Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Neurodegener ; 19(1): 13, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38282024

RESUMEN

BACKGROUND: Bioenergetic maladaptations and axonopathy are often found in the early stages of neurodegeneration. Nicotinamide adenine dinucleotide (NAD), an essential cofactor for energy metabolism, is mainly synthesized by Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) in CNS neurons. NMNAT2 mRNA levels are reduced in the brains of Alzheimer's, Parkinson's, and Huntington's disease. Here we addressed whether NMNAT2 is required for axonal health of cortical glutamatergic neurons, whose long-projecting axons are often vulnerable in neurodegenerative conditions. We also tested if NMNAT2 maintains axonal health by ensuring axonal ATP levels for axonal transport, critical for axonal function. METHODS: We generated mouse and cultured neuron models to determine the impact of NMNAT2 loss from cortical glutamatergic neurons on axonal transport, energetic metabolism, and morphological integrity. In addition, we determined if exogenous NAD supplementation or inhibiting a NAD hydrolase, sterile alpha and TIR motif-containing protein 1 (SARM1), prevented axonal deficits caused by NMNAT2 loss. This study used a combination of techniques, including genetics, molecular biology, immunohistochemistry, biochemistry, fluorescent time-lapse imaging, live imaging with optical sensors, and anti-sense oligos. RESULTS: We provide in vivo evidence that NMNAT2 in glutamatergic neurons is required for axonal survival. Using in vivo and in vitro studies, we demonstrate that NMNAT2 maintains the NAD-redox potential to provide "on-board" ATP via glycolysis to vesicular cargos in distal axons. Exogenous NAD+ supplementation to NMNAT2 KO neurons restores glycolysis and resumes fast axonal transport. Finally, we demonstrate both in vitro and in vivo that reducing the activity of SARM1, an NAD degradation enzyme, can reduce axonal transport deficits and suppress axon degeneration in NMNAT2 KO neurons. CONCLUSION: NMNAT2 ensures axonal health by maintaining NAD redox potential in distal axons to ensure efficient vesicular glycolysis required for fast axonal transport.


Asunto(s)
Transporte Axonal , NAD , Nicotinamida-Nucleótido Adenililtransferasa , Animales , Ratones , Adenosina Trifosfato/metabolismo , Proteínas del Dominio Armadillo/metabolismo , Axones/metabolismo , Proteínas del Citoesqueleto/metabolismo , Glucólisis , Homeostasis , NAD/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo
2.
Neurobiol Dis ; 171: 105808, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35779777

RESUMEN

Wallerian degeneration (WD) is a conserved axonal self-destruction program implicated in several neurological diseases. WD is driven by the degradation of the NAD+ synthesizing enzyme NMNAT2, the buildup of its substrate NMN, and the activation of the NAD+ degrading SARM1, eventually leading to axonal fragmentation. The regulation and amenability of these events to therapeutic interventions remain unclear. Here we explored pharmacological strategies that modulate NMN and NAD+ metabolism, namely the inhibition of the NMN-synthesizing enzyme NAMPT, activation of the nicotinic acid riboside (NaR) salvage pathway and inhibition of the NMNAT2-degrading DLK MAPK pathway in an axotomy model in vitro. Results show that NAMPT and DLK inhibition cause a significant but time-dependent delay of WD. These time-dependent effects are related to NMNAT2 degradation and changes in NMN and NAD+ levels. Supplementation of NAMPT inhibition with NaR has an enhanced effect that does not depend on timing of intervention and leads to robust protection up to 4 days. Additional DLK inhibition extends this even further to 6 days. Metabolite analyses reveal complex effects indicating that NAMPT and MAPK inhibition act by reducing NMN levels, ameliorating NAD+ loss and suppressing SARM1 activity. Finally, the axonal NAD+/NMN ratio is highly predictive of cADPR levels, extending previous cell-free evidence on the allosteric regulation of SARM1. Our findings establish a window of axon protection extending several hours following injury. Moreover, we show prolonged protection by mixed treatments combining MAPK and NAMPT inhibition that proceed via complex effects on NAD+ metabolism and inhibition of SARM1.


Asunto(s)
Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Nicotinamida-Nucleótido Adenililtransferasa , Degeneración Walleriana , Animales , Proteínas del Dominio Armadillo/metabolismo , Axones/patología , Proteínas del Citoesqueleto/metabolismo , Humanos , Mamíferos/metabolismo , NAD/metabolismo , Degeneración Nerviosa/patología , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Inhibidores de Proteínas Quinasas , Degeneración Walleriana/metabolismo
3.
Neurochem Int ; 159: 105402, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35843422

RESUMEN

BACKGROUND: Nicotinamide adenine dinucleotide (NAD) metabolism is involved in redox and non-redox reactions that regulate several processes including differentiation of cells of different origins. Here, the role of NAD metabolism in neuronal differentiation, which remains elusive so far, was investigated. MATERIAL AND METHODS: A protein-protein interaction network between neurotrophin signaling and NAD metabolic pathways was built. Expression of NAD biosynthetic enzymes in SH-SY5Y cells during retinoic acid (RA)/brain derived neurotrophic factor (BDNF) differentiation, was evaluated. The effects of NAD biosynthetic enzymes QPRT and NAPRT inhibition in neurite outgrowth, cell viability, NAD availability and histone deacetylase (HDAC) activity, were analyzed in RA- and BDNF-differentiated cells. RESULTS: Bioinformatics analysis revealed the interaction between NAD biosynthetic enzyme NMNAT1 and NTRK2, a receptor activated by RA/BDNF sequential treatment. Differences were found in the expression of NAD biosynthetic enzymes during neuronal differentiation, namely, increased QPRT gene expression along the course of RA/BDNF treatment and NAPRT protein expression after a 5-day treatment with RA. QPRT inhibition in BDNF-differentiated SH-SY5Y cells resulted in less neuritic length per cell, decreased expression of the neuronal marker ß-III Tubulin and also decreased NAD+ levels and HDAC activity. NAPRT inhibition had no effect in neuritic length per cell, NAD+ levels and HDAC activity. Of note, NAD supplementation along with RA, but not with BDNF, resulted in considerable cell death. CONCLUSIONS: Taken together, our results show the involvement of NAD metabolism in neuronal differentiation, specifically, the importance of QPRT-mediated NAD biosynthesis in BDNF-associated SH-SY5Y differentiation and suggest additional roles for NAPRT beyond NAD production in RA-differentiated cells.


Asunto(s)
Neuroblastoma , Nicotinamida-Nucleótido Adenililtransferasa , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Humanos , NAD/metabolismo , Tretinoina/metabolismo , Tretinoina/farmacología , Tubulina (Proteína)/metabolismo
4.
Mol Ther ; 30(4): 1421-1431, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35114390

RESUMEN

The lack of neuroprotective treatments for retinal ganglion cells (RGCs) and optic nerve (ON) is a central challenge for glaucoma management. Emerging evidence suggests that redox factor NAD+ decline is a hallmark of aging and neurodegenerative diseases. Supplementation with NAD+ precursors and overexpression of NMNAT1, the key enzyme in the NAD+ biosynthetic process, have significant neuroprotective effects. We first profile the translatomes of RGCs in naive mice and mice with silicone oil-induced ocular hypertension (SOHU)/glaucoma by RiboTag mRNA sequencing. Intriguingly, only NMNAT2, but not NMNAT1 or NMNAT3, is significantly decreased in SOHU glaucomatous RGCs, which we confirm by in situ hybridization. We next demonstrate that AAV2 intravitreal injection-mediated overexpression of long half-life NMNAT2 mutant driven by RGC-specific mouse γ-synuclein (mSncg) promoter restores decreased NAD+ levels in glaucomatous RGCs and ONs. Moreover, this RGC-specific gene therapy strategy delivers significant neuroprotection of both RGC soma and axon and preservation of visual function in the traumatic ON crush model and the SOHU glaucoma model. Collectively, our studies suggest that the weakening of NMNAT2 expression in glaucomatous RGCs contributes to a deleterious NAD+ decline, and that modulating RGC-intrinsic NMNAT2 levels by AAV2-mSncg vector is a promising gene therapy for glaucomatous neurodegeneration.


Asunto(s)
Glaucoma , Nicotinamida-Nucleótido Adenililtransferasa , Animales , Modelos Animales de Enfermedad , Terapia Genética , Glaucoma/genética , Glaucoma/metabolismo , Glaucoma/terapia , Ratones , NAD/metabolismo , NAD/farmacología , Nicotinamida-Nucleótido Adenililtransferasa/genética , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/farmacología , Células Ganglionares de la Retina/metabolismo
5.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34638865

RESUMEN

Neuronal morphological changes in the epidermis are considered to be one of causes of abnormal skin sensations in dry skin-based skin diseases. The present study aimed to develop an in vitro model optimised for human skin to test the external factors that lead to its exacerbation. Human-induced pluripotent stem cell-derived sensory neurons (hiPSC-SNs) were used as a model of human sensory neurons. The effects of chemical substances on these neurons were evaluated by observing the elongation of nerve fibers, incidence of blebs (bead-like swellings), and the expression of nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2). The nerve fiber length increased upon exposure to two common cosmetic preservatives-methylparaben and phenoxyethanol-but not to benzo[a]pyrene, an air pollutant at the estimated concentrations in the epidermis. Furthermore, the incidence of blebs increased upon exposure to benzo[a]pyrene. However, there was a decrease in the expression of NMNAT2 in nerve fibers, suggesting degenerative changes. No such degeneration was found after methylparaben or phenoxyethanol at the estimated concentrations in the epidermis. These findings suggest that methylparaben and phenoxyethanol promote nerve elongation in hiPSC-SNs, whereas benzo[a]pyrene induces nerve degeneration. Such alterations may be at least partly involved in the onset and progression of sensitive skin.


Asunto(s)
Bioensayo , Forma de la Célula/efectos de los fármacos , Glicoles de Etileno/farmacocinética , Células Madre Pluripotentes Inducidas , Parabenos/farmacología , Células Receptoras Sensoriales , Benzo(a)pireno/toxicidad , Evaluación Preclínica de Medicamentos , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Fibras Nerviosas/metabolismo , Fibras Nerviosas/patología , Nicotinamida-Nucleótido Adenililtransferasa/biosíntesis , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/patología
6.
Exp Neurol ; 327: 113219, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32014438

RESUMEN

Amyotrophic lateral sclerosis (ALS) is characterized by progressive degeneration of motor neurons. Astrocytes from diverse ALS models induce motor neuron death in co-culture. Enhancing NAD+ availability, or increasing the expression of the NAD+-dependent deacylases SIRT3 and SIRT6, abrogates their neurotoxicity in cell culture models. To determine the effect of increasing NAD+ availability in ALS mouse models we used two strategies, ablation of a NAD+-consuming enzyme (CD38) and supplementation with a bioavailable NAD+ precursor (nicotinamide riboside, NR). Deletion of CD38 had no effect in the survival of two hSOD1-linked ALS mouse models. On the other hand, NR-supplementation delayed motor neuron degeneration, decreased markers of neuroinflammation in the spinal cord, appeared to modify muscle metabolism and modestly increased the survival of hSOD1G93A mice. In addition, we found altered expression of enzymes involved in NAD+ synthesis (NAMPT and NMNAT2) and decreased SIRT6 expression in the spinal cord of ALS patients, suggesting deficits of this neuroprotective pathway in the human pathology. Our data denotes the therapeutic potential of increasing NAD+ levels in ALS. Moreover, the results indicate that the approach used to enhance NAD+ levels critically defines the biological outcome in ALS models, suggesting that boosting NAD+ levels with the use of bioavailable precursors would be the preferred therapeutic strategy for ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Vías Biosintéticas/fisiología , Neuronas Motoras/metabolismo , NAD/metabolismo , Médula Espinal/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Neuronas Motoras/patología , Nicotinamida Fosforribosiltransferasa/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Sirtuina 3/metabolismo , Sirtuinas/metabolismo , Médula Espinal/patología , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
7.
Elife ; 82019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30860478

RESUMEN

Metabolism is a highly integrated process resulting in energy and biomass production. While individual metabolic routes are well characterized, the mechanisms ensuring crosstalk between pathways are poorly described, although they are crucial for homeostasis. Here, we establish a co-regulation of purine and pyridine metabolism in response to external adenine through two separable mechanisms. First, adenine depletion promotes transcriptional upregulation of the de novo NAD+ biosynthesis genes by a mechanism requiring the key-purine intermediates ZMP/SZMP and the Bas1/Pho2 transcription factors. Second, adenine supplementation favors the pyridine salvage route resulting in an ATP-dependent increase of intracellular NAD+. This control operates at the level of the nicotinic acid mononucleotide adenylyl-transferase Nma1 and can be bypassed by overexpressing this enzyme. Therefore, in yeast, pyridine metabolism is under the dual control of ZMP/SZMP and ATP, revealing a much wider regulatory role for these intermediate metabolites in an integrated biosynthesis network.


Asunto(s)
Proteínas Fúngicas/metabolismo , Regulación Neoplásica de la Expresión Génica , NAD/biosíntesis , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Purinas/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenina/química , Adenosina Trifosfato/química , Biomasa , Cromatografía Liquida , Genotipo , Proteínas de Homeodominio/metabolismo , Homeostasis , Niacina/química , Nicotinamida-Nucleótido Adenililtransferasa/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
8.
Life Sci ; 211: 1-7, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30195617

RESUMEN

AIMS: Nicotinamide Riboside (NR) is a NAD+ booster with wide physiological repercussion including the improvement on glucose and lipid homeostasis, increasing the life expectancy in mammals. However, the effects of NR on metabolism are only partially known. Here, we evaluated the effects of NR on the thermogenic response, highlighting the brown adipose tissue (BAT) in lean mice. MAIN METHODS: Male C57BL/67 mice were supplement with NR (400 mg/Kg/day) during 5 weeks. The Comprehensive Lab Animal Monitoring System (CLAMS) and thermographic images were used to evaluated the physiological effects of NR treatment. The BAT were extracted and analyzed by Western Blotting and qPCR. Also, bioinformatics analyses were performed to establish the connection between the NAD+ synthesis pathway in BAT and thermogenic response in several isogenic strains of BXD mice. KEY FINDINGS: Transcriptomic analysis revealed that genes involved in NAD+ synthesis (Nampt and Nmnat1) in the BAT were negatively correlated with body weight and fat mass. The heat map showed a strong positive correlation between Nampt and Ucp1 mRNA in BAT and body temperature in several strains of BXD lean mice. The experimental approaches demonstrated that oral NR supplementation reduced the abdominal visceral fat depots, with discrete impact on oxygen consumption in C57BL/6J mice. Interestingly, NR significantly increased the body temperature, and this phenomenon was accompanied by high levels of UCP1 protein content and Pgc1α mRNA in BAT. SIGNIFICANCE: This study demonstrated the oral NR supplementation was sufficient to induce the thermogenic response in lean mice changing the BAT metabolism.


Asunto(s)
Tejido Adiposo Pardo/fisiología , Temperatura Corporal/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Niacinamida/análogos & derivados , Termogénesis/efectos de los fármacos , Delgadez/tratamiento farmacológico , Tejido Adiposo Pardo/efectos de los fármacos , Administración Oral , Animales , Citocinas/genética , Citocinas/metabolismo , Perfilación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Niacinamida/administración & dosificación , Niacinamida/farmacología , Nicotinamida Fosforribosiltransferasa/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/genética , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Compuestos de Piridinio , Delgadez/metabolismo , Delgadez/patología , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
9.
JCI Insight ; 3(17)2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30185676

RESUMEN

Hemorrhagic shock depletes nicotinamide adenine dinucleotide (NAD) and causes metabolic derangements that, in severe cases, cannot be overcome, even after restoration of blood volume and pressure. However, current strategies to treat acute blood loss do not target cellular metabolism. We hypothesized that supplemental nicotinamide mononucleotide (NMN), the immediate biosynthetic precursor to NAD, would support cellular energetics and enhance physiologic resilience to hemorrhagic shock. In a rodent model of decompensated hemorrhagic shock, rats receiving NMN displayed significantly reduced lactic acidosis and serum IL-6 levels, two strong predictors of mortality in human patients. In both livers and kidneys, NMN increased NAD levels and prevented mitochondrial dysfunction. Moreover, NMN preserved mitochondrial function in isolated hepatocytes cocultured with proinflammatory cytokines, indicating a cell-autonomous protective effect that is independent from the reduction in circulating IL-6. In kidneys, but not in livers, NMN was sufficient to prevent ATP loss following shock and resuscitation. Overall, NMN increased the time animals could sustain severe shock before requiring resuscitation by nearly 25% and significantly improved survival after resuscitation (P = 0.018), whether NMN was given as a pretreatment or only as an adjunct during resuscitation. Thus, we demonstrate that NMN substantially mitigates inflammation, improves cellular metabolism, and promotes survival following hemorrhagic shock.


Asunto(s)
Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , NAD/metabolismo , Mononucleótido de Nicotinamida/farmacología , Choque Hemorrágico/prevención & control , Acidosis Láctica/sangre , Adenosina Trifosfato , Animales , Citocinas/metabolismo , Hepatocitos/metabolismo , Humanos , Inflamación , Interleucina-6/sangre , Riñón/efectos de los fármacos , Hígado/efectos de los fármacos , Masculino , Enfermedades Mitocondriales/prevención & control , Nicotinamida Fosforribosiltransferasa/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Ratas , Resucitación , Choque Hemorrágico/mortalidad , Análisis de Supervivencia
10.
Food Chem Toxicol ; 118: 880-888, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29935245

RESUMEN

The intestinal mucus layer plays an important role in the management of inflammatory bowel disease. The aim of this study was to investigate the effects of oxyresveratrol (OXY), an antioxidant, on the stimulation of mucin production in human LS 174T goblet cells and the underlying mechanism thereof. OXY increased MUC2 expression at both the mRNA and protein levels. By performing two-dimensional gel electrophoresis, we found that the expression of nicotinic acid phosphoribosyltransferase1 (NaPRT1) in OXY-treated LS 174T cells was greatly increased compared with that in negative control cells. In addition, the NAD+/NADH ratio was increased in proportion to OXY in LS 174T cells. The expression of NAD+-synthesis enzymes, NaPRT1, nicotinamide riboside kinase1 (NRK1) and nicotinamide mononucleotide adenylyltransferase1 (Nmnat1) was significantly increased at both the mRNA and protein levels in OXY-treated LS 174T cells. The inhibition of NaPRT1 and NRK1 did not decrease MUC2 expression after inhibiting by small interfering RNA (siRNA)-NaPRT1 and siRNA-NRK1, respectively; however, inhibition of Nmnat by an Nmnat inhibitor decreased MUC2 expression in a dose-dependent manner. In conclusion, OXY increases NAD+ levels, resulting in the stimulation of MUC2 expression in LS 174T cells. These findings present a novel role for NAD+ in stimulation of MUC2 expression.


Asunto(s)
Células Caliciformes/metabolismo , Mucosa Intestinal/metabolismo , Mucinas/biosíntesis , NAD/metabolismo , Extractos Vegetales/farmacología , Estilbenos/farmacología , Línea Celular , Electroforesis en Gel Bidimensional , Humanos , Mucosa Intestinal/citología , Mucina 2/metabolismo , N-Acetilgalactosaminiltransferasas/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/genética , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Pentosiltransferasa/genética , Pentosiltransferasa/metabolismo , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Polipéptido N-Acetilgalactosaminiltransferasa
11.
Plant Signal Behav ; 8(5): e23937, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23428890

RESUMEN

Terrestrial plant pollen is classified into two categories based on its metabolic status: pollen with low-metabolism are termed "orthodox" and pollen with high-metabolism are termed "recalcitrant." Nicotinamide adenine dinucleotide (NAD) is crucial for a number of metabolisms in all extant organisms. It has recently been shown that NAD homeostasis plays an important role in a broad range of developmental processes and responses to environment. Recently, a reverse genetic approach shed light on the significance of NAD biosynthesis on pollen fate. In orthodox Arabidopsis pollen, NAD(+) that was accumulated in excess at dispersal dramatically decreased on rehydration. The lack of a key gene that is involved in NAD biosynthesis compromised the excess accumulation. Moreover, absence of the excess accumulation phenocopied the so-called recalcitrant pollen, as demonstrated by the germination inside anthers and the loss of desiccation tolerance. Upon rehydration, NAD(+)-consuming inhibitors impaired tube germination. Taken together, our results suggest that accumulation of NAD(+) functions as a physiochemical molecular switch for suspended metabolism and that the decrease of NAD(+) plays a very important role during transitions in metabolic states. Shifting of the redox state to an oxidizing environment may efficiently control the comprehensive metabolic network underlying the onset of pollen germination.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , NAD/metabolismo , Polen/metabolismo , Homeostasis , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Oxidación-Reducción
12.
J Biol Chem ; 280(43): 36334-41, 2005 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-16118205

RESUMEN

Nicotinamide mononucleotide adenylyltransferase (NMNAT) is the central enzyme of the NAD biosynthetic pathway. Three human NMNAT isoforms have recently been identified, but isoform-specific functions are presently unknown, although a tissue-specific role has been suggested. Analyses of the subcellular localization confirmed NMNAT1 to be a nuclear protein, whereas NMNAT2 and -3 were localized to the Golgi complex and the mitochondria, respectively. This differential subcellular localization points to an organelle-specific, nonredundant function of each of the three proteins. Comparison of the kinetic properties showed that particularly NMNAT3 exhibits a high tolerance toward substrate modifications. Moreover, as opposed to preferred NAD+ synthesis by NMNAT1, the other two isoforms could also form NADH directly from the reduced nicotinamide mononucleotide, supporting a hitherto unknown pathway of NAD generation. A variety of physiological intermediates was tested and exerted only minor influence on the catalytic activities of the NMNATs. However, gallotannin was found to be a potent inhibitor, thereby compromising its use as a specific inhibitor of poly-ADP-ribose glycohydrolase. The presence of substrate-specific and independent nuclear, mitochondrial, and Golgi-specific NAD biosynthetic pathways is opposed to the assumption of a general cellular NAD pool. Their existence appears to be consistent with important compartment-specific functions rather than to reflect simple functional redundance.


Asunto(s)
Aparato de Golgi/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/química , Adenosina Trifosfato/química , Catálisis , Dominio Catalítico , Línea Celular , Núcleo Celular/metabolismo , Clonación Molecular , ADN Complementario/metabolismo , Glicósido Hidrolasas/química , Células HeLa , Humanos , Taninos Hidrolizables/química , Cinética , Nicotinamida-Nucleótido Adenililtransferasa/fisiología , Poli(ADP-Ribosa) Polimerasas/química , Conformación Proteica , Isoformas de Proteínas , Especificidad por Sustrato , Factores de Tiempo , Distribución Tisular
13.
Proc Natl Acad Sci U S A ; 97(21): 11377-82, 2000 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-11027338

RESUMEN

Exons of three genes were identified within the 85-kilobase tandem triplication unit of the slow Wallerian degeneration mutant mouse, C57BL/Wld(S). Ubiquitin fusion degradation protein 2 (Ufd2) and a previously undescribed gene, D4Cole1e, span the proximal and distal boundaries of the repeat unit, respectively. They have the same chromosomal orientation and form a chimeric gene when brought together at the boundaries between adjacent repeat units in Wld(S). The chimeric mRNA is abundantly expressed in the nervous system and encodes an in-frame fusion protein consisting of the N-terminal 70 amino acids of Ufd2, the C-terminal 302 amino acids of D4Cole1e, and an aspartic acid formed at the junction. Antisera raised against synthetic peptides detect the expected 43-kDa protein specifically in Wld(S) brain. This expression pattern, together with the previously established role of ubiquitination in axon degeneration, makes the chimeric gene a promising candidate for Wld. The third gene altered by the triplication, Rbp7, is a novel member of the cellular retinoid-binding protein family and is highly expressed in white adipose tissue and mammary gland. The whole gene lies within the repeat unit leading to overexpression of the normal transcript in Wld(S) mice. However, it is undetectable on Northern blots of Wld(S) brain and seems unlikely to be the Wld gene. These data reveal both a candidate gene for Wld and the potential of the Wld(S) mutant for studies of ubiquitin and retinoid metabolism.


Asunto(s)
Proteínas Fúngicas/genética , Nicotinamida-Nucleótido Adenililtransferasa , Proteínas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas de Unión al Retinol/genética , Proteínas de Saccharomyces cerevisiae , Degeneración Walleriana , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sistema Nervioso Central/metabolismo , ADN Complementario , Exones , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Sistema Nervioso Periférico/metabolismo , ARN Mensajero/genética , Proteínas Celulares de Unión al Retinol , Homología de Secuencia de Aminoácido , Enzimas Ubiquitina-Conjugadoras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA