Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 391
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
J Physiol ; 602(6): 1175-1197, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38431908

RESUMEN

Non-invasive transcranial direct-current stimulation (tDCS) is a safe ischaemic stroke therapy. Cathodal bilateral tDCS (BtDCS) is a modified tDCS approach established by us recently. Because selenium (Se) plays a crucial role in cerebral ischaemic injury, we investigated whether cathodal BtDCS conferred neuroprotection via regulating Se-dependent signalling in rat cerebral ischaemia-reperfusion (I/R) injury. We first showed that the levels of Se and its transport protein selenoprotein P (SEPP1) were reduced in the rat cortical penumbra following I/R, whereas cathodal BtDCS prevented the reduction of Se and SEPP1. Interestingly, direct-current stimulation (DCS) increased SEPP1 level in cultured astrocytes subjected to oxygen-glucose deprivation reoxygenation (OGD/R) but had no effect on SEPP1 level in OGD/R-insulted neurons, indicating that DCS may increase Se in ischaemic neurons by enhancing the synthesis and secretion of SEPP1 in astrocytes. We then revealed that DCS reduced the number of injured mitochondria in OGD/R-insulted neurons cocultured with astrocytes. DCS and BtDCS prevented the reduction of the mitochondrial quality-control signalling, vesicle-associated membrane protein 2 (VAMP2) and syntaxin-4 (STX4), in OGD/R-insulted neurons cocultured with astrocytes and the ischaemic brain respectively. Under the same experimental conditions, downregulation of SEPP1 blocked DCS- and BtDCS-induced upregulation of VAMP2 and STX4. Finally, we demonstrated that cathodal BtDCS increased Se to reduce infract volume following I/R. Together, the present study uncovered a molecular mechanism by which cathodal BtDCS confers neuroprotection through increasing SEPP1 in astrocytes and subsequent upregulation of SEPP1/VAMP2/STX4 signalling in ischaemic neurons after rat cerebral I/R injury. KEY POINTS: Cathodal bilateral transcranial direct-current stimulation (BtDCS) prevents the reduction of selenium (Se) and selenoprotein P in the ischaemic penumbra. Se plays a crucial role in cerebral ischaemia injury. Direct-current stimulation reduces mitochondria injury and blocks the reduction of vesicle-associated membrane protein 2 (VAMP2) and syntaxin-4 (STX4) in oxygen-glucose deprivation reoxygenation-insulted neurons following coculturing with astrocytes. Cathodal BtDCS regulates Se/VAMP2/STX4 signalling to confer neuroprotection after ischaemia.


Asunto(s)
Isquemia Encefálica , Daño por Reperfusión , Selenio , Accidente Cerebrovascular , Estimulación Transcraneal de Corriente Directa , Ratas , Animales , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Neuroprotección/fisiología , Proteína 2 de Membrana Asociada a Vesículas , Selenoproteína P , Oxígeno/metabolismo , Daño por Reperfusión/prevención & control , Daño por Reperfusión/metabolismo , Glucosa/metabolismo , Proteínas Qa-SNARE
2.
Cell Biochem Funct ; 42(2): e3964, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38439154

RESUMEN

Kaempferol, a flavonoid compound found in various fruits, vegetables, and medicinal plants, has garnered increasing attention due to its potential neuroprotective effects in neurological diseases. This research examines the existing literature concerning the involvement of kaempferol in neurological diseases, including stroke, Parkinson's disease, Alzheimer's disease, neuroblastoma/glioblastoma, spinal cord injury, neuropathic pain, and epilepsy. Numerous in vitro and in vivo investigations have illustrated that kaempferol possesses antioxidant, anti-inflammatory, and antiapoptotic properties, contributing to its neuroprotective effects. Kaempferol has been shown to modulate key signaling pathways involved in neurodegeneration and neuroinflammation, such as the PI3K/Akt, MAPK/ERK, and NF-κB pathways. Moreover, kaempferol exhibits potential therapeutic benefits by enhancing neuronal survival, attenuating oxidative stress, enhancing mitochondrial calcium channel activity, reducing neuroinflammation, promoting neurogenesis, and improving cognitive function. The evidence suggests that kaempferol holds promise as a natural compound for the prevention and treatment of neurological diseases. Further research is warranted to elucidate the underlying mechanisms of action, optimize dosage regimens, and evaluate the safety and efficacy of this intervention in human clinical trials, thereby contributing to the advancement of scientific knowledge in this field.


Asunto(s)
Enfermedades del Sistema Nervioso , Fármacos Neuroprotectores , Humanos , Neuroprotección , Enfermedades Neuroinflamatorias , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Quempferoles/farmacología , Quempferoles/uso terapéutico , Fosfatidilinositol 3-Quinasas , Enfermedades del Sistema Nervioso/tratamiento farmacológico
3.
Phytomedicine ; 127: 155494, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38471370

RESUMEN

BACKGROUND: Parkinson's disease (PD), a neurodegenerative disorder, is characterized by motor symptoms due to the progressive loss of dopaminergic neurons in the substantia nigra (SN) and striatum (STR), alongside neuroinflammation. Asiaticoside (AS), a primary active component with anti-inflammatory and neuroprotective properties, is derived from Centella asiatica. However, the precise mechanisms through which AS influences PD associated with inflammation are not yet fully understood. PURPOSE: This study aimed to explore the protective mechanism of AS in PD. METHODS: Targets associated with AS and PD were identified from the Swiss Target Prediction, Similarity Ensemble Approach, PharmMapper, and GeneCards database. A protein-protein interaction (PPI) network was constructed to identify potential therapeutic targets. Concurrently, GO and KEGG analyses were performed to predict potential signaling pathways. To validate these mechanisms, the effects of AS on 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD in mice were investigated. Furthermore, neuroinflammation and the activation of the NLRP3 inflammasome were assessed to confirm the anti-inflammatory properties of AS. In vitro experiments in BV2 cells were then performed to investigate the mechanisms of AS in PD. Moreover, CETSA, molecular docking, and molecular dynamics simulations (MDs) were performed for further validation. RESULTS: Network pharmacology analysis identified 17 potential targets affected by AS in PD. GO and KEGG analyses suggested the biological roles of these targets, demonstrating that AS interacts with 149 pathways in PD. Notably, the NOD-like receptor signaling pathway was identified as a key pathway mediating AS's effect on PD. In vivo studies demonstrated that AS alleviated motor dysfunction and reduced the loss of dopaminergic neurons in MPTP-induced PD mice. In vitro experiments demonstrated that AS substantially decreased IL-1ß release in BV2 cells, attributing this to the modulation of the NLRP3 signaling pathway. CETSA and molecular docking studies indicated that AS forms a stable complex with NLRP3. MDs suggested that ARG578 played an important role in the formation of the complex. CONCLUSION: In this study, we first predicted that the potential target and pathway of AS's effect on PD could be NLRP3 protein and NOD-like receptor signaling pathway by network pharmacology analysis. Further, we demonstrated that AS could alleviate symptoms of PD induced by MPTP through its interaction with the NLRP3 protein for the first time by in vivo and in vitro experiments. By binding to NLRP3, AS effectively inhibits the assembly and activation of the inflammasome. These findings suggest that AS is a promising inhibitor for PD driven by NLRP3 overactivation.


Asunto(s)
Intoxicación por MPTP , Fármacos Neuroprotectores , Enfermedad de Parkinson , Triterpenos , Ratones , Animales , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Intoxicación por MPTP/tratamiento farmacológico , Intoxicación por MPTP/metabolismo , Neuroprotección , Enfermedades Neuroinflamatorias , Simulación del Acoplamiento Molecular , Microglía , Enfermedad de Parkinson/metabolismo , Neuronas Dopaminérgicas , Antiinflamatorios/uso terapéutico , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
4.
Phytomedicine ; 126: 155254, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38342016

RESUMEN

BACKGROUND: The gut-brain axis (GBA) plays a central role in cerebral ischaemia-reperfusion injury (CIRI). Rhubarb, known for its purgative properties, has demonstrated protective effects against CIRI. However, it remains unclear whether this protective effect is achieved through the regulation of the GBA. AIM: This study aims to investigate the mechanism by which rhubarb extract improves CIRI by modulating the GBA pathway. METHODS: We identified the active components of rhubarb extract using LC-MS/MS. The model of middle cerebral artery occlusion (MCAO) was established to evaluate the effect of rhubarb extract. We conducted 16S rDNA sequencing and untargeted metabolomics to analyze intestinal contents. Additionally, we employed HE staining, TUNEL staining, western blot, and ELISA to assess intestinal barrier integrity. We measured the levels of inflammatory cytokines in serum via ELISA. We also examined blood-brain barrier (BBB) integrity using Evans blue (EB) penetration, transmission electron microscopy (TEM), western blot, and ELISA. Neurological function scores and TTC staining were utilized to evaluate neurological outcomes. RESULTS: We identified twenty-six active components in rhubarb. Rhubarb extract enhanced α-diversity, reduced the abundance of Enterobacteriaceae, and partially rectified metabolic disorders in CIRI rats. It also ameliorated pathological changes, increased the expressions of ZO-1, Occludin, and Claudin 1 in the colon, and reduced levels of LPS and d-lac in serum. Furthermore, it lowered the levels of IL-1ß, IL-6, IL-10, IL-17, and TNF-α in serum. Rhubarb extract mitigated BBB dysfunction, as evidenced by reduced EB penetration and improved hippocampal microstructure. It upregulated the expressions of ZO-1, Occludin, Claudin 1, while downregulating the expressions of TLR4, MyD88, and NF-κB. Similarly, rhubarb extract decreased the levels of IL-1ß, IL-6, and TNF-α in the hippocampus. Ultimately, it reduced neurological function scores and cerebral infarct volume. CONCLUSION: Rhubarb effectively treats CIRI, potentially by inhibiting harmful bacteria, correcting metabolic disorders, repairing intestinal barrier function, alleviating BBB dysfunction, and ultimately improving neurological outcomes.


Asunto(s)
Isquemia Encefálica , Enfermedades Metabólicas , Fármacos Neuroprotectores , Daño por Reperfusión , Rheum , Ratas , Animales , Neuroprotección , Rheum/metabolismo , Ocludina/metabolismo , Interleucina-6 , Factor de Necrosis Tumoral alfa/genética , Eje Cerebro-Intestino , Cromatografía Liquida , Claudina-1 , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Espectrometría de Masas en Tándem , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/patología , Azul de Evans/uso terapéutico , Daño por Reperfusión/metabolismo , Enfermedades Metabólicas/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico
5.
Fitoterapia ; 174: 105823, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38307137

RESUMEN

BACKGROUND: In recent years, sleep problems have emerged as a significant factor in the development of diseases that influence cognitive function. The inflammatory response may have a role in the neurobiological processes of sleep deprivation, resulting in impairment of memory and learning. Shenghui Decoction (SHD) is a classic formula in Chinese medicine used to treat forgetfulness and insomnia. However, it remains unclear whether the anti-inflammatory effects of SHD are specifically linked to the inhibition of P2X7R and p38MAPK. METHODS: Analysis of chemical constituents of Shenghui Decoction based on UPLC-Q-TOF-MS / MS. The learning and memory competency of the mice was assessed using the new object recognition and Morris water maze tests. The morphology of hippocampus neurons was observed using HE staining, and the expression of inflammatory factors was measured using ELISA and immunofluorescence. The expression of P2X7R and p38MAPK in the hippocampus was analyzed via real-time PCR and Western blotting. Additionally, the components absorbed into the bloodstream of SHD were analyzed. RESULTS: The study found that SHD contains 47 chemical constituents, including phenolic acids, flavonoids, iridoids, and triterpenoids. In addition, it was observed that SHD significantly improved the learning and memory abilities of the mice. SHD also improved the morphology of hippocampus neurons. The expression of inflammatory factors was decreased in the SHD-treated mice. Additionally, the expression of P2X7R and p38MAPK was decreased in the hippocampus of the SHD-treated mice. Fifteen prototype chemical constituents were detected in blood. CONCLUSIONS: The study suggests that SHD could be a viable treatment for cognitive impairments associated with brain inflammation. The therapeutic effects of SHD are likely due to its chemical components, including phenolic acids, flavonoids, iridoids, and triterpenoids. SHD can improve learning and memory impairment caused by sleep deprivation through the P2X7R/p38MAPK inflammatory signaling pathways.


Asunto(s)
Privación de Sueño , Triterpenos , Ratones , Animales , Privación de Sueño/tratamiento farmacológico , Privación de Sueño/complicaciones , Privación de Sueño/metabolismo , Neuroprotección , Cromatografía Liquida , Cromatografía Líquida con Espectrometría de Masas , Espectrometría de Masas en Tándem , Estructura Molecular , Hipocampo , Flavonoides/farmacología , Iridoides/farmacología , Triterpenos/farmacología , Aprendizaje por Laberinto
6.
Phytomedicine ; 125: 155374, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301302

RESUMEN

BACKGROUND: In China, Gardenia jasminoides Ellis (GJE) has a longstanding history of application. The Ministry of Health has listed it as one of the first pharmaceutical or food resources. In ethnic, traditional, and folk medicine, GJE has been used to treat fever and cold and relieve nervous anxiety. Recent studies have confirmed the significant efficacy of GJE for treating central nervous system (CNS) disorders, including Alzheimer's disease, Parkinson's disease, and major depressive disorder; however, GJE has not been systematically evaluated. PURPOSE: This research systematically summarizes global studies on the use of GJE for treating CNS disorders and explores the potential applications and underlying mechanisms via intestinal flora analysis and network pharmacology, aiming to establish a scientific basis for innovative CNS disorder treatment with GJE. METHODS: The PRISMA guidelines were used, and electronic databases such as the Web of Science, PubMed, and China National Knowledge Infrastructure were searched using the following search terms: "Gardenia jasminoides Ellis" with "central nervous system disease," "neuroprotection," "Alzheimer's disease," "Parkinson's disease," "ischemic stroke," "Epilepsy," and "major depressive disorder." The published literature up to September 2023 was searched to obtain relevant information on the application of GJE for treating CNS disorders. RESULTS: There has been an increase in research on the material formulation and mechanisms of action of GJE for treating CNS disorders, with marked effects on CNS disorder treatment in different countries and regions. We summarized the research results related to the role of GJE in vitro and in vivo via multitargeted interventions in response to the complex mechanisms of action of CNS disorders. CONCLUSION: We systematically reviewed the research progress on traditional treatment for GJE and preclinical mechanisms of CNS disorders and explored the potential of optimizing network pharmacology strategies and intestinal flora analysis to elucidate the mechanisms of action of GJE. The remarkable therapeutic efficacy of GJE, an important resource in traditional medicine, has been well documented in the literature, highlighting its significant medicinal potential.


Asunto(s)
Enfermedad de Alzheimer , Trastorno Depresivo Mayor , Gardenia , Enfermedad de Parkinson , Humanos , Gardenia/química , Enfermedad de Alzheimer/tratamiento farmacológico , Neuroprotección
7.
Aging (Albany NY) ; 16(1): 299-321, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38180752

RESUMEN

Ischemic stroke (IS) is one of the principal causes of disability and death worldwide. Berberine (BBR), derived from the traditional Chinese herbal medicine Huang Lian, has been reported to inhibit the progression of stroke, but the specific mechanism whereby BBR modulates the progression of ischemic stroke remains unclear. N6-methyladenosine (m6A) modification is the most typical epigenetic modification of mRNA post-transcriptional modifications, among which METTL3 is the most common methylation transferase. During the study, the middle cerebral artery occlusion/reperfusion (MCAO/R) was established in mice, and the mice primary astrocytes and neurons induced by oxygen-glucose deprivation/reoxygenation (OGD/R) was simulated in vitro. Level of LncNEAT1, miR-377-3p was detected via RT-qPCR. The levels of Nampt and METTL3 were measured by Western blot. CCK8 and LDH assay was performed to detect cell viability. Here, we found that berberine alleviates MCAO/R-induced ischemic injury and up-regulates the expression of Nampt in astrocytes, miR-377-3p inhibits the expression of Nampt in astrocytes after OGD/R, thus promoting neuronal injury. NEAT1 binds to miR-377-3p in OGD/R astrocytes and plays a neuronal protective role as a ceRNA. METTL3 can enhance NEAT1 stability in OGD/R astrocytes by modulating m6A modification of NEAT1. Taken together, our results demonstrate that berberine exerts neuroprotective effects via the m6A methyltransferase METTL3, which regulates the NEAT1/miR-377-3p/Nampt axis in mouse astrocytes to ameliorate cerebral ischemia/reperfusion (I/R) injury.


Asunto(s)
Berberina , Accidente Cerebrovascular Isquémico , MicroARNs , Daño por Reperfusión , Ratones , Animales , Accidente Cerebrovascular Isquémico/metabolismo , Berberina/farmacología , Berberina/uso terapéutico , Neuroprotección , Astrocitos/metabolismo , MicroARNs/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Daño por Reperfusión/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Apoptosis/genética , Glucosa/metabolismo
8.
J Med Chem ; 67(2): 1580-1610, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38190615

RESUMEN

Alzheimer's disease (AD) has a complex and not-fully-understood etiology. Recently, the serotonin receptor 5-HT6 emerged as a promising target for AD treatment; thus, here a new series of 5-HT6R ligands with a 1,3,5-triazine core and selenoether linkers was explored. Among them, the 2-naphthyl derivatives exhibited strong 5-HT6R affinity and selectivity over 5-HT1AR (13-15), 5-HT7R (14 and 15), and 5-HT2AR (13). Compound 15 displayed high selectivity for 5-HT6R over other central nervous system receptors and exhibited low risk of cardio-, hepato-, and nephrotoxicity and no mutagenicity, indicating its "drug-like" potential. Compound 15 also demonstrated neuroprotection against rotenone-induced neurotoxicity as well as antioxidant and glutathione peroxidase (GPx)-like activity and regulated antioxidant and pro-inflammatory genes and NRF2 nuclear translocation. In rats, 15 showed satisfying pharmacokinetics, penetrated the blood-brain barrier, reversed MK-801-induced memory impairment, and exhibited anxiolytic-like properties. 15's neuroprotective and procognitive-like effects, stronger than those of the approved drug donepezil, may pave the way for the use of selenotriazines to inhibit both causes and symptoms in AD therapy.


Asunto(s)
Enfermedad de Alzheimer , Fármacos Neuroprotectores , Selenio , Ratas , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Serotonina/uso terapéutico , Ratas Wistar , Neuroprotección , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Receptores de Serotonina , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
9.
Chem Biol Drug Des ; 103(1): e14353, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37722967

RESUMEN

The increased prevalence of neurological illnesses is a burgeoning challenge to the public healthcare system and presents greater financial pressure. Formononetin, an O-methylated isoflavone, has gained a lot of attention due to its neuroprotective potential explored in several investigations. Formononetin is widely found in legumes and several types of clovers including Trifolium pratense L., Astragalus membranaceus, Sophora tomentosa, etc. Formononetin modulates various endogenous mediators to confer neuroprotection. It prevents RAGE activation that results in the inhibition of neuronal damage via downregulating the level of ROS and proinflammatory cytokines. Furthermore, formononetin also increases the expression of ADAM-10, which affects the pathology of neurodegenerative disease by lowering tau phosphorylation, maintaining synaptic plasticity, and boosting hippocampus neurogenesis. Besides these, formononetin also increases the expression of antioxidants, Nrf-2, PI3K, ApoJ, and LRP1. Whereas, reduces the expression of p65-NF-κB and proinflammatory cytokines. It also inhibits the deposition of Aß and MAO-B activity. An inhibition of Aß/RAGE-induced activation of MAPK and NOX governs the protection elicited by formononetin against inflammatory and oxidative stress-induced neuronal damage. Besides this, PI3K/Akt and ER-α-mediated activation of ADAM10, ApoJ/LRP1-mediated clearance of Aß, and MAO-B inhibition-mediated preservation of dopaminergic neurons integrity are the major modulations produced by formononetin. This review covers the biosynthesis of formononetin and key molecular pathways modulated by formononetin to confer neuroprotection.


Asunto(s)
Isoflavonas , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Humanos , Fitoestrógenos , Neuroprotección , Fosfatidilinositol 3-Quinasas/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Línea Celular Tumoral , Isoflavonas/farmacología , Citocinas , Monoaminooxidasa , Fármacos Neuroprotectores/farmacología
10.
Phytomedicine ; 123: 155230, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38000105

RESUMEN

BACKGROUND: Echinacoside (ECH), a natural active compound, was found to exert neuroprotection in Parkinson's disease (PD). However, the underlying molecular mechanisms remain controversial. PURPOSE: This study aimed to explore the roles of ECH in PD and its engaged mechanisms. CONCLUSION: In vivo, MPTP was adapted to construct subacute PD mouse model to explore the regulation of ECH on NLRP3 inflammasome. In vitro, α-synuclein (α-syn)/MPP+ was used to mediate the activation of NLRP3 inflammasome in BV2 cells, and the mechanism of ECH regulation of it was explored with molecular docking, immunofluorescence, Western blotting, and small molecule inhibitors. CONCLUSION: The activation of microglial NLRP3 inflammasome could be evoked by MPTP in vitro, but its toxic metabolite MPP+ alone cannot trigger the activation of NLRP3 inflammasome in vitro, which requires α-synuclein (α-syn) priming. Exogenous α-syn could evoke microglial TLR2/NF-κB/NLRP3 axis, playing the priming role in MPP+ -mediated NLRP3 inflammasome activation. ECH can suppress the upregulation of α-syn in MPTP-treated mice and BV2 microglia. It can also suppress the activation of the TLR2/NF-κB/NLRP3 axis induced by α-syn. CONCLUSION: ECH exerts neuroprotective effects by downregulating the TLR2/NF-κB/NLRP3 axis via reducing the expression of α-syn in the PD models.


Asunto(s)
Glicósidos , Proteína con Dominio Pirina 3 de la Familia NLR , Enfermedad de Parkinson , Ratones , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas , FN-kappa B/metabolismo , Microglía , alfa-Sinucleína/metabolismo , Receptor Toll-Like 2/metabolismo , Neuroprotección , Simulación del Acoplamiento Molecular , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Ratones Endogámicos C57BL
11.
Brain Res ; 1822: 148616, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37793605

RESUMEN

The goal of this research study was to see how plant extracts of Acorus calamus Linn. and Cordia dichotoma G. Forst. overcome scopolamine-induced Alzheimer's type dementia in mice by activating the cholinergic system, anti-oxidant and protection of neuronal death in the brain (hippocampus region). Scopolamine (1 mg/kg i.p.) reduced mice's routine in behavioral parameters such as Morris Water Maze (MWM), Elevated Plus Maze (EPM), and also the locomotor activity. It also decreases antioxidant levels such as Reduced glutathione (GSH) and also Superoxide dismutase (SOD) but also increases the level of Acetylcholinesterase enzyme (AChE) in brain. Assessment of various behavioral, and biochemical parameters (AChE, SOD, GSH, and Nitrite level) were compared with each group. Acorus calamus (hydro-alcoholic 1:1) 600 mg/kg p.o. and the combination (Acorus calamus 600 mg/kg p.o. + Cordia dichotoma 750 mg/kg p.o.) group showed significant results as compared to Cordia dichotoma 750 mg/kg p.o.in behavioral as well as in biochemical parameters. Histological studies showed significant neuroprotection in the Acorus calamus-treated group and the combination-treated groups. In the future, the Acorus calamus and the combination are possibly helpful in the treatment of various cognitive disorders or it may be valuable to investigate the pharmacological potential of such plant extracts during the treatment of neurodegenerative disorders.


Asunto(s)
Acorus , Enfermedad de Alzheimer , Cordia , Ratones , Animales , Antioxidantes/farmacología , Roedores , Enfermedad de Alzheimer/tratamiento farmacológico , Neuroprotección , Acetilcolinesterasa , Rizoma , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Superóxido Dismutasa , Escopolamina
12.
J Ethnopharmacol ; 322: 117623, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38128890

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cajanus cajan (L) Millsp (Fabaceae) seed decoction is used by traditional healers in Nigeria as nerve tonic, hence, could be beneficial in the treatment of Parkinson's disease (PD), a progressive and debilitating neurodegenerative disease that imposes great burden on the healthcare system globally. AIM OF THE STUDY: This study aimed at investigating the neuroprotective effect of ethanol seed extract of Cajanus cajan (CC) in the treatment of rotenone-induced motor symptoms and non-motor symptoms associated with PD. MATERIALS AND METHODS: To assess the protective action of CC on rotenone-induced motor- and non-motor symptoms of PD, mice were first pretreated with CC (50, 100 or 200 mg/kg, p.o.) an hour before oral administration of rotenone (1 mg/kg, p.o, 0.5% in carboxyl-methylcellulose) for 28 consecutive days and weekly behavioural tests including motor assessment (open field test (OFT), rotarod, pole and cylinder tests) and non-motor assessment (novel object recognition (NOR), Y-maze test (YM), forced swim and tail suspension, gastric emptying and intestinal fluid accumulation tests) were carried out. The animals were euthanized on day 28 followed by the collection of brain for assessment of oxidative stress, inflammatory markers and immunohistochemical analysis of the striatum (STR) and substantia nigra (SN). Phytochemicals earlier isolated from CC were docked with protein targets linked with PD pathology such as; catechol-O-methyltransferase (COMT), tyrosine hydroxylase (TH) and Leucine rich receptor kinase (LRRK). RESULTS: this study showed that CC significantly reduced rotenone-induced spontaneous motor impairment in OFT, pole, cylinder and rotarod tests in mice as well as significant improvement in non-motor features (significant reversal of rotenone-induced deficits discrimination index and spontaneous alternation behaviour in NORT and YM test, respectively, reduction in immobility time in forced swim/tail suspension test, gastrointestinal disturbance in intestinal transit time in mice. Moreso, rotenone-induced neurodegeneration, oxidative stress and neuroinflammation were significantly attenuated by CC administration. In addition, docking analysis showed significant binding affinity of CC phytochemicals with COMT, TH and LRRK2 receptors. CONCLUSION: Cajanus cajan seeds extract prevented both motor and non-motor features of Parkinson disease in mice through its antioxidant and anti-inflammatory effects. Hence, could be a potential phytotherapeutic adjunct in the management of Parkinson disease.


Asunto(s)
Cajanus , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratones , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/complicaciones , Rotenona/toxicidad , Catecol O-Metiltransferasa/farmacología , Catecol O-Metiltransferasa/uso terapéutico , Neuroprotección , Estrés Oxidativo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Modelos Animales de Enfermedad
13.
Cells ; 12(23)2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-38067101

RESUMEN

Alzheimer's disease (AD) is a leading neurodegenerative condition causing cognitive and memory decline. With small-molecule drugs targeting Aß proving ineffective, alternative targets are urgently needed. Neuroinflammation, which is central to AD's pathology, results in synaptic and neuronal damage, highlighting the importance of addressing inflammation and conserving neuronal integrity. Cannabidiol (CBD), derived from cannabis, is noted for its neuroprotective and anti-inflammatory properties, having shown efficacy in neuropathic pain management for epilepsy. To investigate the therapeutic efficacy of CBD in AD and to elucidate its underlying mechanisms, we aimed to contribute valuable insights for incorporating AD prevention recommendations into future CBD nutritional guidelines. Aß1-42 was employed for in vivo or in vitro model establishment, CBD treatment was utilized to assess the therapeutic efficacy of CBD, and RNA-seq analysis was conducted to elucidate the underlying therapeutic mechanism. CBD mitigates Aß-induced cognitive deficits by modulating microglial activity, promoting neurotrophic factor release, and regulating inflammatory genes. The administration of CBD demonstrated a protective effect against Aß toxicity both in vitro and in vivo, along with an amelioration of cognitive impairment in mice. These findings support the potential inclusion of CBD in future nutritional guidelines for Alzheimer's disease prevention.


Asunto(s)
Enfermedad de Alzheimer , Cannabidiol , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Neuroprotección , Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico
14.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38139125

RESUMEN

Alzheimer's disease (AD) is currently the most common neurodegenerative disease. Glycogen synthase kinase 3ß (GSK-3ß) is a pivotal factor in AD pathogenesis. Recent research has demonstrated that plant miRNAs exert cross-kingdom regulation on the target genes in animals. Gastrodia elata (G. elata) is a valuable traditional Chinese medicine that has significant pharmacological activity against diseases of the central nervous system (CNS). Our previous studies have indicated that G. elata-specific miRNA plays a cross-kingdom regulatory role for the NF-κB signaling pathway in mice. In this study, further bioinformatics analysis suggested that Gas-miR36-5p targets GSK-3ß. Through western blot, RT-qPCR, and assessments of T-AOC, SOD, and MDA levels, Gas-miR36-5p demonstrated its neuroprotective effects in an AD cell model. Furthermore, Gas-miR36-5p was detected in the murine brain tissues. The results of the Morris water maze test and western blot analysis provided positive evidence for reversing the learning deficits and hyperphosphorylation of Tau in AD mice, elucidating significant neuroprotective effects in an AD model following G. elata RNA administration. Our research emphasizes Gas-miR36-5p as a novel G. elata-specific miRNA with neuroprotective properties in Alzheimer's disease by targeting GSK-3ß. Consequently, our findings provide valuable insights into the cross-kingdom regulatory mechanisms underlying G. elata-specific miRNA, presenting a novel perspective for the treatment of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades de los Animales , Gastrodia , MicroARNs , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Animales , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Gastrodia/genética , Glucógeno Sintasa Quinasa 3 beta/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , MicroARNs/metabolismo , MicroARNs/farmacología , Neuroprotección , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fosforilación , Proteínas tau/metabolismo
15.
Commun Biol ; 6(1): 1001, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37783835

RESUMEN

Hypoxic-ischemic encephalopathy (HIE) at high-altitudes leads to neonatal mortality and long-term neurological complications without effective treatment. Acer truncatum Bunge Seed extract (ASO) is reported to have effect on cognitive improvement, but its molecular mechanisms on HIE are unclear. In this study, ASO administration contributed to reduced neuronal cell edema and improved motor ability in HIE rats at a simulated 4500-meter altitude. Transcriptomics and WGCNA analysis showed genes associated with lipid biosynthesis, redox homeostasis, neuronal growth, and synaptic plasticity regulated in the ASO group. Targeted and untargeted-lipidomics revealed decreased free fatty acids and increased phospholipids with favorable ω-3/ω-6/ω-9 fatty acid ratios, as well as reduced oxidized glycerophospholipids (OxGPs) in the ASO group. Combining multi-omics analysis demonstrated FA to FA-CoA, phospholipids metabolism, and lipid peroxidation were regulated by ASO treatment. Our results illuminated preliminary metabolism mechanism of ASO ingesting in rats, implying ASO administration as potential intervention strategy for HIE under high-altitude.


Asunto(s)
Acer , Hipoxia-Isquemia Encefálica , Ratas , Animales , Neuroprotección , Altitud , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/prevención & control , Hipoxia-Isquemia Encefálica/complicaciones , Multiómica , Extractos Vegetales/farmacología , Isquemia
16.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4201-4207, 2023 Aug.
Artículo en Chino | MEDLINE | ID: mdl-37802788

RESUMEN

This study aims to explore the neuroprotective effect of bilobalide(BB) and the mechanisms such as inhibiting inflammatory response in macrophage/microglia, promoting neurotrophic factor secretion, and interfering with the activation and differentiation of peripheral CD4~+ T cells. BB of different concentration(12.5, 25, 50, 100 µg·mL~(-1)) was used to treat the RAW264.7 and BV2 cells for 24 h. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay and cell counting kit-8(CCK-8) were employed to detect the cytotoxicity of BB and appropriate concentration was selected for further experiment. Lipopolysaccharide(LPS) was applied to elicit inflammation in RAW264.7 and BV2 cells, mouse bone marrow-derived macrophages(BMDMs), and primary microglia, respectively. The effect of BB on cell proliferation and secretion of inflammatory cytokines and neurotrophic factors was detected by enzyme-linked immunosorbent assay(ELISA). Spleen monocytes of C57BL/6 female mice(7-8 weeks old) were isolated, and CD4~+ T cells were separated by magnetic beads under sterile conditions. Th17 cells were induced by CD3/CD28 and the conditioned medium for eliciting the inflammation in BMDMs. The content of IL-17 cytokines in the supernatant was detected by ELISA to determine the effect on the activation and differentiation of CD4~+ T cells. In addition, PC12 cells were incubated with the conditioned medium for eliciting inflammation in BMDMs and primary microglia and the count and morphology of cells were observed. The cytoto-xicity was determined by lactate dehydrogenase(LDH) assay. The result showed that BB with the concentration of 12.5-100 µg·mL~(-1) had no toxicity to RAW264.7 and BV2 cells, and had no significant effect on the activity of cell model with low inflammation. The 50 µg·mL~(-1) BB was selected for further experiment, and the results indicated that BB inhibited LPS-induced secretion of inflammatory cytokines. The experiment on CD4~+ T cells showed that the conditioned medium for LPS-induced inflammation in BMDMs promoted the activation and differentiation of CD4~+ T cells, while the conditioned medium of the experimental group with BB intervention reduced the activation and differentiation of CD4~+ T cells. In addition, BB also enhanced the release of neurotrophic factors from BMDMs and primary microglia. The conditioned medium after BB intervention can significantly reduce the death of PC12 neurons, inhibit neuronal damage, and protect neurons. To sum up, BB plays a neuroprotective role by inhibiting macrophage and microglia-mediated inflammatory response and promoting neurotrophic factors.


Asunto(s)
Bilobálidos , Femenino , Ratas , Ratones , Animales , Bilobálidos/farmacología , Neuroprotección , Lipopolisacáridos/toxicidad , Medios de Cultivo Condicionados/metabolismo , Medios de Cultivo Condicionados/farmacología , Ratones Endogámicos C57BL , Macrófagos/metabolismo , Microglía , Citocinas/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/farmacología , Inflamación/metabolismo
17.
Int J Mol Sci ; 24(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37762339

RESUMEN

Memory deficit is one of the major negative outcomes of chronic stress. Cholinergic system modulates memory not only through the neuronal cells, but also via interactions with non-neuronal cells, suggesting that microglia can influence synaptic function and plasticity, contributing to cognition and memory function. Withania somnifera (L.) Dunal (WS) and Bacopa monnieri (L.) Wettst (BM), are traditional herbal medicinal products used for the temporary relief of symptoms of stress. The aim of this study was to investigate whether choline (CLN) activity could be enhanced via an association with adaptogens: WS and BM extracts. First, we optimized an in vitro model of corticotropin-releasing hormone (CRH)-induced oxidative stress on microglial BV2 cells. CRH 100 nM reduced BV2 cell viability and induced morphological changes and neurotoxicity after 24 h of microglia stimulation. Moreover, it induced an increase in the production of reactive oxygen species (ROS) and dysregulated antioxidant protein (i.e., SIRT-1 and NRF-2). The association between choline and adaptogens (CBW) 10 µg/mL counteracted the effect of CRH on BV2 cells and reduced the neurotoxicity produced by BV2 CRH-conditioned medium in the SH-SY5Y cell lines. CBW 200 mg/kg produced an ameliorative effect on recognition memory in the novel object recognition test (NORT) test in mice. In conclusion, combining choline with adaptogen plant extracts might represent a promising intervention in chronic stress associated with memory disturbances through the attenuation of microglia-induced oxidative stress.


Asunto(s)
Bacopa , Neuroblastoma , Síndromes de Neurotoxicidad , Withania , Humanos , Animales , Ratones , Neuroprotección , Microglía , Estrés Oxidativo , Colina , Hormona Liberadora de Corticotropina
18.
Front Biosci (Landmark Ed) ; 28(8): 184, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37664939

RESUMEN

BACKGROUND: A previously unstudied medicinal plant, Leucophyllum frutescens (Berland.) I.M. Johnst. (Scrophulariaceae) was investigated to evaluate its potential in preventing and treating neurodegenerative diseases, including Alzheimer's disease. METHODS: Methanolic leaf extract (MELE) and its fractions (HELE, CHLE, and BULE) were evaluated for their polyphenolic content and antioxidant activity by five different methods, including in vitro enzyme inhibition assays, which are clinically linked to neurodegenerative diseases. The potentially active n-butanol fraction (BULE) was further evaluated for its neuroprotective effects using an albino rat animal model and phytoconstituents profiling using Liquid chromatography with tandem mass spectrometry (LC-MS/MS), and in silico molecular docking by Maestro® Schrödinger. RESULTS: The n-butanol fraction (BULE) in the hydroalcoholic leaf extract exhibited the highest total phenolic content (230.435 ± 1.575 mg gallic acid equivalent gm-1± SD). The chloroform leaf extract exhibited the highest total flavonoid content (293.343 ± 3.756 mg quercetin equivalent gm-1± SD) as well as the highest antioxidant content, which was equivalent to Trolox, with five assay methods. Similarly, the chloroform and n-butanol fractions from the hydroalcoholic leaf extract significantly inhibited human acetylcholinesterase and butyrylcholinesterase with their IC50 values of 12.14 ± 0.85 and 129.73 ± 1.14 µg∙mL-1, respectively. The in vivo study revealed that BULE exhibited a significant neuroprotective effect at doses of 200 and 400 mg/kg/day in an aluminum chloride-induced neurodegenerative albino rat model. The LC-MS/MS analysis of BULE tentatively confirmed the presence of biologically active secondary metabolites, such as theobromine, propyl gallate, quercetin-3-O-glucoside, myricetin-3-acetylrhamnoside, isoquercitrin-6'-O-malonate, diosmetin-7-O-glucuronide-3'-O-pentose, pinoresinol diglucoside, asarinin, eridictoyl, epigallocatechin, methyl gallate derivative, and eudesmin. The results from the computational molecular docking of the identified secondary metabolites revealed that diosmetin-7-O-glucuronide-3'-O-pentose had the highest binding affinity to human butyrylcholinesterase, while isoquercetin-6'-O-malonate had the highest to human acetylcholinesterase, and pinoresinol diglucoside to human salivary alpha-amylase. CONCLUSIONS: The present study concluded a need for further exploration into this medicinal plant, including the isolation of the bioactive compounds responsible for its neuroprotective effects.


Asunto(s)
Fármacos Neuroprotectores , Scrophulariaceae , Ratas , Animales , Humanos , Antioxidantes/farmacología , Neuroprotección , Fármacos Neuroprotectores/farmacología , Acetilcolinesterasa , Cloruro de Aluminio , Butirilcolinesterasa , 1-Butanol , Cloroformo , Cromatografía Liquida , Glucurónidos , Simulación del Acoplamiento Molecular , Espectrometría de Masas en Tándem , Hipocampo , Extractos Vegetales/farmacología
19.
Phytomedicine ; 120: 155027, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37657207

RESUMEN

BACKGROUND: Verbascoside is a natural and water-soluble phenylethanoid glycoside found in several medicinal plants. It has extensive pharmacological effects, including antioxidative and antineoplastic actions, and a wide range of therapeutic effects against depression. PURPOSE: In this review, we appraised preclinical and limited clinical evidence to fully discuss the anti-depression capacity of verbascoside and its holistic characteristics that can contribute to better management of depression in vivo and in vitro models, as well as, its toxicities and medicinal value. METHODS: This review was prepared according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). A systematic review of 32 preclinical trials published up to April 2023, combined with a comprehensive bioinformatics analysis of network pharmacology and molecular docking, was conducted to elucidate the antidepressant mechanism of action of verbascoside. Studies included in the systematic review were obtained from 7 electronic databases: PubMed, Scopus, Web of Science, Cochrane, ResearchGate, ScienceDirect, and Google Scholar. RESULTS: Studies on the antidepressant effects of verbascoside showed that various pharmacological mechanisms and pathways, such as modulating the levels of monoamine neurotransmitters, inhibiting hypothalamic-pituitary-adrenal (HPA) axis hyperfunction and promoting neuroprotection may be involved in the process of its action against depression. Verbascoside promotes dopamine (DA) biosynthesis by promoting the expression of tyrosine hydroxylase mRNA and protein, upregulates the expression of 5-hydroxytryptamine receptor 1B (5-HT1B), prominence protein, microtubule-associated protein 2 (MAP2), hemeoxygenase-1 (HO-1), SQSTM1, Recombinant Autophagy Related Protein 5 (ATG5) and Beclin-1, and decreases the expression of caspase-3 and a-synuclein, thus exerting antidepressant effects. We identified seven targets (CCL2, FOS, GABARAPL1, CA9, TYR, CA12, and SQSTM1) and three signaling pathways (glutathione metabolism, metabolism of xenobiotics by cytochrome P450, fluid shear stress and atherosclerosis) as potential molecular biological sites for verbascoside. CONCLUSIONS: These findings provide strong evidence that verbascoside exerts its antidepressant effects through various pharmacological mechanisms. However, further multicentre clinical case-control and molecularly targeted fishing studies are required to confirm the clinical efficacy of verbascoside and its underlying direct targets.


Asunto(s)
Glicósidos , Neuroprotección , Glicósidos/farmacología , Simulación del Acoplamiento Molecular , Proteína Sequestosoma-1
20.
BMC Complement Med Ther ; 23(1): 330, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37726773

RESUMEN

BACKGROUND: Despite its widespread uses in Chinese and European medicine, Styphnolobium japonicum (Chinese scholar tree, formerly Sophora japonicum) has not been extensively investigated for its potential to protect against neurodegenerative processes and to promote resistance to oxidative stress. In this study, we evaluated the neuroprotective activities of a hydroalcoholic extract from Chinese scholar tree fruits that could be possibly linked to its antioxidant properties using Caenorhabditis elegans as a well-established in vivo model. METHODS: Survival rate in mutant daf-16 and skn-1 worms, stressed by the pro-oxidant juglone and treated with the extract, was tested. Localization of the transcription factors SKN-1 and DAF-16, and expression of gst-4 were measured. For evaluation of neuroprotective effects, formation of polyglutamine (polyQ40) clusters, α-synuclein aggregates, loss of amphid sensilla (ASH) neuronal function, and amyloid ß (Aß) accumulation (as markers for Huntington's, Parkinson's, and Alzheimer's) was examined. RESULTS: The extract, which contains substantial amounts of phenolic phytochemicals, showed an increase in the survival rate of worms challenged with juglone in daf-16 mutants but not in skn-1 mutants. The transcription factor SKN-1 was activated by the extract, while DAF-16 was not affected. Upon application of the extract, a significant decline in GST-4 levels, polyQ40 cluster formation, number of lost ASH sensory neurons, α-synuclein aggregation, and paralysis resulting from Aß accumulation was observed. CONCLUSIONS: Styphnolobium japonicum fruit extract activated the SKN-1/Nrf2 pathway, resulting in oxidative stress resistance. It revealed promising pharmacological activities towards treatment of Huntington's, Parkinson's, and Alzheimer's diseases. Polyphenolics from Styphnolobium japonicum may be a promising route towards treatment of CNS disorders, but need to be tested in other in vivo systems.


Asunto(s)
Enfermedad de Parkinson , Sophora japonica , Animales , Neuroprotección , Caenorhabditis elegans , Frutas , alfa-Sinucleína , Péptidos beta-Amiloides , Estrés Oxidativo , Extractos Vegetales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA