Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.229
Filtrar
Más filtros

Intervalo de año de publicación
1.
Integr Cancer Ther ; 23: 15347354241247223, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646808

RESUMEN

BACKGROUND: Luteolin, a common dietary flavonoid found in plants, has been shown to have anti-cancer properties. However, its exact mechanisms of action in non-small cell lung cancer (NSCLC) are still not fully understood, particularly its role in regulating broader genomic networks and specific gene targets. In this study, we aimed to elucidate the role of microRNAs (miRNAs) in NSCLC treated with luteolin, using A549 cells as a model system. MATERIALS AND METHODS: miRNA profiling was conducted on luteolin-treated A549 cells using Exiqon microarrays, with validation of selected miRNAs by qRT-PCR. Bioinformatic analysis identified the regulatory roles of miRNAs in biological processes and pathways following luteolin treatment. Computational algorithms were employed to identify potential target genes. A549 cells were transfected with miR-106a-5p mimic and inhibitor or their corresponding controls. The expression levels of 2 genes, twist basic helix-loop-helix transcription factor 1 (TWIST1) and matrix metallopeptidase 2 (MMP2), and cell migration were assessed. RESULTS: miRNA profiling identified 341 miRNAs, with 18 exhibiting significantly altered expression (P < 0.05). Subsequent qRT-PCR analysis confirmed altered expression of 6 selected miRNAs. KEGG and GO analyses revealed significant alterations in pathways and biological processes crucial for tumor biology. TWIST1 and MMP2, which both contain conserved miR-106a-5p binding sites, exhibited an inverse correlation with the expression levels of miR-106a-5p. Dual-luciferase reporter assays confirmed TWIST1 and MMP2 as direct targets of miR-106a-5p. Luteolin treatment led to a reduction in A549 cell migration, and this reduction was further amplified by the overexpression of miR-106a-5p. CONCLUSION: Luteolin inhibits A549 cell migration by modulating the miRNA landscape, shedding light on its mechanisms and laying the foundation for miRNA-based therapeutic approaches for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares , Luteolina , Metaloproteinasa 2 de la Matriz , MicroARNs , Proteínas Nucleares , Proteína 1 Relacionada con Twist , Regulación hacia Arriba , Humanos , Luteolina/farmacología , MicroARNs/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo , Células A549 , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética
2.
N Engl J Med ; 390(14): 1265-1276, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38598794

RESUMEN

BACKGROUND: Platinum-based chemotherapy is the recommended adjuvant treatment for patients with resectable, ALK-positive non-small-cell lung cancer (NSCLC). Data on the efficacy and safety of adjuvant alectinib as compared with chemotherapy in patients with resected ALK-positive NSCLC are lacking. METHODS: We conducted a global, phase 3, open-label, randomized trial in which patients with completely resected, ALK-positive NSCLC of stage IB (tumors ≥4 cm), II, or IIIA (as classified according to the seventh edition of the Cancer Staging Manual of the American Joint Committee on Cancer and Union for International Cancer Control) were randomly assigned in a 1:1 ratio to receive oral alectinib (600 mg twice daily) for 24 months or intravenous platinum-based chemotherapy in four 21-day cycles. The primary end point was disease-free survival, tested hierarchically among patients with stage II or IIIA disease and then in the intention-to-treat population. Other end points included central nervous system (CNS) disease-free survival, overall survival, and safety. RESULTS: In total, 257 patients were randomly assigned to receive alectinib (130 patients) or chemotherapy (127 patients). The percentage of patients alive and disease-free at 2 years was 93.8% in the alectinib group and 63.0% in the chemotherapy group among patients with stage II or IIIA disease (hazard ratio for disease recurrence or death, 0.24; 95% confidence interval [CI], 0.13 to 0.45; P<0.001) and 93.6% and 63.7%, respectively, in the intention-to-treat population (hazard ratio, 0.24; 95% CI, 0.13 to 0.43; P<0.001). Alectinib was associated with a clinically meaningful benefit with respect to CNS disease-free survival as compared with chemotherapy (hazard ratio for CNS disease recurrence or death, 0.22; 95% CI, 0.08 to 0.58). Data for overall survival were immature. No unexpected safety findings were observed. CONCLUSIONS: Among patients with resected ALK-positive NSCLC of stage IB, II, or IIIA, adjuvant alectinib significantly improved disease-free survival as compared with platinum-based chemotherapy. (Funded by F. Hoffmann-La Roche; ALINA ClinicalTrials.gov number, NCT03456076.).


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Compuestos de Platino , Humanos , Carbazoles/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/cirugía , Recurrencia Local de Neoplasia/tratamiento farmacológico , Piperidinas/uso terapéutico , Proteínas Tirosina Quinasas Receptoras , Resultado del Tratamiento , Administración Oral , Administración Intravenosa , Compuestos de Platino/uso terapéutico , Antineoplásicos/uso terapéutico
3.
Medicine (Baltimore) ; 103(15): e37636, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38608065

RESUMEN

This study aimed to investigate the clinical predictors, including traditional Chinese medicine tongue characteristics and other clinical parameters for chemotherapy-induced myelosuppression (CIM), and then to develop a clinical prediction model and construct a nomogram. A total of 103 patients with lung cancer were prospectively enrolled in this study. All of them were scheduled to receive first-line chemotherapy regimens. Participants were randomly assigned to either the training group (n = 52) or the test group (n = 51). Tongue characteristics and clinical parameters were collected before the start of chemotherapy, and then the incidence of myelosuppression was assessed after treatment. We used univariate logistic regression analysis to identify the risk predictors for assessing the incidence of CIM. Moreover, we developed a predictive model and a nomogram using multivariate logistic regression analysis. Finally, we evaluated the predictive performance of the model by examining the area under the curve value of the receiver operating characteristic, calibration curve, and decision curve analysis. As a result, a total of 3 independent predictors were found to be associated with the CIM in multivariate regression analysis: the fat tongue (OR = 3.67), Karnofsky performance status score (OR = 0.11), and the number of high-toxic drugs in chemotherapy regimens (OR = 4.78). Then a model was constructed using these 3 predictors and it exhibited a robust predictive performance with an area under the curve of 0.82 and the consistent calibration curves. Besides, the decision curve analysis results suggested that applying this predictive model can result in more net clinical benefit for patients. We established a traditional Chinese medicine prediction model based on the tongue characteristics and clinical parameters, which could serve as a useful tool for assessing the risk of CIM.


Asunto(s)
Antineoplásicos , Enfermedades de la Médula Ósea , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Modelos Estadísticos , Pronóstico , Lengua
4.
Zhongguo Fei Ai Za Zhi ; 27(3): 216-230, 2024 Mar 20.
Artículo en Chino | MEDLINE | ID: mdl-38590196

RESUMEN

Non-small cell lung cancer (NSCLC) is one of the malignant tumors with high morbidity and mortality worldwide. Ferroptosis is a new type of programmed cell death caused by abnormal accumulation of iron-dependent reactive oxygen species (ROS) leading to lipid peroxidation. It involves the balance between iron metabolism, lipid metabolism, oxygen free radical reaction and lipid peroxidation. Recent studies have found that ferroptosis is closely related to the occurrence and development of NSCLC. Due to the emergence of chemotherapy resistance and radiotherapy resistance in the treatment of NSCLC, there is an urgent need to develop new effective drugs and treatment strategies. Traditional Chinese medicine has unique advantages in the prevention and treatment of NSCLC due to its multi-targets and minimal side effects. In this review, we summarize the mechanism of ferroptosis in NSCLC, and discuss the research status of active ingredients of traditional Chinese medicine, single-herb traditional Chinese medicine and Chinese herbal compounds in the intervention of NSCLC through ferroptosis, in order to provide a new theoretical basis for the research of ferroptosis pathway and the prevention and treatment of NSCLC by targeted ferroptosis of traditional Chinese medicine.
.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Ferroptosis , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Medicina Tradicional China , Neoplasias Pulmonares/tratamiento farmacológico , Hierro
5.
Crit Rev Immunol ; 44(5): 27-40, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38618726

RESUMEN

Zilongjin (ZLJ) is a common traditional Chinese medicine for lung adenocarcinoma (LUAD) treatment. However, its mechanisms of action remain to be elucidated. Network pharmacology was used to explore the underlying mechanisms of ZLJ on LUAD treatment. The disease-related targets were determined from the Gene-Cards and DisGeNET databases. Active compounds and targets of ZLJ were obtained from the HIT, TCMSP, and TCMID databases. Then the protein-protein interaction (PPI) network was built by the STRING database to identify core-hub targets of ZLJ in LUAD. Next, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were employed to analyze the enriched regulatory pathways of targets. Molecular docking analysis was used to evaluate interactions between potential targets and active compounds. Finally, qRT-PCR was used to further verify the results of network pharmacology. A total of 124 LUAD-related targets of ZLJ and 5 active compounds of ZLJ from the relevant databases were screened out. Among these target proteins, JUN, CDH1, PPARG, and FOS were core hub-genes in the PPI network. GO and KEGG pathway enrichment analysis indicated that these targets might regulate the PPAR signaling pathway in LUAD. JUN, PPARG, and FOS levels were upregulated, while CDH1 level was downregulated in LUAD cells. This study discerned that ZLJ may target genes such as JUN, FOS, PPARG, and CDH1 via the PPAR signaling pathway in LUAD, offering foundational insights for further exploration of ZLJ in clinical applications.


Asunto(s)
Adenocarcinoma del Pulmón , Medicamentos Herbarios Chinos , Neoplasias Pulmonares , Humanos , Farmacología en Red , Simulación del Acoplamiento Molecular , PPAR gamma , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética
6.
ACS Nano ; 18(15): 10509-10526, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38564478

RESUMEN

Systemic exposure to starch-coated iron oxide nanoparticles (IONPs) can stimulate antitumor T cell responses, even when little IONP is retained within the tumor. Here, we demonstrate in mouse models of metastatic breast cancer that IONPs can alter the host immune landscape, leading to systemic immune-mediated disease suppression. We report that a single intravenous injection of IONPs can inhibit primary tumor growth, suppress metastases, and extend survival. Gene expression analysis revealed the activation of Toll-like receptor (TLR) pathways involving signaling via Toll/Interleukin-1 receptor domain-containing adaptor-inducing IFN-ß (TRIF), a TLR pathway adaptor protein. Requisite participation of TRIF in suppressing tumor progression was demonstrated with histopathologic evidence of upregulated IFN-regulatory factor 3 (IRF3), a downstream protein, and confirmed in a TRIF knockout syngeneic mouse model of metastatic breast cancer. Neither starch-coated polystyrene nanoparticles lacking iron, nor iron-containing dextran-coated parenteral iron replacement agent, induced significant antitumor effects, suggesting a dependence on the type of IONP formulation. Analysis of multiple independent clinical databases supports a hypothesis that upregulation of TLR3 and IRF3 correlates with increased overall survival among breast cancer patients. Taken together, these data support a compelling rationale to re-examine IONP formulations as harboring anticancer immune (nano)adjuvant properties to generate a therapeutic benefit without requiring uptake by cancer cells.


Asunto(s)
Neoplasias de la Mama , Neoplasias Pulmonares , Animales , Ratones , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 4/metabolismo , Modelos Animales de Enfermedad , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Hierro , Almidón , Nanopartículas Magnéticas de Óxido de Hierro
7.
Mol Biol Rep ; 51(1): 523, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630183

RESUMEN

BACKGROUND: In recent decades, phytotherapy has remained as a key therapeutic option for the treatment of various cancers. Evodiamine, an excellent phytocompound from Evodia fructus, exerts anticancer activity in several cancers by modulating drug resistance. However, the role of evodiamine in cisplatin-resistant NSCLC cells is not clear till now. Therefore, we have used evodiamine as a chemosensitizer to overcome cisplatin resistance in NSCLC. METHODS: Here, we looked into SOX9 expression and how it affects the cisplatin sensitivity of cisplatin-resistant NSCLC cells. MTT and clonogenic assays were performed to check the cell proliferation. AO/EtBr and DAPI staining, ROS measurement assay, transfection, Western blot analysis, RT-PCR, Scratch & invasion, and comet assay were done to check the role of evodiamine in cisplatin-resistant NSCLC cells. RESULTS: SOX9 levels were observed to be higher in cisplatin-resistant A549 (A549CR) and NCI-H522 (NCI-H522CR) compared to parental A549 and NCI-H522. It was found that SOX9 promotes cisplatin resistance by regulating ß-catenin. Depletion of SOX9 restores cisplatin sensitivity by decreasing cell proliferation and cell migration and inducing apoptosis in A549CR and NCI-H522CR. After evodiamine treatment, it was revealed that evodiamine increases cisplatin-induced cytotoxicity in A549CR and NCI-H522CR cells through increasing intracellular ROS generation. The combination of both drugs also significantly inhibited cell migration by inhibiting epithelial to mesenchymal transition (EMT). Mechanistic investigation revealed that evodiamine resensitizes cisplatin-resistant cells toward cisplatin by decreasing the expression of SOX9 and ß-catenin. CONCLUSION: The combination of evodiamine and cisplatin may be a novel strategy for combating cisplatin resistance in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Quinazolinas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Cisplatino/farmacología , beta Catenina , Transición Epitelial-Mesenquimal , Especies Reactivas de Oxígeno , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Muerte Celular , Factor de Transcripción SOX9/genética
8.
ACS Nano ; 18(17): 11025-11041, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38626916

RESUMEN

ALK-positive NSCLC patients demonstrate initial responses to ALK tyrosine kinase inhibitor (TKI) treatments, but eventually develop resistance, causing rapid tumor relapse and poor survival rates. Growing evidence suggests that the combination of drug and immune therapies greatly improves patient survival; however, due to the low immunogenicity of the tumors, ALK-positive patients do not respond to currently available immunotherapies. Tumor-associated macrophages (TAMs) play a crucial role in facilitating lung cancer growth by suppressing tumoricidal immune activation and absorbing chemotherapeutics. However, they can also be programmed toward a pro-inflammatory tumor suppressive phenotype, which represents a highly active area of therapy development. Iron loading of TAMs can achieve such reprogramming correlating with an improved prognosis in lung cancer patients. We previously showed that superparamagnetic iron oxide nanoparticles containing core-cross-linked polymer micelles (SPION-CCPMs) target macrophages and stimulate pro-inflammatory activation. Here, we show that SPION-CCPMs stimulate TAMs to secrete reactive nitrogen species and cytokines that exert tumoricidal activity. We further show that SPION-CCPMs reshape the immunosuppressive Eml4-Alk lung tumor microenvironment (TME) toward a cytotoxic profile hallmarked by the recruitment of CD8+ T cells, suggesting a multifactorial benefit of SPION-CCPM application. When intratracheally instilled into lung cancer-bearing mice, SPION-CCPMs delay tumor growth and, after first line therapy with a TKI, halt the regrowth of relapsing tumors. These findings identify SPIONs-CCPMs as an adjuvant therapy, which remodels the TME, resulting in a delay in the appearance of resistant tumors.


Asunto(s)
Crizotinib , Neoplasias Pulmonares , Nanopartículas Magnéticas de Óxido de Hierro , Microambiente Tumoral , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Microambiente Tumoral/efectos de los fármacos , Animales , Nanopartículas Magnéticas de Óxido de Hierro/química , Humanos , Ratones , Crizotinib/farmacología , Crizotinib/química , Antineoplásicos/farmacología , Antineoplásicos/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Línea Celular Tumoral , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/metabolismo , Proliferación Celular/efectos de los fármacos , Femenino
9.
Medicine (Baltimore) ; 103(14): e36758, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38579051

RESUMEN

BACKGROUND: Compound Kushen injection (CKI) is a mixture of natural compounds extracted from Radix Sophorae and Smilax glabra Roxb. CKI, as an antitumor preparation, plays a vital role in the clinical treatment of lung and gastrointestinal cancers. METHODS: Electronic databases such as the China National Knowledge Infrastructure, Wanfang data, PubMed, EMBASE, and Web of Science were searched for studies. The included studies were evaluated according to the Cochrane Handbook for Systematic Reviews, and meta-analyses were performed using RevMan 5.3 software. RESULTS: Twenty-four randomized controlled trials were selected for meta-analysis. The outcomes showed that CKI adjuvant therapy significantly improved complete remission (CR) and partial response (PR) compared to patients without CKI treatment in gastrointestinal cancers (CR: odds ratio [OR] = 1.76, 95% confidence interval [CI]: [1.29, 2.41], P = .0004; PR: OR = 1.64, 95% CI: [1.29, 2.07], P =.0001), and lung cancer (CR: OR = 2.18, 95% CI: [1.36, 3.51], P = .001); PR: OR = 1.81, 95% CI: [1.31, 2.50], P = .0003). CKI adjuvant therapy had a statistically significant advantage in optimizing life and health status (quality of life [QOL] for gastrointestinal cancers: MD = 1.76, 95% CI: [6.41, 13.80], P = .001, and Karnofsky performance status [KPS] for gastrointestinal cancers: MD = 4.64, 95% CI: [2.72, 6.57], P = .001; KPS for lung cancer: MD = 6.24, 95% CI [1.78, 10.71], P = .006). CKI reduced the pain in lung cancer patients (MD = -1.76, 95% CI: [-1.94, -1.58], P < .00001), increased immunity level (MD = 2.51, 95% CI: [2.17, 2.85], P < .00001), and alleviated the adverse reactions for lung and gastrointestinal cancers (MD = 0.38, 95% CI: (0.32, 0.46); P < .00001). CONCLUSION: The combination of CKI and chemoradiotherapy for treating lung and gastrointestinal cancer has positive effects on short-term and long-term outcomes and has advantages over chemoradiotherapy alone regarding safety and efficacy.


Asunto(s)
Antineoplásicos , Medicamentos Herbarios Chinos , Neoplasias Gastrointestinales , Neoplasias Pulmonares , Humanos , Calidad de Vida , Revisiones Sistemáticas como Asunto , Neoplasias Pulmonares/tratamiento farmacológico , Quimioradioterapia/efectos adversos , Neoplasias Gastrointestinales/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Pulmón
10.
Int Immunopharmacol ; 133: 112068, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38626545

RESUMEN

Pyroptosis is an inflammatory form of programmed cell death that plays an important role in regulating tumor progression. Reniformin A (RA) is a natural compound isolated from the medicinal herb Isodon excisoides that has been applied as folk medicine in the treatment of esophageal cancer. However, whether RA has an individual function in cancer and the molecular mechanisms remain unclear. Here, we show that in non-small-cell lung cancer (NSCLC), RA inhibits tumor growth by functioning as a pyroptosis inducer to promote TLR4/NLRP3/caspase-1/GSDMD axis. Specially, RA treatment increased Toll-like receptor 4 (TLR4) protein expression level by enhancing the TLR4 stability. Based on the molecular docking, we identified that RA directly bound to TLR4 to activate the NLRP3 inflammasome and promote pyroptosis in A549 cells. Moreover, TLR4 is essential for RA-induced pyroptosis, and loss of TLR4 abolished RA-induced pyroptosis and further reduced the inhibitory effect of RA on NSCLC. In vivo experiments confirmed that RA inhibited the growth of lung tumors in mice by affecting pyroptosis in a dose-dependent manner. Furthermore, TLR4 knockdown abolished RA-induced pyroptosis and inhibited the effect of RA chemotherapy in vivo. In conclusion, we propose that RA has a significant anticancer effect in NSCLC by inducing TLR4/NLRP3/caspase-1/GSDMD-mediated pyroptosis, which may provide a potential strategy for the treatment of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Caspasa 1 , Neoplasias Pulmonares , Proteína con Dominio Pirina 3 de la Familia NLR , Proteínas de Unión a Fosfato , Piroptosis , Receptor Toll-Like 4 , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptor Toll-Like 4/metabolismo , Piroptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Animales , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Caspasa 1/metabolismo , Ratones , Células A549 , Proteínas de Unión a Fosfato/metabolismo , Proteínas de Unión a Fosfato/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Transducción de Señal/efectos de los fármacos , Ratones Endogámicos C57BL , Progresión de la Enfermedad , Gasderminas
11.
Phytomedicine ; 128: 155333, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38518633

RESUMEN

BACKGROUND: Targeting long non-coding RNAs (LncRNAs) is a novel and promising approach in cancer therapy. In our previous study, we investigated the effects of ailanthone (aila), the main active compound derived from the stem barks of Ailanthus altissima (Mill.) Swingle, on the growth of non-small cell lung cancer (NSCLC) cells. Although we observed significant inhibition of NSCLC cell growth of aila, the underlying mechanisms involving LncRNAs, specifically LncRNA growth arrest specific 5 (GAS5), remain largely unknown. METHODS: To further explore the impact of aila on NSCLC, we performed a series of experiments. Firstly, we confirmed the inhibitory effect of aila on NSCLC cell growth using multiple assays, including MTT, wound healing, transwell assay, as well as subcutaneous and metastasis tumor mice models in vivo. Next, we utilized cDNA microarray and RT-QPCR to identify GAS5 as the primary target of aila. To verify the importance of GAS5 in aila-induced tumor inhibition, we manipulated GAS5 expression levels by constructing GAS5 over-expression and knockdown NSCLC cell lines. Furthermore, we investigated the upstream and downstream signaling pathways of GAS5 through western blot and RT-QPCR analysis. RESULTS: Our results showed that aila effectively increased GAS5 expression, as determined by microarray analysis. We also observed that aila significantly enhanced GAS5 expression in a dose- and time-dependent manner across various NSCLC cell lines. Notably, over-expression of GAS5 led to a significant suppression of NSCLC cell tumor growth; while aila had minimal inhibitory effect on GAS5-knockdown NSCLC cells. Additionally, we discovered that aila inhibited ULK1 and autophagy, and this inhibition was reversed by GAS5 knockdown. Moreover, we found that aila up-regulated GAS5 expression by suppressing UPF1-mediated nonsense-mediated mRNA decay (NMD). CONCLUSION: In summary, our findings suggest that aila promotes GAS5 expression by inhibiting UPF1-mediated NMD, leading to the repression of ULK1-mediated autophagy and subsequent inhibitory effects on NSCLC cells. These results indicate that aila is a potent enhancer of GAS5 and holds promising potential for application in NSCLC therapy. However, our research is currently focused only on NSCLC. It remains to be determined whether aila can also inhibit the growth of other types of tumors through the UPF1/GAS5/ULK1 signaling pathway. In future studies, we can further investigate the mechanisms by which aila suppresses other types of tumors and potentially broaden the scope of its application in cancer therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , ARN Largo no Codificante , Transducción de Señal , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , ARN Largo no Codificante/genética , Humanos , Animales , Neoplasias Pulmonares/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ratones , Ratones Desnudos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Transactivadores/genética , Transactivadores/metabolismo , Ailanthus/química , Antineoplásicos Fitogénicos/farmacología , Ratones Endogámicos BALB C , Cuassinas/farmacología , ARN Helicasas/metabolismo
12.
J Appl Biomater Funct Mater ; 22: 22808000241235442, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38497242

RESUMEN

Given the numerous adverse effects of lung cancer treatment, more research on non-toxic medications is urgently needed. Curcumin (CUR) and berberine (BBR) combat drug resistance by controlling the expression of multidrug resistant pump (MDR1). Fascinatingly, combining these medications increases the effectiveness of preventing lung cancer. Their low solubility and poor stability, however, restrict their therapeutic efficacy. Because of the improved bioavailability and increased encapsulation effectiveness of water-insoluble medicines, surfactant-based nanovesicles have recently received a great deal of attention. The current study sought to elucidate the Combination drug therapy by herbal nanomedicine prevent multidrug resistance protein 1: promote apoptosis in Lung Carcinoma. The impact of several tween (20, 60, and 80) types with varied hydrophobic tails on BBR/CUR-TNV was evaluated. Additionally, the MDR1 activity and apoptosis rate of the BBR/CUR-TNV combination therapy were assessed. The encapsulation effectiveness of TNV was affected by the type of tween. With the TNV made from tween 60, cholesterol, and PEG (47.5: 47.5:5), more encapsulation effectiveness was attained. By combining CUR with BBR, especially when given in TNV, apoptosis increased. Additionally, when CUR and BBR were administered in combination, they significantly reduced the risk of MDR1 development. The current work suggests that the delivery of berberine and curcumin as a combination medication therapy via tween-based nanovesicles may be a potential lung cancer treatment.


Asunto(s)
Berberina , Carcinoma , Curcumina , Neoplasias Pulmonares , Humanos , Apoptosis , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Berberina/farmacología , Berberina/uso terapéutico , Carcinoma/tratamiento farmacológico , Curcumina/farmacología , Curcumina/uso terapéutico , Quimioterapia Combinada , Pulmón/metabolismo , Pulmón/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Nanomedicina , Polisorbatos/farmacología
13.
Integr Cancer Ther ; 23: 15347354241237973, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38504436

RESUMEN

BACKGROUND: Postoperative non-small cell lung cancer (NSCLC) patients frequently encounter a deteriorated quality of life (QOL), disturbed immune response, and disordered homeostasis. Si-Jun-Zi Decoction (SJZD), a well-known traditional Chinese herbal formula, is frequently employed in clinical application for many years. Exploration is underway to investigate the potential therapeutic effect of SJZD for treating postoperative NSCLC. OBJECTIVE: To assess the efficacy of SJZD on QOLs, hematological parameters, and regulations of gut microbiota in postoperative NSCLC patients. METHODS: A prospective observational cohort study was conducted, enrolling 65 postoperative NSCLC patients between May 10, 2020 and March 15, 2021 in Yueyang Hospital, with 33 patients in SJZD group and 32 patients in control (CON) group. The SJZD group comprised of patients who received standard treatments and the SJZD decoction, while the CON group consisted of those only underwent standard treatments. The treatment period was 4 weeks. The primary outcome was QOL. The secondary outcomes involved serum immune cell and inflammation factor levels, safety, and alterations in gut microbiota. RESULTS: SJZD group showed significant enhancements in cognitive functioning (P = .048) at week 1 and physical functioning (P = .019) at week 4. Lung cancer-specific symptoms included dyspnea (P = .001), coughing (P = .008), hemoptysis (P = .034), peripheral neuropathy (P = .019), and pain (arm or shoulder, P = .020, other parts, P = .019) eased significantly in the fourth week. Anemia indicators such as red blood cell count (P = .003 at week 1, P = .029 at week 4) and hemoglobin (P = .016 at week 1, P = .048 at week 4) were significantly elevated by SJZD. SJZD upregulated blood cell cluster differentiation (CD)3+ (P = .001 at week 1, P < .001 at week 4), CD3+CD4+ (P = .012 at week 1), CD3+CD8+ (P = .027 at week 1), CD19+ (P = .003 at week 4), increased anti-inflammatory interleukin (IL)-10 (P = .004 at week 1, P = .003 at week 4), and decreased pro-inflammatory IL-8 (P = .004 at week 1, p = .005 at week 4). Analysis of gut microbiota indicated that SJZD had a significant impact on increasing microbial abundance and diversity, enriching probiotic microbes, and regulating microbial biological functions. CONCLUSIONS: SJZD appears to be an effective and safe treatment for postoperative NSCLC patients. As a preliminary observational study, this study provides a foundation for further research.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Neoplasias Pulmonares/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Calidad de Vida , Estudios Prospectivos , Resultado del Tratamiento
14.
Cancer Biol Ther ; 25(1): 2328382, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38530094

RESUMEN

Non-small cell lung cancer (NSCLC) is among the most difficult malignancies to treat. Type III collagen (COL3A1) can affect the progression and chemoresistance development of NSCLC. We herein explored the mechanism that drives COL3A1 dysregulation in NSCLC. Potential RNA-binding proteins (RBPs) and transcription factors (TFs) that could bind to COL3A1 were searched by bioinformatics. mRNA expression was detected by quantitative PCR. Protein expression was evaluated using immunoblotting and immunohistochemistry. The effects of the variables were assessed by gauging cell growth, invasiveness, migratory capacity, apoptosis, and cisplatin (DDP) sensitivity. The direct YY1/COL3A1 relationship was confirmed by ChIP and luciferase reporter experiments. Xenograft experiments were done to examine COL3A1's function in DDP efficacy. COL3A1 showed enhanced expression in DDP-resistant NSCLC. In H460/DDP and A549/DDP cells, downregulation of COL3A1 exerted inhibitory functions in cell growth, invasiveness, and migration, as well as promoting effects on cell DDP sensitivity and apoptosis. Mechanistically, ELAV-like RNA binding protein 1 (ELAVL1) enhanced the mRNA stability and expression of COL3A1, and Yin Yang 1 (YY1) promoted the transcription and expression of COL3A1. Furthermore, upregulation of COL3A1 reversed ELAVL1 inhibition- or YY1 deficiency-mediated functions in DDP-resistant NSCLC cells. Additionally, COL3A1 downregulation enhanced the anti-tumor efficacy of DDP in vivo. Our investigation demonstrates that COL3A1 upregulation, induced by both RBP ELAVL1 and TF YY1, exerts important functions in phenotypes of NSCLC cells with DDP resistance, offering an innovative opportunity in the treatment of drug-resistant NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Cisplatino/farmacología , Cisplatino/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Proliferación Celular , Células A549 , Colágeno Tipo III
15.
Acta Pharm ; 74(1): 149-164, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38554387

RESUMEN

Lung cancer (LC) is the leading cause of cancer deaths worldwide. Surgery, chemoradiotherapy, targeted therapy, and immunotherapy are considered dominant treatment strategies for LC in the clinic. However, drug resistance and meta-stasis are two major challenges in cancer therapies. Medicarpin (MED) is an isoflavone compound isolated from alfalfa, which is usually used in traditional medicine. This study was de sig ned to evaluate the anti-LC effect and reveal the underlying mechanisms of MED in vivo and in vitro. We found that MED could significantly inhibit proliferation, induce apoptosis, and cell cycle arrest of A549 and H157 cell lines. Basically, MED induced cell apoptosis of LC cells by upregu lating the expression of pro-apoptotic proteins BAX and Bak1, leading to the cleavage of caspase-3 (Casp3). Moreover, MED inhibited the proliferation of LC cells via downregulating the expression of proliferative protein Bid. Overall, MED inhibited LC cell growth in vitro and in vivo via suppressing cell proliferation and inducing cell apoptosis, suggesting the therapeutic potential of MED in treating LC.


Asunto(s)
Neoplasias Pulmonares , Pterocarpanos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Línea Celular Tumoral , Apoptosis , Fitoalexinas , Proliferación Celular
16.
BMC Complement Med Ther ; 24(1): 125, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500118

RESUMEN

BACKGROUND: Osimertinib is regarded as a promising third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) for advanced non-squamous non-small cell lung cancer (NSCLC) patients who developed T790M. However the adverse effects, primarily fatigue, remain an overwhelming deficiency of Osimertinib, hindering it from achieving adequate clinical efficacy for such NSCLC. Ganoderma lucidum has been used for thousands of years in China to combat fatigue, while Ganoderma Lucidum spores powder (GLSP) is the main active ingredient. The aim of this study is to investigate whether GLSP is sufficiently effective and safe in improving fatigue and synergizing with Osimertinib in non-squamous NSCLC patients with EGFR mutant. METHOD/DESIGN: A total of 140 participants will be randomly assigned to receive either de-walled GSLP or placebo for a duration of 56 days. The primary outcome measure is the fatigue score associated with EGFR-TKI adverse reactions at week 8, evaluated by the Chinese version of the European Organization for Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire for Cancer Patients (QLQ-C30). Secondary outcomes include evaluation of treatment effectiveness, assessment of quality of life (QoL), and exploration of immune indicators and gut microbiota relationships. Following enrollment, visits are scheduled biweekly until week 12. TRIAL REGISTRATION: China Clinical Trial Registry ChiCTR2300072786. Registrated on June 25, 2023.


Asunto(s)
Acrilamidas , Compuestos de Anilina , Carcinoma de Pulmón de Células no Pequeñas , Indoles , Neoplasias Pulmonares , Pirimidinas , Reishi , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Calidad de Vida , Polvos/uso terapéutico , Receptores ErbB/genética , Inhibidores de Proteínas Quinasas/efectos adversos , Mutación , Esporas Fúngicas , Ensayos Clínicos Controlados Aleatorios como Asunto
17.
Lasers Med Sci ; 39(1): 91, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38491201

RESUMEN

Investigating combined treatment methodologies is crucial for addressing the complex nature of cancer. As an emerging strategy, nano-biotechnology encourages the design of unique nanocarriers possessing simultaneous therapeutic application properties. This study aims to explore the combined effects of photodynamic and anticancer treatments using a multifunctional nanocarrier system co-administering the photosensitizer IR780 and the anticancer agent curcumin (Cur) on lung cancer cells. Nanocarriers were prepared by encapsulation IR780 and Cur inside polyethylene glycol-capped mesoporous silica nanoparticles (Cur&IR780@MSN). Various concentrations of nanocarriers were evaluated on A549 cells following 5 min NIR laser light (continuous wave, 785 nm, 500 mW/cm2) irradiation. The internalization of nanocarriers was observed through the fluorescence of Cur. Changes in cell viability were determined using the MTT assay and AO/PI staining. A scratch assay analysis was also performed to examine the impact of combined treatments on cell migration. Characterization of the nanocarriers revealed adequate hydrophobic drug loading, temperature-inhibited feature, enhanced reactive oxygen species generation, a pH-dependent curcumin release profile, and high biocompatibility. Cur&IR780@MSN, which enabled the observation of synergistic treatment efficacy, successfully reduced cell viability by up to 78%. In contrast, monotherapies with curcumin-loaded nanocarriers (Cur@MSN) and IR780-loaded nanocarriers (IR780@MSN) resulted in a 38% and 56% decrease in cell viability, respectively. The constructed Cur&IR780@MSN nanocarrier has demonstrated remarkable performance in the application of combination therapies for lung cancer cells. These nanocarriers have the potential to inspire future studies in tumor treatment methods.


Asunto(s)
Antineoplásicos , Curcumina , Neoplasias Pulmonares , Nanopartículas , Fotoquimioterapia , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Curcumina/farmacología , Curcumina/uso terapéutico , Dióxido de Silicio/química , Portadores de Fármacos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Nanopartículas/química
18.
J Ethnopharmacol ; 328: 117900, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38432577

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Polygonatum cyrtonema Hua (Huangjing) is a Chinese herb that is considered by ancient Chinese healers to have the effect of nourishing yin and moisturizing the lungs. It is clinically used to treat diseases of the pulmonary system, including non-small cell lung cancer. However, the precise active components and underlying mechanisms of Huangjing in the context of treating NSCLC remain uncertain. AIM OF THE STUDY: This study aimed to explore the active components and mechanisms of Huangjing for the treatment of NSCLC by means of data mining, network pharmacology, and in vitro and vivo experiments. MATERIALS AND METHODS: First, the main active compounds and key targets of Huangjing were predicted by network pharmacology. The potential key targets of Huangjing were molecularly docked with the main active compounds using Pymol. In vivo, we verified whether Huangjing and its main active compound have anti-lung cancer effects. Key targets were verified by PCR and immunohistochemistry. In vitro, we verified the effects of Huangjing's main active compound on the proliferation, apoptosis, and migration of A549 cells by CCK-8, colony formation, wound healing assay, and flow cytometry. Key targets and signaling pathway were validated by PCR and Western blot. RESULTS: The network pharmacology results suggested that ß-sitosterol was the main active substance. TP53, JUN, AKT1, MAPK14, ESR1, RELA, HIF1A, and RXRA were potential targets of Huangjing. Molecular docking results suggested that MAPK14, HIF-1α, and RXRA docked well with ß-sitosterol. In vivo tests also confirmed that Huangjing could significantly inhibit the growth of lung cancer tumors, while PCR and immunohistochemistry results suggested that the expression of HIF-1α was significantly decreased. Critically, KEGG analysis indicated that the PI3K/Akt/HIF-1α signaling pathway was recommended as one of the main pathways related to the anti-NSCLC effect of Huangjing. We conducted in vitro experiments to confirm the significant impact of ß-sitosterol on the proliferation, apoptosis, migration, and colony formation of A549 cells. Furthermore, our findings indicate that a high dosage of ß-sitosterol may effectively decrease the expression of HIF-1α, AKT1, JUN and RELA in A549 cells. Similarly, in vitro experiments also revealed that high doses of ß-sitosterol could inhibit the PI3K/Akt/HIF-1α signaling pathway. CONCLUSIONS: We discovered Huangjing and its main active ingredient, ß-sitosterol, can reduce HIF-1α, AKT1, JUN and RELA expression and decrease non-small cell lung cancer growth through the PI3K/Akt/HIF-1α signaling pathway.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Medicamentos Herbarios Chinos , Neoplasias Pulmonares , Proteína Quinasa 14 Activada por Mitógenos , Polygonatum , Sitoesteroles , Simulación del Acoplamiento Molecular , Neoplasias Pulmonares/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Farmacología en Red , Transducción de Señal , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
19.
Comput Biol Med ; 173: 108292, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38513387

RESUMEN

Lung cancer is one of the most common malignant tumors around the world, which has the highest mortality rate among all cancers. Traditional Chinese medicine (TCM) has attracted increased attention in the field of lung cancer treatment. However, the abundance of ingredients in Chinese medicines presents a challenge in identifying promising ingredient candidates and exploring their mechanisms for lung cancer treatment. In this work, two network-based algorithms were combined to calculate the network relationships between ingredient targets and lung cancer targets in the human interactome. Based on the enrichment analysis of the constructed disease module, key targets of lung cancer were identified. In addition, molecular docking and enrichment analysis of the overlapping targets between lung cancer and ingredients were performed to investigate the potential mechanisms of ingredient candidates against lung cancer. Ten potential ingredients against lung cancer were identified and they may have similar effect on the development of lung cancer. The results obtained from this study offered valuable insights and provided potential avenues for the development of novel drugs aimed at treating lung cancer.


Asunto(s)
Medicamentos Herbarios Chinos , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Algoritmos , Tórax , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicina Tradicional China
20.
Medicine (Baltimore) ; 103(9): e37218, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38428907

RESUMEN

BACKGROUND: Pharmacological studies have found Ginkgo biloba leaves have the effect of inhibiting neoplasms, it is clinically used in treating various neoplasms. However, the mechanism of Ginkgo biloba leaves in treating non-small cell lung cancer (NSCLC) remains unclear. METHODS: The active components and corresponding targets of Ginkgo biloba leaves were obtained from the traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) database, and the targets of NSCLC were obtained from the GeneCards, OMIM, TTD, and DrugBank databases. The common targets of NSCLC and Ginkgo biloba leaves were obtained from VENNY 2.1.0. The STRING database was utilized to construct protein-protein intersections, by using the Cytoscape 3.7.1 software, the protein-protein intersection was optimized and the drug-disease network diagram was constructed. The DAVID database was utilized to perform GO and KEGG analysis. Finally, The Autodock Vina software was used to perform molecular docking of core components and targets. RESULTS: The key components of Ginkgo biloba leaves in treating NSCLC include quercetin, luteolin, and kaempferol, which may act on Tp53, AKT1, and TNF. Bioinformatic annotation analysis results suggest that Ginkgo biloba leaves may implicated in PI3K-AKT and MAPK signaling pathways. The molecular docking results show the firm affinity between key ingredients and targets. CONCLUSION: The potential mechanism of Ginkgo biloba leaves in treating NSCLC has been discussed in this study, which provides a theoretical basis for the clinical treatment of NSCLC and further experimental validation.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Medicamentos Herbarios Chinos , Neoplasias Pulmonares , Humanos , Ginkgo biloba , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Neoplasias Pulmonares/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA