Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(4): 989-999, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621906

RESUMEN

This study aims to investigate the effect of Naotaifang(NTF) on the proteins associated with microglial polarization and glial scar in the rat model of cerebral ischemia reperfusion injury(CIRI). The CIRI model was established by middle cerebral artery occlusion/reperfusion. The 48 successfully modeled rats were randomized into model 7 d, model 14 d, NTF 7 d, and NTF 14 d groups(n=12). In addition, 12 SD rats were selected as the sham group. The NTF group was administrated with NTF suspension at 27 g·kg~(-1)·d~(-1) by gavage, and the sham, model 7 d, and model 14 d groups were administrated with the same volume of normal saline every day by gavage for 7 and 14 days, respectively. After the intervention, Longa score was evaluated. The infarct volume was measured by 2,3,5-triphenyl-2H-tetrazolium chloride(TTC) staining. Morris water maze and open field tests were carried out to evaluate the spatial learning, memory, cognitive function, and anxiety degree of rats. Hematoxylin-eosin(HE) staining was employed to observe the morphological structure and damage of the brain tissue. The immunofluorescence assay was employed to measure the expression of glial fibrillary acidic protein(GFAP) and glial scar. Western blot was employed to determine the protein levels of GFAP, neurocan, phosphacan, CD206, arginase-1(Arg-1), interleukin(IL)-1ß, IL-6, and IL-4. Compared with the sham, model 7 d and model 14 d groups showed cerebral infarction of different degrees, severe pathological injury of cerebral cortex and hippocampus, neurological impairment, reduced spatial learning and memory, cognitive dysfunction, severe anxiety, astrocyte hyperplasia, thickening penumbra glial scar, and up-regulated protein levels of IL-1ß, IL-6, GFAP, neurocan, phosphacan, CD206, and Arg-1(P<0.01). Compared with the model group, NTF 7 d and NTF 14 d groups improved spatial learning, memory, and cognitive function, reduced anxiety, improved nerve function, reduced cerebral infarction volume, reduced astrocyte hyperplasia, thinned penumbra glial scar, down-regulated the protein levels of GFAP, neurocan, phosphacan, IL-6, and IL-1ß, and up-regulated the protein levels of IL-4, CD206, and Arg-1(P<0.05 or P<0.01). NTF exerts a neuroprotective effect on CIRI by inducing the M2 polarization of microglia, inhibiting inflammatory response, and reducing the formation of glial scar.


Asunto(s)
Isquemia Encefálica , Medicamentos Herbarios Chinos , Daño por Reperfusión , Ratas , Animales , Microglía/metabolismo , Gliosis/patología , Ratas Sprague-Dawley , Hiperplasia , Interleucina-4 , Interleucina-6 , Neurocano , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores , Infarto de la Arteria Cerebral Media , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo
2.
CNS Neurosci Ther ; 30(1): e14468, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37950551

RESUMEN

AIMS: This study aimed to investigate the effect of perineuronal net (PNN) and neurocan (NCAN) on spinal inhibitory parvalbumin interneuron (PV-IN), and the mechanism of electroacupuncture (EA) in promoting spinal cord injury (SCI) repair through neurocan in PNN. METHODS: A mouse model of SCI was established. Sham-operated mice or SCI model mice were treated with chondroitin sulfate ABC (ChABC) enzyme or control vehicle for 2 weeks (i.e., sham+veh group, sham+ChABC group, SCI+veh group, and SCI+ChABC group, respectively), and then spinal cord tissues were taken from the T10 lesion epicenter for RNA sequencing (RNA-seq). MSigDB Hallmark and C5 databases for functional analysis, analysis strategies such as differential expression gene analysis (DEG), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment analysis (GSEA), and protein-protein interaction (PPI). According to the results of RNA-seq analysis, the expression of NCAN was knocked down or overexpressed by virus intervention, or/and EA intervention. Polymerase chain reaction (PCR), immunofluorescence, western blot, electrophysiological, and behavioral tests were performed. RESULTS: After the successful establishment of SCI model, the motor dysfunction of lower limbs, and the expression of PNN core glycan protein at the epicenter of SCI were reduced. RNA-seq and PCR showed that PNN core proteoglycans except NCAN showed the same expression trend in normal and injured spinal cord treated with ChABC. KEGG and GSEA showed that PNN is mainly associated with inhibitory GABA neuronal function in injured spinal cord tissue, and PPI showed that NCAN in PNN can be associated with inhibitory neuronal function through parvalbumin (PV). Calcium imaging showed that local parvalbumin interneuron (PV-IN) activity decreased after PNN destruction, whether due to ChABC treatment or surgical bruising of the spinal cord. Overexpression of neurocan in injured spinal cord can enhance local PV-IN activity. PCR and western blot suggested that overexpression or knockdown of neurocan could up-regulate or down-regulate the expression of GAD. At the same time, the activity of PV-IN in the primary motor cortex (M1) and the primary sensory cortex of lower (S1HL) extremity changed synchronously. In addition, overexpression of neurocan improved the electrical activity of the lower limb and promoted functional repair of the paralyzed hind limb. EA intervention reversed the down-regulation of neurocan, enhanced the expression of PNN in the lesioned area, M1 and S1HL. CONCLUSION: Neurocan in PNN can regulate the activity of PV-IN, and EA can promote functional recovery of mice with SCI by upregulating neurocan expression in PNN.


Asunto(s)
Electroacupuntura , Traumatismos de la Médula Espinal , Animales , Ratones , Ratas , Neuronas GABAérgicas/metabolismo , Neurocano , Parvalbúminas/metabolismo , Ratas Sprague-Dawley , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología
3.
Psychol Med ; 45(12): 2461-80, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25858580

RESUMEN

The powerful genome-wide association studies (GWAS) revealed common mutations that increase susceptibility for schizophrenia (SZ) and bipolar disorder (BD), but the vast majority were not known to be functional or associated with these illnesses. To help fill this gap, their impact on human brain structure and function has been examined. We systematically discuss this output to facilitate its timely integration in the psychosis research field; and encourage reflection for future research. Irrespective of imaging modality, studies addressing the effect of SZ/BD GWAS risk genes (ANK3, CACNA1C, MHC, TCF4, NRGN, DGKH, PBRM1, NCAN and ZNF804A) were included. Most GWAS risk variations were reported to affect neuroimaging phenotypes implicated in SZ/BD: white-matter integrity (ANK3 and ZNF804A), volume (CACNA1C and ZNF804A) and density (ZNF804A); grey-matter (CACNA1C, NRGN, TCF4 and ZNF804A) and ventricular (TCF4) volume; cortical folding (NCAN) and thickness (ZNF804A); regional activation during executive tasks (ANK3, CACNA1C, DGKH, NRGN and ZNF804A) and functional connectivity during executive tasks (CACNA1C and ZNF804A), facial affect recognition (CACNA1C and ZNF804A) and theory-of-mind (ZNF804A); but inconsistencies and non-replications also exist. Further efforts such as standardizing reporting and exploring complementary designs, are warranted to test the reproducibility of these early findings.


Asunto(s)
Trastorno Bipolar/genética , Trastorno Bipolar/fisiopatología , Encéfalo/fisiopatología , Predisposición Genética a la Enfermedad , Esquizofrenia/genética , Esquizofrenia/fisiopatología , Ancirinas/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Trastorno Bipolar/psicología , Canales de Calcio Tipo L/genética , Proteoglicanos Tipo Condroitín Sulfato/genética , Femenino , Neuroimagen Funcional , Genes , Predisposición Genética a la Enfermedad/genética , Predisposición Genética a la Enfermedad/psicología , Genoma , Estudio de Asociación del Genoma Completo , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Lectinas Tipo C/genética , Masculino , Mutación/genética , Proteínas del Tejido Nervioso/genética , Neurocano , Neurogranina/genética , Fenotipo , Polimorfismo Genético , Trastornos Psicóticos/fisiopatología , Factores de Riesgo , Psicología del Esquizofrénico , Factor de Transcripción 4 , Factores de Transcripción/genética
4.
Neurosci Lett ; 566: 36-41, 2014 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-24561092

RESUMEN

In the central nervous system the extracellular matrix has important roles, e.g. supporting the extracellular space, controlling the tissue hydration, binding soluble factors and influencing their diffusion. The distribution of the extracellular matrix components in the brain has been mapped but data on the circumventricular organs (CVOs) is not available yet. The CVOs lack the blood-brain barrier and have relatively large perivascular spaces. The present study investigates tenascin-R and the lecticans: aggrecan, brevican, neurocan, and versican in the median eminence, the area postrema, the vascular organ of the lamina terminalis, the subfornical organ, the pineal body and the subcommissural organ of the rat applying immunohistochemical methods, and lectin histochemistry, using Wisteria floribunda agglutinin (WFA). The extracellular matrix components were found intensely expressed in the CVOs with two exceptions: aggrecan immunoreactivity visualized only neurons in the arcuate nucleus, and the subcommissural organ was not labeled with either WFA, or lecticans, or tenascin-R. The different labelings usually overlapped each other. The distribution of the extracellular matrix components marked the territories of the CVOs. Considering these we suppose that the extracellular matrix is essential in the maintenance of CVO functions providing the large extracellular space which is required for diffusion and other processes important in their chemosensitive and neurosecretory activities. The decrease of extracellular matrix beyond the border of the organs may contribute to the control of the diffusion of molecules from the CVOs into the surrounding brain substance.


Asunto(s)
Área Postrema/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Hipotálamo/metabolismo , Eminencia Media/metabolismo , Sistemas Neurosecretores/metabolismo , Agrecanos/metabolismo , Animales , Brevicano/metabolismo , Femenino , Masculino , Neurocano/metabolismo , Glándula Pineal/metabolismo , Ratas Wistar , Órgano Subcomisural/metabolismo , Órgano Subfornical/metabolismo , Tenascina/metabolismo , Versicanos/metabolismo
5.
Neuroscience ; 166(4): 1068-82, 2010 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-20109532

RESUMEN

The hypothalamo-neurohypophysial system (HNS) consisting of arginine vasopressin (AVP) and oxytocin (OXT) magnocellular neurons shows the structural plasticity including the rearrangement of synapses, dendrites, and neurovascular contacts during chronic physiological stimulation. In this study, we examined the remodeling of chondroitin sulfate proteoglycans (CSPGs), main extracellular matrix (ECM), in the HNS after salt loading known as a chronic stimulation to cause the structural plasticity. In the supraoptic nucleus (SON), confocal microscopic observation revealed that the immunoreactivity of 6B4 proteoglycans (PG) was observed mainly at AVP-positive magnocellular neurons but that of neurocan was seen chiefly at OXT-positive magnocellular neurons. The immunoreactivity of phosphacan and aggrecan was seen at both AVP- and OXT-positive magnocellular neurons. Electron microscopic observation further showed that the immunoreactivity of phosphacan and neurocan was observed at astrocytic processes to surround somata, dendrites, and terminals, but not synaptic junctions. In the neurohypophysis (NH), the immunoreactivity of phosphacan, 6B4 PGs, and neurocan was observed at AVP-positive magnocellular terminals, but the reactivity of Wisteria floribunda agglutinin lectin was seen at OXT-positive ones. The immunoreactivity of versican was found at microvessel and that of aggrecan was not detected in the NH. Quantitative morphometrical analysis showed that the chronic physiological stimulation by 7-day salt loading decreased the level of 6B4 PGs in the SON and the level of phosphacan, 6B4 PGs, and neurocan in the NH. These results suggest that the extracellular microenvironment of CSPGs is different between AVP and OXT magnocellular neurons and activity-dependent remodeling of CSPGs could be involved in the structural plasticity of the HNS.


Asunto(s)
Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Matriz Extracelular/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Hipotálamo/metabolismo , Plasticidad Neuronal/fisiología , Neurohipófisis/metabolismo , Agrecanos/metabolismo , Animales , Arginina Vasopresina/metabolismo , Sistema Hipotálamo-Hipofisario/ultraestructura , Hipotálamo/ultraestructura , Inmunohistoquímica , Masculino , Microscopía Confocal , Microscopía Electrónica de Transmisión , Neurocano , Plasticidad Neuronal/efectos de los fármacos , Oxitocina/metabolismo , Neurohipófisis/ultraestructura , Lectinas de Plantas/metabolismo , Terminales Presinápticos/metabolismo , Ratas , Ratas Wistar , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Receptores N-Acetilglucosamina/metabolismo , Cloruro de Sodio/farmacología , Núcleo Supraóptico/metabolismo , Núcleo Supraóptico/ultraestructura , Versicanos/metabolismo , Equilibrio Hidroelectrolítico/fisiología
6.
Eur J Neurosci ; 22(11): 2689-96, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16324103

RESUMEN

We examined the molecular mechanisms underlying the formation of the thalamocortical pathway in the cerebral neocortex of normal and reeler mutant mice. During normal development of the mouse neocortex, thalamic axons immunoreactive for the neural cell adhesion molecule L1 rarely invaded the cortical plate and ran centered in the subplate which is immunoreactive for neurocan, a brain-specific chondroitin sulfate proteoglycan. On the other hand, in homozygous reeler mutant mice, thalamic axons took an aberrant course to run obliquely through the cortical plate. Injection of bromodeoxyuridine at embryonic day 11 specifically labeled subplate neurons in normal mice, whilst in the reeler neocortex it labeled cells scattered in the cortical plate as well as in the superficial layer (superplate). Neurocan immunoreactivity was associated with the bromodeoxyuridine-positive cells in the superplate, as well as being present in oblique bands within the cortical plate, along which L1-bearing thalamic axons preferentially ran. The present results support our previous hypothesis proposed for normal rats that a heterophilic molecular interaction between L1 and neurocan is involved in determining the thalamocortical pathway within the neocortical anlage [T. Fukuda et al. (1997) Journal of Comparative Neurology, 382, 141-152].


Asunto(s)
Axones/fisiología , Corteza Cerebral/fisiología , Neocórtex/fisiología , Proteínas del Tejido Nervioso/farmacología , Neuronas/fisiología , Proteoglicanos/farmacología , Tálamo/fisiología , Animales , Proteoglicanos Tipo Condroitín Sulfato , Femenino , Heterocigoto , Inmunohistoquímica , Ratones , Ratones Noqueados , Ratones Mutantes Neurológicos , Molécula L1 de Adhesión de Célula Nerviosa/genética , Molécula L1 de Adhesión de Célula Nerviosa/fisiología , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Neurocano , Embarazo
7.
Biol Psychiatry ; 55(8): 797-803, 2004 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-15050860

RESUMEN

BACKGROUND: Survival and differentiation of neurons and the formation and maintenance of synapses in the cerebral cortex may be affected in schizophrenia. Since neurotrophins play an important role in these events, behavioral effects relevant to schizophrenia were investigated in rats that had compromised neurotrophin function during prefrontal cortical development. METHODS: Neonatal rat pups were injected into the developing prefrontal cortex with a depot preparation of p75 receptor antibody conjugated to saporin. Animals were tested for dopaminergic hyperresponsivity and prepulse inhibition of acoustic startle at 5 or 10 weeks. Neonatal and adult brain sections were examined for morphologic abnormality. RESULTS: Animals that received neonatal injections of p75 antibody conjugated to saporin showed significantly increased amphetamine-induced locomotion and rearing and impairment of prepulse inhibition of acoustic startle at 10 weeks of age but not at 5 weeks. Examination of adult brain sections revealed apparently normal structure, whereas neonatal brain sections showed apoptotic cells in the developing prefrontal cortex in pups that received p75 antibody conjugated to saporin. CONCLUSIONS: Compromised p75 neurotrophin receptor function in the developing prefrontal cortex may be associated with the manifestation of adult-onset dopaminergic hyperresponsivity and impaired prepulse inhibition and therefore may be involved in the pathogenesis of schizophrenia.


Asunto(s)
Dopamina/metabolismo , Inhibición Neural/fisiología , Corteza Prefrontal/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Reflejo de Sobresalto/fisiología , Estimulación Acústica/métodos , Factores de Edad , Animales , Animales Recién Nacidos , Anticuerpos/farmacología , Caspasa 3 , Caspasas/metabolismo , Colina O-Acetiltransferasa/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Dextroanfetamina/farmacología , Dopaminérgicos/farmacología , Relación Dosis-Respuesta en la Radiación , Hipersensibilidad/metabolismo , Inmunohistoquímica/métodos , Lectinas Tipo C , Actividad Motora/efectos de los fármacos , Actividad Motora/efectos de la radiación , Proteínas del Tejido Nervioso/metabolismo , Inhibición Neural/efectos de los fármacos , Neurocano , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Corteza Prefrontal/citología , Corteza Prefrontal/crecimiento & desarrollo , Corteza Prefrontal/efectos de la radiación , Ratas , Ratas Sprague-Dawley , Receptor de Factor de Crecimiento Nervioso , Receptores de Factor de Crecimiento Nervioso/inmunología , Reflejo de Sobresalto/efectos de los fármacos , Reflejo de Sobresalto/efectos de la radiación
8.
Cell Mol Life Sci ; 58(12-13): 1842-56, 2001 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11766883

RESUMEN

Neurocan is a chondroitin sulfate proteoglycan of the lectican family and a component of the extracellular matrix of the central nervous system. It is mainly expressed during modeling and remodeling stages of this tissue. Neurocan can bind to various structural extracellular matrix components, such as hyaluronan, heparin, tenascin-C and tenascin-R, and the growth and mobility factors FGF-2, HB-GAM, and amphoterin. Neurocan can also interact with several cell surface molecules, such as N-CAM, L1/Ng-CAM, TAG-1/axonin-1, and an N-cadherin-binding N-acetyl-galactosamine-phosphoryl-transferase, and in vitro studies have shown that neurocan is able to modulate the cell-binding and neurite outgrowth promoting activites of these molecules. Current analysis of the molecular structures and substructures involved in homophilic and heterophilic interactions of these molecules and complementary loss-of-function mutations might shed some light on the roles played by neurocan and interacting molecules in the fine tuning of the nervous system.


Asunto(s)
Química Encefálica , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Moléculas de Adhesión Celular/metabolismo , Células Cultivadas , Proteoglicanos Tipo Condroitín Sulfato/análisis , Proteoglicanos Tipo Condroitín Sulfato/química , Proteoglicanos Tipo Condroitín Sulfato/genética , Proteínas de la Matriz Extracelular/química , Glicosaminoglicanos/metabolismo , Humanos , Lectinas Tipo C , Ligandos , Proteínas del Tejido Nervioso/análisis , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Neurocano , Estructura Secundaria de Proteína , Órganos de los Sentidos/química , Órganos de los Sentidos/embriología , Tenascina/metabolismo
9.
Development ; 125(5): 791-801, 1998 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-9449662

RESUMEN

Retinal axons show region-specific patterning along the dorsal-ventral axis of diencephalon: retinal axons grow in a compact bundle over hypothalamus, dramatically splay out over thalamus, and circumvent epithalamus as they continue toward the dorsal midbrain. In vitro, retinal axons are repulsed by substrate-bound and soluble activities in hypothalamus and epithalamus, but invade thalamus. The repulsion is mimicked by a soluble floor plate activity. Tenascin and neurocan, extracellular matrix molecules that inhibit retinal axon growth in vitro, are enriched in hypothalamus and epithalamus. Within thalamus, a stimulatory activity is specifically upregulated in target nuclei at the time that retinal axons invade them. These findings suggest that region-specific, axon repulsive and stimulatory activities control retinal axon patterning in the embryonic diencephalon.


Asunto(s)
Axones/ultraestructura , Diencéfalo/embriología , Retina/embriología , Retina/ultraestructura , Células Ganglionares de la Retina/ultraestructura , Animales , Axones/fisiología , Comunicación Celular , Núcleo Celular/fisiología , Embrión de Pollo , Proteoglicanos Tipo Condroitín Sulfato/fisiología , Diencéfalo/fisiología , Femenino , Cuerpos Geniculados/embriología , Hipotálamo/embriología , Lectinas Tipo C , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/fisiología , Neurocano , Embarazo , Ratas , Ratas Sprague-Dawley , Retina/fisiología , Células Ganglionares de la Retina/fisiología , Tenascina/fisiología , Tálamo/embriología , Vías Visuales/embriología , Vías Visuales/ultraestructura
10.
J Biol Chem ; 272(43): 26905-12, 1997 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-9341124

RESUMEN

Neurocan is a member of the aggrecan family of proteoglycans which are characterized by NH2-terminal domains binding hyaluronan, and COOH-terminal domains containing C-type lectin-like modules. To detect and enhance the affinity for complementary ligands of neurocan, the COOH-terminal neurocan domain was fused with the NH2-terminal region of tenascin-C, which contains the hexamerization domain of this extracellular matrix glycoprotein. The fusion protein was designed to contain the last downstream glycosaminoglycan attachment site and was expressed as a proteoglycan. In ligand overlay blots carried out with brain extracts, it recognized tenascin-C. The interaction was abolished by the addition of EDTA, or TNfn4,5, a bacterially expressed tenascin-C fragment comprising the fourth and fifth fibronectin type III module. The fusion protein directly reacted with this fragment in ligand blot and enzyme-linked immunosorbent assay procedures. Both tenascin-C and TNfn4,5 were retained on Sepharose 4B-linked carboxyl-terminal neurocan domains, which in BIAcore binding studies yielded a KD value of 17 nM for purified tenascin-C. We conclude that a divalent cation-dependent interaction between the COOH-terminal domain of neurocan and those fibronectin type III repeats is substantially involved in the binding of neurocan to tenascin-C.


Asunto(s)
Proteoglicanos Tipo Condroitín Sulfato/química , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Tenascina/química , Tenascina/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales , Sitios de Unión , Unión Competitiva , Encéfalo/metabolismo , Línea Celular , Pollos , Cromatografía de Afinidad , Ácido Edético/farmacología , Humanos , Immunoblotting , Lectinas Tipo C , Ligandos , Ratones , Modelos Estructurales , Datos de Secuencia Molecular , Neurocano , Fragmentos de Péptidos/química , Fragmentos de Péptidos/aislamiento & purificación , Fragmentos de Péptidos/farmacología , Conformación Proteica , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
11.
J Comp Neurol ; 382(2): 141-52, 1997 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-9183685

RESUMEN

We used immunohistochemistry to examine possible molecular interactions between the subplate and growing thalamocortical axons in rat fetuses. In the cortical anlage of embryonic day 16 (E16), the subplate first appeared below the cortical plate. Among chondroitin sulfate proteoglycans, phosphacan was uniformly distributed throughout the cortical wall, whereas neurocan was localized only in the subplate at E16. Neural cell adhesion molecules, NCAM-H, TAG-1, and L1, were detected in the cortical anlage. Both cortical neurons and growing axons were diffusely immunopositive for NCAM-H, and TAG-1 immunoreactivity was found on immature neurons and cortical efferent axons but not on thalamocortical axons. L1 immunoreactivity was specifically localized on the growing thalamocortical axons. When the locations of neurocan and L1 were compared in the developing cortex, L1-bearing axons were found to extend to neurocan-immunopositive regions; neurocan immunoreactivity was intense in the subplate at E16, when small numbers of L1-immunoreactive thalamocortical axons began to invade the cortex. At E17, many L1-positive axons were observed in the subplate that expressed neurocan specifically. Double immunostaining showed that L1-positive axons and neurocan immunoreactivity overlapped in the subplate at E17. After E18, neurocan expression gradually extended to the lower part of the cortical plate; it extended to the entire cortex by E21, 1 day before birth. By E21, L1-bearing axons had invaded the lower part of the cortical plate. The present study demonstrated that the neurocan expression precedes growth of L1-bearing thalamocortical afferent fibers. Because neurocan can bind to L1 molecule in vitro, these results suggest that neurocan and L1 play some important roles in pathfinding of the thalamocortical afferent fibers during rat corticogenesis.


Asunto(s)
Moléculas de Adhesión Celular Neuronal , Corteza Cerebral/embriología , Proteoglicanos Tipo Condroitín Sulfato/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Glicoproteínas de Membrana/biosíntesis , Proteínas del Tejido Nervioso/biosíntesis , Neuronas/fisiología , Tálamo/embriología , Animales , Axones/fisiología , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/análisis , Contactina 2 , Desarrollo Embrionario y Fetal , Inmunohistoquímica/métodos , Lectinas Tipo C , Complejo de Antígeno L1 de Leucocito , Glicoproteínas de Membrana/análisis , Proteínas del Tejido Nervioso/análisis , Moléculas de Adhesión de Célula Nerviosa/análisis , Moléculas de Adhesión de Célula Nerviosa/biosíntesis , Neurocano , Neuronas/citología , Ratas , Ratas Sprague-Dawley , Tálamo/citología , Tálamo/metabolismo
12.
Zoolog Sci ; 13(5): 665-8, 1996 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9004555

RESUMEN

In the experiment of mouse transforming growth factor alpha (TGF alpha) gene expression in mammary tumors, various sizes of amplified products by reverse transcriptase-polymerase chain reaction (RT-PCR) using mouse TGF alpha primers were detected in addition to a predicted size in four strains of mice. During the further analysis of these RT-PCR products in mouse mammary tumors, the transcript of neurocan gene was detected in the mammary tumor from SHN mice by the cloning and nucleotide sequence analysis after RT-PCR reaction using mouse TGF alpha primers. The 5'-nucleotide sequence of sequential 246bp in the amplified cDNA of 527bp was completely identical to a middle part of mouse neurocan cDNA sequence, one of the chondroitin-sulfate proteoglycan expressed in the nervous tissue.


Asunto(s)
Química Encefálica , Proteoglicanos Tipo Condroitín Sulfato/genética , Sulfatos de Condroitina/genética , Neoplasias Mamarias Animales/química , Proteínas del Tejido Nervioso/genética , ARN Mensajero/análisis , ARN Mensajero/genética , Animales , Secuencia de Bases , Proteoglicanos Tipo Condroitín Sulfato/análisis , Sulfatos de Condroitina/análisis , Cartilla de ADN , ADN Complementario/análisis , ADN Complementario/química , ADN Complementario/genética , ADN de Neoplasias/análisis , ADN de Neoplasias/química , ADN de Neoplasias/genética , Femenino , Amplificación de Genes , Lectinas Tipo C , Neoplasias Mamarias Animales/patología , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/análisis , Neurocano , Reacción en Cadena de la Polimerasa , ARN Mensajero/química
13.
J Comp Neurol ; 366(1): 44-54, 1996 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-8866845

RESUMEN

Using immunocytochemistry, we have compared the distribution of neurocan and phosphacan in the developing central nervous system. At embryonic day 13 (E13), phosphacan surrounds the radially oriented neuroepithelial cells of the telencephalon, whereas neurocan staining of brain parenchyma is very weak. By E16-19, strong staining of both neurocan and phosphacan is seen in the marginal zone and subplate of the neocortex, and phosphacan is present in the ventricular zone and also has a diffuse distribution in other brain areas. Phosphacan is also widely distributed in embryonic spinal cord, where it is strongly expressed throughout the gray and white matter, in the dorsal and ventral nerve roots, and in the roof plate at E13, when neurocan immunoreactivity is seen only in the mesenchyme of the future spinal canal. Neurocan first begins to appear in the spinal cord at E16-19, in the region of ventral motor neurons. In early postnatal and adult cerebellum, neurocan immunoreactivity is seen in the prospective white matter and in the granule cell, Purkinje cell, and molecular layers, whereas phosphacan immunoreactivity is associated with Bergmann glial fibers in the molecular layer and their cell bodies (the Golgi epithelial cells) below the Purkinje cells. These immunocytochemical results demonstrate that the expression of neurocan and phosphacan follow different developmental time courses not only in postnatal brain (as previously demonstrated by radioimmunoassay) but also in the embryonic central nervous system. The specific localization and different temporal expression patterns of these two proteoglycans are consistent with other evidence indicating that they have overlapping or complementary roles in axon guidance, cell interactions, and neurite outgrowth during nervous tissue histogenesis.


Asunto(s)
Encéfalo/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteoglicanos/metabolismo , Animales , Inmunohistoquímica , Lectinas Tipo C , Neurocano , Ratas , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores , Médula Espinal/metabolismo
14.
J Comp Neurol ; 355(4): 615-28, 1995 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-7636035

RESUMEN

The first thalamocortical axons to arrive in the developing cerebral cortex traverse a pathway that is separate from the adjacent intracortical pathway for early efferents, suggesting that different molecular signals guide their growth. We previously demonstrated that the intracortical pathway for thalamic axons is centered on the subplate (Bicknese et al. [1994] J. Neurosci. 14:3500-3510), which is rich in chondroitin sulfate proteoglycans (CSPGs; Sheppard et al. [1991] J. Neurosci. 11:3928-3942), whereas efferent axons cross the subplate to exit in a zone containing much less CSPG. To define the molecular composition of the subplate further, we used antibodies against CSPG core proteins and chondroitin sulfate disaccharides in an immunohistochemical analysis of their distribution in the developing neocortex of the rat. Immunolabeling for neurocan, a central nervous system-specific CSPG (Rauch et al. [1992] J. Biol. Chem. 267:19537-19547), and for chondroitin 6-sulfate and unsulfated chondroitin becomes prominent in the subplate before the arrival of thalamic afferents. Immunolabeling is initially sparse in the cortical plate but appears later in maturing cortical layers. A postnatal decline in immunolabeling occurs uniformly for most proteoglycans, but, in the somatosensory cortex, labeling for neurocan, phosphacan, and chondroitin 4- and 6-sulfate declines in the centers of the whisker barrels before the walls. In contrast to neurocan, immunolabeling for other proteoglycans is either uniformly distributed (syndecan-1, N-syndecan, 5F3, phosphacan, chondroitin 4-sulfate), restricted to axons (PGM1), distributed exclusively on nonneuronal elements (2D6, NG2, and CD44), or undetectable (9.2.27, aggrecan, decorin). Thus, neurocan is a candidate molecule for delineating the intracortical pathway of thalamocortical axons and distinguishing it from that of cortical efferents.


Asunto(s)
Axones/metabolismo , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Sulfatos de Condroitina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Tálamo/embriología , Tálamo/metabolismo , Vías Aferentes/citología , Vías Aferentes/embriología , Vías Aferentes/metabolismo , Animales , Anticuerpos Monoclonales , Corteza Cerebral/citología , Condroitín Liasas , Vías Eferentes/citología , Vías Eferentes/embriología , Vías Eferentes/metabolismo , Femenino , Glicosaminoglicanos/metabolismo , Inmunohistoquímica , Lectinas Tipo C , Neurocano , Embarazo , Ratas , Tálamo/citología , Vibrisas/inervación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA