost-effectiveness acceptability curves (CEAC) revealed that when WTP was no less than $12251.00, the Tislelizumab group was the dominant scheme, and the economic advantage grew with an increasing WTP. When WTP ≥ $19000.00, the Tislelizumab group became the absolute economic advantage. CONCLUSION: Under the current economic conditions in China, the Tislelizumab therapeutic scheme is more cost-effective than the Sorafenib therapeutic scheme for treating patients with unresectable HCC.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Sorafenib/uso terapéutico , Análisis de Costo-Efectividad , Neoplasias Hepáticas/tratamiento farmacológico
20.
J Cell Mol Med ; 28(6): e18223, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38451046

RESUMEN

Hepatoblastoma (HB), a primary liver tumour, is notorious for its high metastatic potential and poor prognosis. Ganoderma lucidum, an edible mushroom species utilized in traditional Chinese medicine for addressing various tumour types, presents an intriguing avenue for HB treatment. However, the effectiveness of G. lucidum in managing HB and its underlying molecular mechanism necessitates further exploration. Standard in vitro assays were conducted to evaluate the impact of sporoderm-broken spores of G. lucidum (SBSGL) on the malignant characteristics of HB cells. The mechanism of SBSGL in treating HB and its tumour immunomodulatory effects were explored and validated by various experiments, including immunoprecipitation, Western blotting, mRFP-GFP-LC3 adenovirus transfection and co-localization analysis, as well as verified with in vivo experiments in this regard. The results showed that SBSGL effectively inhibited the malignant traits of HB cells and suppressed the O-GlcNAcylation of RACK1, thereby reducing its expression. In addition, SBSGL inhibited immune checkpoints and regulated cytokines. In conclusion, SBSGL had immunomodulatory effects and regulated the malignancy and autophagy of HB by regulating the O-GlcNAcylation of RACK1. These findings suggest that SBSGL holds promise as a potential anticancer drug for HB treatment.


Asunto(s)
Hepatoblastoma , Neoplasias Hepáticas , Reishi , Hepatoblastoma/tratamiento farmacológico , Hepatoblastoma/genética , Esporas Fúngicas , Autofagia , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA