Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 350
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Biomed Res Int ; 2021: 7300098, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34568494

RESUMEN

This study reports the development of thermosensitive hydrogels for delivering ropivacaine (RVC), a wide clinically used local anesthetic. For this purpose, poloxamer- (PL-) based hydrogels were synthesized for evaluating the influence of polymer concentration, hydrophilic-lipophilic balances, and binary system formation on biopharmaceutical properties and pharmacological performance. Transition temperatures were shifted, and rheological analysis revealed a viscoelastic behavior with enhanced elastic/viscous modulus relationship (G'/G " = 1.8 to 22 times), according to hydrogel composition and RVC incorporation. The RVC release from PL407 and PL407/338 systems followed the Higuchi model (R 2 = 0.923-0.989), indicating the drug diffusion from hydrogels to the medium. RVC-PL hydrogels were potentially biocompatible evoking low cytotoxic effects (in fibroblasts and Schwann cells) and mild/moderate inflammation signs on sciatic nerve nearby histological evaluation. In vivo pharmacological assays demonstrated that PL407 and PL407/338 evoked differential analgesic effects, by prolonging the sensory blockade duration up to ~340 and 250 min., respectively. All those results highlighted PL407 and PL407/338 as promising new strategies for sustaining analgesic effects during the postoperative period.


Asunto(s)
Anestesia Local , Materiales Biocompatibles/química , Hidrogeles/química , Poloxámero/química , Ropivacaína/farmacología , Células 3T3 , Analgesia , Animales , Área Bajo la Curva , Rastreo Diferencial de Calorimetría , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Liberación de Fármacos , Elasticidad , Masculino , Ratones , Micelas , Ratas Wistar , Reología , Nervio Ciático/efectos de los fármacos , Sensación/efectos de los fármacos , Viscosidad
2.
Nutrients ; 13(9)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34578829

RESUMEN

Trehalose, a sugar from fungi, mimics starvation due to a block of glucose transport and induces Transcription Factor EB- mediated autophagy, likely supported by the upregulation of progranulin. The pro-autophagy effects help to remove pathological proteins and thereby prevent neurodegenerative diseases such as Alzheimer's disease. Enhancing autophagy also contributes to the resolution of neuropathic pain in mice. Therefore, we here assessed the effects of continuous trehalose administration via drinking water using the mouse Spared Nerve Injury model of neuropathic pain. Trehalose had no effect on drinking, feeding, voluntary wheel running, motor coordination, locomotion, and open field, elevated plus maze, and Barnes Maze behavior, showing that it was well tolerated. However, trehalose reduced nerve injury-evoked nociceptive mechanical and thermal hypersensitivity as compared to vehicle. Trehalose had no effect on calcium currents in primary somatosensory neurons, pointing to central mechanisms of the antinociceptive effects. In IntelliCages, trehalose-treated mice showed reduced activity, in particular, a low frequency of nosepokes, which was associated with a reduced proportion of correct trials and flat learning curves in place preference learning tasks. Mice failed to switch corner preferences and stuck to spontaneously preferred corners. The behavior in IntelliCages is suggestive of sedative effects as a "side effect" of a continuous protracted trehalose treatment, leading to impairment of learning flexibility. Hence, trehalose diet supplements might reduce chronic pain but likely at the expense of alertness.


Asunto(s)
Conducta Animal/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Nocicepción/efectos de los fármacos , Nervio Ciático/lesiones , Trehalosa/farmacología , Animales , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos C57BL , Nervio Ciático/efectos de los fármacos
3.
J Neuroinflammation ; 18(1): 142, 2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34162415

RESUMEN

BACKGROUND: Chronic neuropathic pain is a frequent sequel to peripheral nerve injury and maladaptive nervous system function. Divanillyl sulfone (DS), a novel structural derivative of 4,4'-dihydroxydibenzyl sulfoxide from a traditional Chinese medicine Gastrodia elata with anti-nociceptive effects, significantly alleviated neuropathic pain following intrathecal injection. Here, we aimed to investigate the underlying mechanisms of DS against neuropathic pain. METHODS: A chronic constrictive injury (CCI) mouse model of neuropathic pain induced by sciatic nerve ligation was performed to evaluate the effect of DS by measuring the limb withdrawal using Von Frey filament test. Immunofluorescence staining was used to assess the cell localizations and expressions of Iba-1, ASC, NLRP3, and ROS, the formation of autolysosome. The levels of NLRP3-related proteins (caspase-1, NLRP3, and IL-1ß), mitophagy-related proteins (LC3, Beclin-1, and p62), and apoptosis-related proteins (Bcl-XL and Bax) were detected by Western blotting. The apoptosis of BV-2 cell and caspase activity were evaluated by flow cytometry. RESULTS: DS significantly alleviated the neuropathic pain by increasing the mechanical withdrawal threshold and inhibiting the activation of NLRP3 in CCI-induced model mice. Our findings indicated that DS promoted the mitophagy by increasing the LC3II and Beclin 1 and decreasing the levels of p62 protein in BV-2 cell. This is accompanied by the inhibition of NLRP3 activation, which was shown as inhibited the expression of NLRP3 in lysates as well as the secretion of mature caspase-1 p10 and IL-1ß p17 in supernatants in cultured BV-2 microglia. In addition, DS could promote mitophagy-induced improvement of dysfunctional mitochondria by clearing intracellular ROS and restoring mitochondrial membrane potential. CONCLUSION: Together, our findings demonstrated that DS ameliorate chronic neuropathic pain in mice by suppressing NLRP3 inflammasome activation induced by mitophagy in microglia. DS may be a promising therapeutic agent for chronic neuropathic pain.


Asunto(s)
Inflamasomas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitofagia/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Neuralgia/tratamiento farmacológico , Sulfonas/farmacología , Sulfonas/uso terapéutico , Animales , Apoptosis , Caspasa 1/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Inflamasomas/metabolismo , Masculino , Medicina Tradicional China , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Mitocondrias/patología , Neuralgia/metabolismo , Nervio Ciático/efectos de los fármacos , Nervio Ciático/metabolismo , Nervio Ciático/patología
4.
BMC Complement Med Ther ; 21(1): 162, 2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34088292

RESUMEN

BACKGROUND: Recent experimental studies using herbal extracts have shown the possibility of peripheral nerve regeneration. This study aimed to investigate the effects of herbal extracts on peripheral nerve regeneration in a rat sciatic nerve injury model. METHODS: A total of 53 rats were randomly assigned to a control group or one of four experimental groups. In all rats, the sciatic nerve was completely severed and microscopic epineural end-to-end neurorrhaphy was performed. Normal saline (2 mL) was topically applied to the site of nerve repair in the control group, whereas four different herbal extracts - 2 mL each of Astragalus mongholicus Bunge, Coptis japonica (Thunb.) Makino, Aconitum carmichaelii Debeaux, or Paeonia lactiflora Pall. - were topically applied to the site of nerve repair in each experimental group. Nerve conduction studies were performed at an average of 11.9 weeks after the operation, and conduction velocity and proximal and distal amplitudes were measured. Biopsies were performed at an average of 13.2 weeks after the initial neurorrhaphy. The quality of nerve anastomosis and perineural adhesion to the surrounding soft tissues was macroscopically evaluated. The neuroma size at the site of the neurorrhaphy was microscopically measured, whereas the size of the scar tissue was evaluated relative to the diameter of the repaired nerve. RESULTS: The nerve conduction study results showed the highest nerve conduction velocity in the experimental group that used the Coptis japonica (Thunb.) Makino extract and the highest proximal and distal amplitudes in the experimental group that used the Aconitum carmichaelii Debeaux extract. Macroscopic evaluations after the second operation showed that grade 2 perineural adhesion was found in 70.8% of rats. The mean neuroma size in the Coptis japonica (Thunb.) Makino, Aconitum carmichaelii Debeaux, and Paeonia lactiflora Pall. groups showed statistically significant decreases relative to the control group. The mean scar tissue formation index in the Paeonia lactiflora Pall. group showed a statistically significant decrease relative to the control group. CONCLUSIONS: The peripheral nerve regeneration effect of the herbal extracts was confirmed through decreased neuroma and scar tissue formation.


Asunto(s)
Microcirugia , Regeneración Nerviosa/efectos de los fármacos , Traumatismos de los Nervios Periféricos , Extractos Vegetales/farmacología , Nervio Ciático/efectos de los fármacos , Animales , Masculino , Conducción Nerviosa/efectos de los fármacos , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/cirugía , Ratas , Ratas Sprague-Dawley , Nervio Ciático/lesiones , Nervio Ciático/cirugía
5.
Phytother Res ; 35(8): 4592-4604, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34089208

RESUMEN

Oxidative stress plays the main role in the pathogenesis of diabetes mellitus and peripheral neuropathy. Polydatin (PD) has been shown to exhibit strong antioxidative and antiinflammatory effects. At present, no research has focused on the possible effects of PD on Schwann cells and impaired peripheral nerves in diabetic models. Here, we used an in vitro Schwann cell damage model induced by methylglyoxal and an in vivo diabetic sciatic nerve crush model to study problems in such an area. In our experiment, we demonstrated that PD potently alleviated the decrease of cellular viability, prevented reactive oxygen species generation, and suppressed mitochondrial depolarization as well as cellular apoptosis in damaged Schwann cells. Moreover, we found that PD could upregulate Nrf2 and Glyoxalase 1 (GLO1) expression and inhibit Keap1 and receptor of AGEs (RAGE) expression of damaged Schwann cells. Finally, our in vivo experiment showed that PD could promote sciatic nerves repair of diabetic rats. Our results revealed that PD exhibited prominent neuroprotective effects on Schwann cells and sciatic nerves in diabetic models. The molecular mechanisms were associated with activating Nfr2 and GLO1 and inhibiting Keap1 and RAGE.


Asunto(s)
Diabetes Mellitus Experimental , Glucósidos/farmacología , Factor 2 Relacionado con NF-E2 , Células de Schwann/efectos de los fármacos , Nervio Ciático/crecimiento & desarrollo , Estilbenos/farmacología , Animales , Células Cultivadas , Diabetes Mellitus Experimental/tratamiento farmacológico , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2/metabolismo , Compresión Nerviosa , Piruvaldehído/toxicidad , Ratas , Nervio Ciático/efectos de los fármacos , Nervio Ciático/lesiones
6.
Molecules ; 26(6)2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33804199

RESUMEN

Neuropathic pain is described as the "most terrible of all tortures that a nerve wound may inflict." The aim of the present study was to demonstrate the antinociceptive effect of Symplocos chinensis f. pilosa Ohwi water extract (SCW) and synthesized derivatives of the isolated compound. The antinociceptive effect was tested using the acetic acid-induced writhing and 5% formalin tests. Antinociceptive effects on neuropathic pain were evaluated using the von Frey test with chronic constriction injury (CCI) and surgical nerve injury (SNI) models and tail-flick test with a vincristine-induced pain model. An Ames test was also conducted. 5-hydroxymethylfurfural (5-HMF) was isolated and derivatives were synthesized with various acid groups. Among the plant water extracts, SCW showed significantly effective activity. Additionally, SCW presented antinociceptive effects in the neuropathic pain models. The SCW water fraction resulted in fewer writhes than the other fractions, and isolated 5-HMF was identified as an effective compound. Because 5-HMF revealed a positive response in the Ames test, derivatives were synthesized. Among the synthesized derivations, 5-succinoxymethylfurfural (5-SMF) showed the best effect in the neuropathic pain model. Our data suggest that SCW and the synthesized compound, 5-SMF, possess effective antinociceptive activity against neuropathic pain.


Asunto(s)
Ericales/química , Neuralgia/tratamiento farmacológico , Extractos Vegetales/farmacología , Analgésicos/farmacología , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos ICR , Nervio Ciático/efectos de los fármacos
7.
J Pharm Pharmacol ; 73(7): 874-880, 2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-33822115

RESUMEN

OBJECTIVES: Neuropathic pain (NP) is a chronic inflammation of the sciatic nerve, associated with complex pathophysiological events like neuronal ectopic discharge with changes in neurotransmitters, growth factors, receptors/ion channels including N-methyl-d-aspartate receptors, Transient receptor cation channels, Voltage-gated calcium channels. All these events eventually lead to inflammation and apoptosis of the sciatic nerve in NP. Icariin (ICA), a natural flavonoid is well known for its anti-inflammatory potential. Hence, the present study is designed to evaluate its anti-inflammatory potential against neuropathic pain using in silico and in vivo studies. METHODS: In silico studies were conducted using targets of N-methyl-D-aspartate receptor subtype-2B (NR2B), The capsaicin receptor transient receptor cation channel subfamily-V member-1 (TRPV1), N-type voltage-gated calcium (CaV2.2) channels. In in vivo studies, after partial sciatic nerve ligation surgery to animals, received their respective treatment for 21 days, further TNF-α, IL-6, Bax (proapoptotic) and Bcl-2 (antiapoptotic) expressions were estimated. KEY FINDINGS: ICA decreased the expressions of TNF-α, IL-6, Bax and increased expression of Bcl-2. In silico studies revealed a good energy binding score towards NR2B, TRPV1 receptors and CaV2.2 ion Channel. CONCLUSIONS: ICA could be a promising agent in alleviating neuropathic pain by inhibiting NR2B, TRPV1 receptors and Cav2.2 channels, which induces anti-apoptotic potential and inhibits inflammation.


Asunto(s)
Canales de Calcio Tipo N/metabolismo , Flavonoides/farmacología , Neuralgia , Receptores de N-Metil-D-Aspartato/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Antiinflamatorios/farmacología , Proteínas Reguladoras de la Apoptosis/análisis , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/farmacología , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Ratas , Nervio Ciático/efectos de los fármacos , Nervio Ciático/patología
8.
Sci Rep ; 11(1): 289, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33432004

RESUMEN

The involvement of pro-inflammatory mediators complicates the complex mechanism in neuropathic pain (NP). This study investigated the roles of bromelain against pro-inflammatory mediators as a mechanism that underpins its antinociceptive and anti-anxiety effects in the peripheral model of NP. Sixty-four male Wistar rats randomly divided into eight groups, were used for the study. A chronic constriction injury model of peripheral neuropathy was used to induce NP. Tail-immersion and von Frey filaments tests were used to assess hyperalgesia while open field and elevated plus mazes were used to assess anxiety-like behaviour. NF-кB, iNOS, nitrate, and pro-inflammatory cytokines were investigated in the plasma, sciatic nerve, and brain tissues using ELISA, spectrophotometer, and immunohistochemistry techniques after twenty-one days of treatment. Bromelain significantly (p < 0.05) improved the cardinal signs of NP and inhibited anxiety-like behaviours in ligated Wistar rats. It mitigated the increases in cerebral cortex interleukin (IL) -1ß, IL-6, and PGE2 levels. Bromelain reduced NF-кB, IL-1ß, IL-6, TNF-α, PGE2, and nitrate concentrations as well as the expression of iNOS in the sciatic nerve. Hence, the antinociceptive and anxiolytic effects of bromelain in the sciatic nerve ligation model of NP is in part due to its ability to reduce nitrosative and inflammatory activities.


Asunto(s)
Analgésicos/farmacología , Ansiolíticos/farmacología , Bromelaínas/farmacología , Mediadores de Inflamación/metabolismo , Nervio Ciático/efectos de los fármacos , Analgésicos/uso terapéutico , Animales , Ansiolíticos/uso terapéutico , Bromelaínas/uso terapéutico , Citocinas/metabolismo , Ligadura/efectos adversos , Masculino , Ratas , Ratas Wistar , Nervio Ciático/metabolismo , Nervio Ciático/patología , Nervio Ciático/cirugía
9.
J Biomater Appl ; 35(8): 1034-1042, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33487069

RESUMEN

Lidocaine is widely used as a local anesthetic for alleviation of post-operative pain and for management of acute and chronic painful conditions. Although several approaches are currently used to prolong the duration of action, an effective strategy to achieve neural blockage for several hours remains to be identified. In this study, a lidocaine-loaded Pluronic® F68-reduced graphene oxide hydrogel was developed to achieve sustained release of lidocaine. Fourier transform infrared spectroscopy, X-ray diffraction, and Raman spectroscopy confirmed the synthesis of Pluronic® F68-reduced graphene oxide. Transmission electron microscopy showed wrinkled, flat nanosheets with micelles attached. The developed hydrogel showed desirable pH, viscosity, adhesiveness, hardness, and cohesiveness for topical application. The ex vivo release study demonstrated the ability of the Pluronic® F68-reduced graphene oxide hydrogel to prolong release up to 10 h, owing to the strong π-π interactions between the graphene oxide and the lidocaine. In comparison with a commercial lidocaine ointment, the developed graphene oxide hydrogel showed sustained anesthetic effect in the radiant heat tail flick test and sciatic nerve block model. Thus, this study demonstrates the potential of using Pluronic® F68-reduced graphene oxide nanocarriers to realize prolonged effects of local anesthesia for effective pain management.


Asunto(s)
Anestesia Local/métodos , Grafito/química , Hidrogeles/química , Lidocaína/química , Administración Tópica , Animales , Preparaciones de Acción Retardada , Liberación de Fármacos , Grafito/administración & dosificación , Grafito/farmacología , Hidrogeles/administración & dosificación , Hidrogeles/farmacología , Lidocaína/administración & dosificación , Lidocaína/farmacología , Poloxámero/administración & dosificación , Poloxámero/química , Poloxámero/farmacología , Conejos , Ratas , Nervio Ciático/efectos de los fármacos , Pruebas de Irritación de la Piel , Viscosidad
10.
Psychopharmacology (Berl) ; 238(3): 877-886, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33404738

RESUMEN

BACKGROUND: Memory deficit is a common cognitive comorbid in patients with neuropathic pain that need better treatment. Recent research revealed that nanocurcumin has an antinociceptive action and a protective effect against memory disorders, suggesting its possible effectiveness for the treatment of neuropathic pain and its comorbidity. METHODS: Adult male albino Wistar rats (n = 32) were randomly divided into four experimental groups: CCI+ nanocurcumin, CCI + vehicle, sham + nanocurcumin, and sham + vehicle. Neuropathic pain induced by a chronic constriction injury of the sciatic nerve. Nanocurcumin or vehicle was injected intraperitoneally for 10 days. Behavioral assessment achieved to evaluate pain threshold in the von Frey test and radiant heat test, also spatial learning and memory examined by the Morris water maze (MWM) test. To explore the possible relation, IL-1ß, and TNF-α levels of the hippocampus measured by enzyme-linked immunosorbent assay (ELISA). RESULTS: Our data showed that CCI caused neuropathic pain-related behaviors and spatial learning and memory disorders in rats. Chronic treatment with nanocurcumin significantly increased pain threshold (P < 0.001; F = 27.63, F = 20.58), improved spatial memory (P < 0.01; F = 47.37), and decreased the hippocampal levels of IL-1ß (P < 0.001; F = 33.57) and TNF-α (P < 0.01; F = 7.25) in CCI rats. CONCLUSION: Chronic nanocurcumin can ameliorate pain-related behavior, improve spatial learning and memory deficits, and is associated with the reduction of IL-1ß and TNF-α levels in the hippocampus in CCI rats. Nanocurcumin may be potentially providing a therapeutic alternative for the treatment of neuropathic pain and its memory impairment comorbidity.


Asunto(s)
Analgésicos/uso terapéutico , Curcumina/uso terapéutico , Hipocampo/efectos de los fármacos , Interleucina-1beta/metabolismo , Neuralgia/tratamiento farmacológico , Memoria Espacial/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Analgésicos/administración & dosificación , Analgésicos/química , Animales , Conducta Animal/efectos de los fármacos , Constricción , Curcumina/administración & dosificación , Curcumina/química , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Masculino , Trastornos de la Memoria/complicaciones , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/metabolismo , Nanopartículas/administración & dosificación , Nanopartículas/química , Neuralgia/complicaciones , Neuralgia/metabolismo , Umbral del Dolor/efectos de los fármacos , Ratas , Ratas Wistar , Nervio Ciático/efectos de los fármacos , Nervio Ciático/lesiones
11.
Nutr Neurosci ; 24(4): 296-306, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31221045

RESUMEN

Introduction: The objective of the study is to elucidate the effect of Aegle marmelos bark hydroalcoholic extract (AMHE) and the role of its constituents marmelosin, umbelliferone, and Para-coumaric acid in attenuating neuropathic pain.Methodology: Peripheral neuropathy was induced by vincristine 100 µg/ml. AMHE was administered in three dose levels (100, 200 and 300 mg/kg) for 21 days. Mechanical hyperalgesia and allodynia were assessed by Randall Sellitto and electronic Von-Frey test, respectively. Functional loss and recovery of the nerve were assessed by sciatic functional index test. The nerve conduction velocity and formalin test were done to assess the peripheral and central response of the extract. Inflammatory mediators in both sciatic nerve and brain and neurotransmitters glutamate and aspartate were measured to support the data.Results and discussion: The inflammatory mediators in both sciatic nerve and brain (TNF-α, IL-1ß, and IL-6) were found to be attenuated with AMHE-treated group in comparison to the group treated only with vincristine, which indicates the extract has anti-inflammatory property. AMHE treated rats were found to be active in all the behavioural tests, suggesting its activity could be mediated through a central and peripheral mechanism to attenuate the pain response. The levels of excitatory neurotransmitters were found to be reduced with AMHE treatment.Conclusion: It could be concluded that AMHE is active in attenuating the neuropathic pain caused by vincristine. The peripheral action would have mediated through lowering the inflammatory mediators as well as the excitotoxicity caused due to peripheral neuropathy and neuroinflammation.


Asunto(s)
Aegle , Flavonoides , Neuralgia , Extractos Vegetales , Vincristina , Animales , Flavonoides/farmacología , Hiperalgesia/tratamiento farmacológico , Mediadores de Inflamación , Neuralgia/tratamiento farmacológico , Extractos Vegetales/farmacología , Ratas , Nervio Ciático/efectos de los fármacos , Vincristina/efectos adversos
12.
Mol Divers ; 25(1): 233-248, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32130644

RESUMEN

Piperine is the main active component of Piper longum L., which is also the main component of anti-sciatica Mongolian medicine Naru Sanwei pill. It has many pharmacological activities such as anti-inflammatory and immune regulation. This paper aims to preliminarily explore the potential mechanism of piperine in the treatment of sciatica through network pharmacology and molecular docking. TCMSP, ETCM database and literature mining were used to collect the active compounds of Piper longum L. Swiss TargetPrediction and SuperPred server were used to find the targets of compounds. At the same time, CTD database was used to collect the targets of sciatica. Then the above targets were compared and analyzed to select the targets of anti-sciatica in Piper longum L. The Go (gene ontology) annotation and KEGG pathway of the targets were enriched and analyzed by Metascape database platform. The molecular docking between the effective components and the targets was verified by Autodock. After that, the sciatica model of rats was established and treated with piperine. The expression level of inflammatory factors and proteins in the serum and tissues of rat sciatic nerve were detected by ELISA and Western blot. HE staining and immunohistochemistry were carried out on the sciatica tissues of rats. The results showed that Piper longum L. can regulate the development of sciatica and affect the expressions of PPARG and NF-kB1 through its active ingredient piperine, and there is endogenous interaction between PPARG and NF-kB1.


Asunto(s)
Alcaloides/farmacología , Benzodioxoles/farmacología , Piperidinas/farmacología , Alcamidas Poliinsaturadas/farmacología , Ciática/tratamiento farmacológico , Ciática/genética , Animales , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Masculino , Simulación del Acoplamiento Molecular/métodos , Piper/química , Ratas , Ratas Sprague-Dawley , Nervio Ciático/efectos de los fármacos , Tecnología/métodos
13.
J Ethnopharmacol ; 266: 113461, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33039625

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Jinmaitong (JMT) is a prescription of Traditional Chinese Medicine, which is composed of ten herbal drugs and two animal drugs. It has long been used for the treatment of diabetic peripheral neuropathy (DPN). AIM OF STUDY: Wnt/ß-catenin pathway is considered as an essential and direct driver of myelinogenesis. This study aims to evaluate the protective effect of JMT against DPN dynamically during a 16-weeks' treatment, and to investigate the underlying mechanism in which the Wnt/ß-catenin pathway is involved. MATERIALS AND METHODS: Diabetic model was induced by single intraperitoneal injection of Streptozotocin (STZ) using male Sprague-Dawley rats. The model rats were divided into five groups and administrated with JMT at three doses (0.437, 0.875, and 1.75 g/kg per day), neurotropin (positive drug, 2.67 NU/kg per day), and placebo (deionized water), respectively, for continuous 8 weeks (n = 9-10), 12 weeks (n = 8-10), or 16 weeks (n = 7-9). Meanwhile, rats in control group were administrated with placebo (n = 10 for 8 weeks, n = 9 for 12 and 16 weeks, respectively). Blood glucose and body weight were monitored every four weeks. Mechanical allodynia was assessed using mechanical withdrawal threshold (MWT) test. The morphological change of sciatic nerves were observed by transmission electron microscope (TEM) and hematoxylin and eosin (HE) stain. The mRNA and protein levels of targeted genes were evaluated by quantitative real time-PCR and western bolt, respectively. Myelin protein zero (MPZ) and mediators involved in Wnt/ß-catenin pathway, such as ß-catenin, glycogen synthase kinase 3ß (GSK-3ß), and WNT inhibitory factor-1 (WIF-1), were compared among different groups after treatment of 8, 12, and 16 weeks, respectively. RESULTS: The mechanical allodynia and peripheral nerve morphology were degenerated in DPN rats over time, and notably improved after JMT-treatment of 12 and 16 weeks. The decreased MPZ level in DPN rats were also significantly amended by JMT. More importantly, we found that the suppressed Wnt/ß-catenin pathway in sciatic nerves of DPN rats was overtly up-regulated by JMT in a time-dependent manner. Among the three doses, JMT at the middle dose showed the best effect. CONCLUSIONS: JMT effectively ameliorated diabetic-induced peripheral neuropathy, which was mediated by the activation of Wnt/ß-catenin signaling pathway. This study provided new perspective to understand the neuroprotective mechanism of JMT.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Neuropatías Diabéticas/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Vía de Señalización Wnt/efectos de los fármacos , Animales , Glucemia/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Diabetes Mellitus Experimental/complicaciones , Neuropatías Diabéticas/fisiopatología , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/administración & dosificación , Masculino , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Sprague-Dawley , Nervio Ciático/efectos de los fármacos , Nervio Ciático/metabolismo , Estreptozocina
14.
Neurochem Res ; 46(2): 379-395, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33201400

RESUMEN

Paclitaxel (PTX) is an antineoplastic agent commonly used in the treatment of solid tumors and is known to cause dose-limiting peripheral neurotoxicity. This study was performed to evaluate the protective effect of curcumin (CUR) against PTX-induced spinal cord and sciatic nerve injuries in rats. The rats were administered PTX (2 mg/kg, BW) intraperitoneally for the first 5 consecutive days followed by administration of CUR (100 and 200 mg/kg, BW daily in corn oil) orally for 10 days. Our results showed that CUR significantly reduced mRNA expression levels of NF-κB, TNF-α, IL-6, iNOS and GFAP whereas caused an increase in levels of Nrf2, HO-1 and NQO1 in the spinal cord and sciatic nerve of PTX-induced rats. In addition, CUR suppressed the activation of apoptotic and autophagic pathways by increasing Bcl-2 and Bcl-xL, and decreasing p53, caspase-3, Apaf-1, LC3A, LC3B and beclin-1 mRNA expression levels. The results showed that CUR also maintained the spinal cord and sciatic nerve histological architecture and integrity by both LFB staining and H&E staining. Immunohistochemical expressions of 8-OHdG, caspase-3 and LC3B in the PTX-induced spinal cord tissue were decreased after administration of CUR. Taken together, our findings demonstrated that CUR has protective effects on PTX-induced spinal cord and sciatic nerve injuries in rats.


Asunto(s)
Curcumina/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Nervio Ciático/efectos de los fármacos , Neuropatía Ciática/tratamiento farmacológico , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Masculino , Paclitaxel , Ratas Sprague-Dawley , Nervio Ciático/patología , Neuropatía Ciática/inducido químicamente , Neuropatía Ciática/patología , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Traumatismos de la Médula Espinal/inducido químicamente , Traumatismos de la Médula Espinal/patología
15.
Aging (Albany NY) ; 12(17): 17436-17458, 2020 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-32920546

RESUMEN

Jinmaitong (JMT), a compound prescription of traditional Chinese medicine, has long been used as a therapy for diabetic peripheral neuropathy (DPN). However, the neuroprotective mechanisms of JMT and its effect on gut microbiota remained unknown. Here, we examined the effects of JMT on behavior, pathomorphology and gut microbiota in streptozotocin (STZ)-induced DPN rats. Compared to distilled water administration, JMT reversed decreases in mechanical withdraw threshold and intraepidermal nerve fiber density, improved neurological morphology of sciatic nerves, increased serum neuregulin 1 (NRG1) level and contactin-associated protein (Caspr)-positive paranodes, and decreased amyloid precursor protein (APP) accumulation in DPN rats. More importantly, JMT enriched nine species of the gut microbiota of DPN rats, helping to prevent dysbiosis. Among these species, p_Actinobacteria, p_Proteobacteria and c_Actinobacteria were negatively correlated with DPN phenotypes and positively correlated with serum NRG1 level. These results indicate that JMT may exert a neuroprotective effect by modulating phenotype-associated gut microbiota and increasing serum NRG1 level in STZ-induced DPN rats. JMT may therefore be an effective complementary and alternative anti-DPN therapy.


Asunto(s)
Neuropatías Diabéticas , Medicamentos Herbarios Chinos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Neurregulina-1/metabolismo , Animales , Diabetes Mellitus Experimental , Neuropatías Diabéticas/metabolismo , Neuropatías Diabéticas/patología , Ratas , Nervio Ciático/efectos de los fármacos , Nervio Ciático/patología , Estreptozocina
16.
Nutrients ; 12(9)2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32867278

RESUMEN

Peripheral nerve injury can result in severe functional impairment and decreased quality of life due to loss of sensory and motor function. Nypa fruticans wurmb (NF) has been used in diverse folk remedies in East Asia. We have previously shown that Nypa fruticans wurmb extract has antinociceptive and anti-inflammatory effects by suppressing TRPV1 in the sciatic nerve injury. The present study investigated the effects of NF on the control of TRPV1 in relation to neuroprotective effects of a sciatic nerve crush injury. To evaluate the neuroprotective effects, an animal behavior test and a physiological function test were performed. Functional recovery and nerve recovery were improved in the NF and NF + SB (SB366791; TRPV1 antagonist) treated group. In the histomorphology evaluation, the neuronal regenerative effect of NF on the injured sciatic nerve was confirmed via hematoxylin and eosin (H&E) staining. In this study, the NF and NF + SB treated group showed neuroprotective and functional recovery effects from the sciatic nerve crush injury. Furthermore, the expression of NF-κB and iNOS showed a significantly suppressive effect on NF (p < 0.01), SB (p < 0.01), and NF + SB (p < 0.01) treated group at the 7th and 14th day compared to the vehicle group. This study confirmed the neuroprotective effects of NF on suppressing TRPV1 in a sciatic nerve crush injury. The findings of this study establish the effect of NF as a neurotherapeutic agent to protect the peripheral nerve after a sciatic nerve crush injury.


Asunto(s)
Lesiones por Aplastamiento/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Neuropatía Ciática/tratamiento farmacológico , Canales Catiónicos TRPV/efectos de los fármacos , Animales , Antiinflamatorios/farmacología , Modelos Animales de Enfermedad , Masculino , Fitoterapia , Ratas , Ratas Sprague-Dawley , Recuperación de la Función , Nervio Ciático/efectos de los fármacos
17.
J Ethnopharmacol ; 260: 113063, 2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-32505841

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Herbal formulation Buyang Huanwu Decoction (BYHWD) has been used to treat cardiovascular disorders including cerebral ischemia. Recent studies showed its effects on promoting axonal regeneration after nerve injury. However, compositional reformulation supplemented with herbal components that regulates inflammation may increase its efficacy for nerve repair. AIM OF THE STUDY: We prepared a new herbal decoction by adding selected herbal components to BYHWD (augmented BYHWD; ABHD) and investigated the effect of ABHD on the production of inflammatory cytokines and axonal regeneration using an animal model of nerve transection and coaptation (NTC). MATERIALS AND METHODS: A rat model of NTC was performed on the sciatic nerve. The sciatic nerve and dorsal root ganglion (DRG) were isolated and used for immunofluorescence staining and western blot analysis. DRG tissue was also used to prepare primary neuron culture and the length of neurites was analyzed. Sensorimotor nerve activities were assessed by rotarod and von Frey tests. RESULTS: Three herbal components that facilitated neurite outgrowth were chosen to formulate ABHD. ABHD administration into the sciatic nerve 1 week or 3 months after NTC facilitated axonal regeneration. Cell division cycle 2 (Cdc2) and brain-derived neurotrophic factor (BDNF) proteins were induced from the reconnected distal portion of the sciatic nerve and the levels were further elevated by in vivo administration of ABHD. Phospho-Erk1/2 level was increased by ABHD treatment as well, implying its role in mediating retrograde transport of BDNF signals into the neuronal cell body. Production of inflammatory cytokines IL-1ß and TNF-α was induced in the reconnected nerve but attenuated by ABHD treatment. Behavioral tests revealed that ABHD treatment improved functional recovery of sensorimotor activities. CONCLUSIONS: A newly formulated ABHD is effective at regulating the production of inflammatory cytokines and promoting axonal regeneration after nerve transection and may be considered to develop therapeutic strategies for peripheral nerve injury disorders.


Asunto(s)
Antiinflamatorios/farmacología , Axones/efectos de los fármacos , Citocinas/metabolismo , Medicamentos Herbarios Chinos/farmacología , Ganglios Espinales/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Regeneración Nerviosa/efectos de los fármacos , Nervio Ciático/efectos de los fármacos , Neuropatía Ciática/tratamiento farmacológico , Animales , Axones/metabolismo , Conducta Animal/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Ganglios Espinales/metabolismo , Ganglios Espinales/fisiopatología , Masculino , Ratones Endogámicos ICR , Actividad Motora/efectos de los fármacos , Proyección Neuronal/efectos de los fármacos , Percepción del Dolor/efectos de los fármacos , Ratas Sprague-Dawley , Nervio Ciático/metabolismo , Nervio Ciático/fisiopatología , Nervio Ciático/cirugía , Neuropatía Ciática/metabolismo , Neuropatía Ciática/fisiopatología , Transducción de Señal
18.
Neurol Res ; 42(6): 439-450, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32223546

RESUMEN

Purpose: The improvement of techniques using conduits that connects the ends of damaged nerves and guides the growth of nerve fibers between the stumps, including adoption of natural or synthetic materials still is a challenge in peripheral nerve repair. The aim of the present novel study was to fabricate and transplant chitosan-selenium biodegradable nanocomposite conduit on transected sciatic nerve in rat model.Methods: In NORMAL group, the left sciatic nerve was exposed through a gluteal muscle incision and after careful hemostasis skin was closed. In TRANSECTED group left sciatic nerve was transected and stumps were fixed in adjacent muscle. In CHITOSAN and CSBNC groups, 10-mm sciatic nerve defects were bridged using a chitosan and chitosan-selenium biodegradable nanocomposite conduits, respectively. The regenerated fibers were studied 4, 8 and 12 weeks after surgery. Assessment of nerve regeneration was based on behavioral, functional, biomechanical, histomorphometric and immunohistochemical criteria.Results: The behavioral, functional and biomechanical studies confirmed significant recovery of regenerated axons in CSBNC group (P < 0.05). Quantitative morphometric analyses of regenerated fibers showed the number and diameter of myelinated fibers in CSBNC group were significantly higher than in the CHITOSAN group (P < 0.05).Discussion: This demonstrates the potential of using CSBNC in peripheral nerve regeneration without limitations of donor-site morbidity associated with isolation autograft. It is also cost saving and may have clinical implications for the surgical management of patients after facial nerve transection.


Asunto(s)
Quitosano/farmacología , Regeneración Tisular Dirigida/instrumentación , Regeneración Nerviosa , Nervio Ciático/lesiones , Selenio/farmacología , Andamios del Tejido/química , Animales , Materiales Biocompatibles/química , Nanocompuestos/química , Regeneración Nerviosa/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Ratas , Recuperación de la Función/efectos de los fármacos , Nervio Ciático/efectos de los fármacos
19.
J Ethnopharmacol ; 256: 112761, 2020 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-32171894

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Luehea divaricata, popularly known in Brazil as "açoita-cavalo", has been widely explored by different ethnic groups native to Brazil to treat different pathologic conditions, including inflammatory pain. However, no report could be found on the effect that extract of L. divaricata has on neuropathic pain. This is an important topic because convergent and divergent mechanisms underlie inflammatory vs. neuropathic pain indicate that there may not always be a clear mechanistic delineation between these two conditions. AIM OF THE STUDY: The study aimed to determine antioxidant activity and macronutrient composition of aqueous extract from leaves of L. divaricata, and the effect of oral administration on nociception in rats with chronic constriction injury (CCI) of sciatic nerve-induced neuropathic pain, one of the most commonly employed animal models of neuropathic pain. MATERIALS AND METHODS: The antioxidant activity of the extract was evaluated by total phenolic content and DPPH, ABTS●+ and ORAC methods. Vitexin was determined by HPLC to show that the composition of the extract of the present study is similar to that used in previous studies with this genus. Total sugar and sucrose concentrations were assessed by the anthrone method, while glucose and triacilglycerides were determined using commercially available kits. Fructose concentration was calculated from values for total sugars, glucose and sucrose. Total protein was determined by Bradford assay. The effect on DNA strand breaking was investigated by inhibition of strand breaking of supercoiled DNA by hydroxyl radical. The antinociceptive effects of aqueous extract (100, 300, 500, and 1000 mg/kg, i.g.) were evaluated on thermal and mechanical thresholds for neuropathic pain induced by chronic constriction injury (CCI) of the sciatic nerve in rats. We also compared the antinociceptive effect of the extract (500 mg/kg, i.g.) with that induced by gabapentin (50 mg/kg, i.g.), a first-line clinical treatment for neuropathic pain. The effect of co-administration of extract (500 mg/kg, i.g.) and low-dose gabapentin (30 mg/kg, i.g.) was also assessed. In addition, the effect of the extract on body weight, and blood and hepatic parameters were investigated to reveal possible side effects of treatment. RESULTS: The extract showed high content of total phenol; good reducing capacity for DPPH, ABTS●+ and ORAC assays; presence of vitexin; and a high capacity to inhibit strand breaking of supercoiled DNA. The predominant sugar was sucrose, followed by glucose and fructose. Total protein was greater than triacylglycerides, with the latter being present in a trace amount in the extract. The extract increased the thermal and mechanical thresholds, which was reduced by CCI. The antinociceptive effect was comparable to gabapentin and was also found after co-administration of extract and low-dose gabapentin. No significant change was found in body weight and blood and hepatic indicators after extract treatment. CONCLUSIONS: Aqueous extract from L. divaricata leaves was as effective as gabapentin at attenuating CCI-induced neuropathic pain, indicating for first time the therapeutic potential of this species for this type of pain.


Asunto(s)
Malvaceae/química , Neuralgia/tratamiento farmacológico , Nocicepción/efectos de los fármacos , Extractos Vegetales/farmacología , Hojas de la Planta/química , Animales , Antioxidantes/farmacología , Brasil , Modelos Animales de Enfermedad , Hiperalgesia/tratamiento farmacológico , Masculino , Dimensión del Dolor/métodos , Ratas , Ratas Wistar , Nervio Ciático/efectos de los fármacos , Neuropatía Ciática/tratamiento farmacológico
20.
Tissue Eng Regen Med ; 17(2): 237-251, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32036567

RESUMEN

BACKGROUND: Centella asiatica (L.) is a plant with neuroprotective and neuroregenerative properties; however, its effects on the neurodifferentiation of mesenchymal stem cells (MSCs) and on peripheral nerve injury are poorly explored. This study aimed to investigate the effects of C. asiatica (L.)-neurodifferentiated MSCs on the regeneration of peripheral nerve in a critical-size defect animal model. METHODS: Nerve conduit was developed using decellularised artery seeded with C. asiatica-neurodifferentiated MSCs (ndMSCs). A 1.5 cm sciatic nerve injury in Sprague-Dawley rat was bridged with reversed autograft (RA) (n = 3, the gold standard treatment), MSC-seeded conduit (MC) (n = 4) or ndMSC-seeded conduit (NC) (n = 4). Pinch test and nerve conduction study were performed every 2 weeks for a total of 12 weeks. At the 12th week, the conduits were examined by histology and transmission electron microscopy. RESULTS: NC implantation improved the rats' sensory sensitivity in a similar manner to RA. At the 12th week, nerve conduction velocity was the highest in NC compared with that of RA and MC. Axonal regeneration was enhanced in NC and RA as shown by the expression of myelin basic protein (MBP). The average number of myelinated axons was significantly higher in NC than in MC but significantly lower than in RA. The myelin sheath thickness was higher in NC than in MC but lower than in RA. CONCLUSION: NC showed promising effects on nerve regeneration and functional restoration similar to those of RA. These findings revealed the neuroregenerative properties of C. asiatica and its potential as an alternative strategy for the treatment of critical size nerve defect.


Asunto(s)
Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Triterpenos/farmacología , Animales , Axones/patología , Axones/fisiología , Centella , Modelos Animales de Enfermedad , Masculino , Músculo Esquelético/patología , Vaina de Mielina , Regeneración Nerviosa/efectos de los fármacos , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/patología , Extractos Vegetales , Ratas , Ratas Sprague-Dawley , Nervio Ciático/efectos de los fármacos , Nervio Ciático/lesiones , Trasplante Autólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA