Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 776
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
PeerJ ; 12: e17177, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38563005

RESUMEN

Background: Plants have been pivotal in traditional and modern medicine globally, with historical evidence supporting their therapeutic applications. Nigella (Nigella sativa L.) is an annual herbaceous plant of the Ranunculaceae family and is cultivated in the Middle East, Eastern Europe, and Western and Central Asia. The medicinal use of plants dates back thousands of years, documented in ancient writings from various civilizations. Alkaloids, phenolics, saponins, flavonoids, terpenoids, anthraquinones, and tannins found in plants exhibit antioxidant, immunomodulatory, anti-inflammatory, anticancer, antibacterial, and antidiabetic activities. Methodology: This study specifically examines the pharmacological potential of Nigella sativa L., emphasizing thymoquinone-a compound with diverse nutraceutical benefits. The extraction, characterization, and quantification of thymoquinone, alongside other physicochemical parameters, were carried out using ethanol through Soxhlet extraction procedures on five nigella varieties. HPLC analysis was performed to determine the maximum accumulation of thymoquinone in the released variety of the plant and the chemical composition of the seed oil isolated from Nigella sativa L., varieties utilized in the study was determined through GC-MS analysis. Results: The research revealed that the Ajmer nigella-20 variety stands out, exhibiting elevated levels of thymoquinone (0.20 ± 0.07%), antioxidants (76.18 ± 1.78%), and substantial quantities of total phenols (31.85 ± 0.97 mg GAEg-1 seed) and flavonoids (8.150 ± 0.360 mg QE 100 g-1 seed) compared to other varieties. The GC-MS profiling showed the presence of 11 major compounds in the studied varieties, with p-cymene, longifolene, and myristic acid identified as the major chemical compounds present in the oil. Conclusion: The observed variations among Nigella varieties indicate the Ajmer nigella-20 variety as particularly promising for thymoquinone and bioactive compound extraction. This study underscores Nigella's potential as a source of pharmacologically active compounds, highlighting the need for further exploration in therapeutic applications.


Asunto(s)
Benzoquinonas , Nigella sativa , Nigella , Nigella sativa/química , Extractos Vegetales/farmacología , Cromatografía de Gases y Espectrometría de Masas , Flavonoides
2.
Mol Biol Rep ; 51(1): 491, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578469

RESUMEN

BACKGROUND: This study aimed to investigate the cytotoxic, apoptotic, invasion, metastasis, and heat shock proteins (HSPs) effects of N. sativa oil on breast and gastric cancer cells. METHODS: We assessed the cytotoxic and apoptotic effects of various concentrations of N. sativa oil (10-50-100-200 µg/mL) on MCF7 breast cancer and AGS, an adenocarcinoma of the gastric cell line, at 24, 48 and 72 h using the MTT test. Additionally, the expression of the Caspase-3, BCL2/Bax, MMP2-9 and HSP60-70 gene was examined using RT-PCR in cell lines treating with N. sativa. RESULTS: The MTT experiments demonstrate that N. sativa has a time and dose-dependent inhibitory effect on the proliferation of MCF7 and AGS cancer cells. The vitality rates of MCF7 and AGS cells treated with N. sativa were 77.04-67.50% at 24 h, 65.28-39.14% at 48 h, and 48.95-32.31% at 72 h. The doses of 100 and 200 µg/mL were shown to be the most effective on both cancer cells. RT-PCR analysis revealed that N. sativa oil extract increased caspase-3 levels in both cell lines at higher concentrations and suppressed BCL2/Bax levels. Exposure of MCF7 and AGS cell lines to N. sativa caused a significant decrease in the expression of MMP2-9 and HSP60-70 genes over time, particularly at a dosage of 200 µg/mL compared to the control group (p < 0.05). CONCLUSIONS: Our findings indicate that N. sativa oil has a dose-dependent effect on cytotoxicity and the expression of apoptotic, heat shock proteins, and matrix metalloproteinases genes in breast and gastric cancer.


Asunto(s)
Antineoplásicos , Nigella sativa , Aceites de Plantas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/metabolismo , Caspasa 3/genética , Metaloproteinasa 2 de la Matriz , Apoptosis , Proteína X Asociada a bcl-2 , Antineoplásicos/farmacología , Línea Celular Tumoral , Proteínas de Choque Térmico , Proliferación Celular , Células MCF-7
3.
BMC Complement Med Ther ; 24(1): 111, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448931

RESUMEN

BACKGROUND: Radiation plays an essential role in treating malignancies. Radiation exposure of salivary glands often results in permanent loss of their functions; therefore, their protection against radiation is crucial. Nigella sativa oil (NSO) is a useful antioxidant against free radicals. The purpose of this study was to investigate the radio-protective effect of NSO on oxidative injury of parotid glands of gamma-irradiated rats. METHODS: Twenty-eight male albino rats were divided into four groups (n = 7): Group 1: Neither NSO nor radiation, Group 2: Rats received NSO 400 mg/kg, Group 3: Rats received 15 Gy cranium gamma irradiation & Group 4: Rats received gamma irradiation and NSO. Rats were sacrificed two weeks after the last NSO dose. Histological sections of parotid glands were stained with H&E, Masson's trichrome and anti-TGF-ß antibodies. Area percentage of Masson's trichrome and TGF-ß expression was morphometrically examined. RESULTS: Parotid glands of control and NSO groups revealed normal morphology. Gamma-irradiated glands showed loss of normal acinar architecture and slight acinar shrinkage. NSO treatment of gamma-irradiated glands preserved acinar outline and architecture. Masson's trichrome stained samples revealed trace amounts of collagen fibers in control and NSO groups, and excessive amounts of collagen fibers in gamma-irradiated group, in addition to few collagen fibers for gamma-irradiated glands treated with NSO. Additionally, control and NSO groups showed negative TGF-ß expression. Gamma-irradiated group showed high TGF-ß expression, while NSO treated gamma-irradiated group showed moderate TGF-ß expression. CONCLUSIONS: Gamma-irradiation adversely affected parotid glands, and in contrast, NSO seemed to positively counteract this adverse effect.


Asunto(s)
Nigella sativa , Glándula Parótida , Aceites de Plantas , Cráneo , Masculino , Animales , Ratas , Factor de Crecimiento Transformador beta , Colágeno
4.
Pak J Biol Sci ; 27(2): 59-68, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38516747

RESUMEN

<b>Background and Objective:</b> The liver is one of the organs that play an essential role in the human body, including supporting metabolism, immune functions, digestive system, detoxification, storage of vitamins and other functions. This investigation aimed to study the protective effects of black seed and lettuce oil against hepatotoxicity as induced by paracetamol in experimental rats. <b>Materials and Methods:</b> Twenty male Sprague-Dawley albino rats weighing 150±5 g were divided randomly into four groups (5 rats each) and distributed as follows; 1st group was controlled negative (C -ve group), 2nd group controlled positive (orally administered with 500 mg/kg b.wt., paracetamol), 3rd and 4th groups were orally administered with black seed oil and lettuce oil at a dose of 1 mL/kg b.wt., each) as a preventive dose. All rats were sacrificed and blood was collected for biochemical analysis and then statistically analyzed. <b>Results:</b> The rat administered with black seed and lettuce oils enhanced body weight gain, food intake and feed efficiency ratio. Moreover, exhibited a significant reduction in the liver enzymes AST, ALT, ALP and TBIL. Meanwhile, black seed and lettuce oils significantly improved kidney functions, lipid profiles and some immune biomarkers including creatine kinase (CK), Creatine Kinase-MB (CK-MB) and Lactate Dehydrogenase (LDH). <b>Conclusion:</b> This study revealed that the oils of black seed (<i>Nigella sativa</i>) and lettuce (<i>Lactuca sativa</i>) have a protective role in improving body weight gain, food intake, feed efficiency ratio, liver enzymes, kidney functions, lipid profiles and some immune biomarkers against paracetamol-induced hepatotoxicity in experimental rats.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Nigella sativa , Humanos , Ratas , Animales , Masculino , Acetaminofén/toxicidad , Lactuca , Ratas Sprague-Dawley , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Aceites de Plantas/farmacología , Semillas , Biomarcadores , Creatina Quinasa , Peso Corporal
5.
Gene ; 911: 148366, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38485035

RESUMEN

Traditional remedies have long utilized Anthemis hyaline, Nigella sativa, and Citrus sinensis peel extracts as treatments for microbial infections. This study aimed to investigate the influence of Anthemis hyaline, Nigella sativa, and Citrus sinensis extracts on coronavirus replication and apoptosis-related pathways. HeLa-CEACAM1a cells were exposed to mouse hepatitis virus-A59. After viral inoculation, the mRNA levels of 36 genes were quantified using a Fluidigm Dynamic Array nanofluidic chip. IL-8 level and intracellular Ca2+ concentration was measured, and viral titer was assessed by the TCID50/ml assay to detect the extent of infection. Treatment with Nigella sativa extract surged the inflammatory cytokine IL-8 level at both 24 and 48-hour. Changes in gene expression were notable for RHOA, VAV3, ROCK2, CFL1, RASA1, and MPRIP genes following treatment with any of the extracts. The addition of Anthemis hyaline, Nigella sativa, or Citrus sinensis extracts to coronavirus-infected cells reduced viral presence, with Anthemis hyaline extract leading to a virtually undetectable viral load at 6- and 8-hours after infection. While all treatments influenced IL-8 production and viral levels, Anthemis hyaline extract displayed the most pronounced reduction in viral load. Consequently, Anthemis hyaline extract emerges as the most promising agent, harboring potential therapeutic compounds.


Asunto(s)
Anthemis , COVID-19 , Citrus sinensis , Nigella sativa , Ratones , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , SARS-CoV-2 , Interleucina-8 , Hialina , Sistema de Señalización de MAP Quinasas
6.
Molecules ; 29(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38542995

RESUMEN

Nigella sativa L. (black cumin) is one of the most investigated medicinal plants in recent years. Volatile compounds like thymoquinone and unsaponifiable lipid compounds are crucial functional components of this oil. Unfortunately, the composition of oils and their quality indicators are ambiguous both in terms of identified compounds and value ranges. Thirteen oils were extracted with hexane from black cumin seeds grown in India, Syria, Egypt, and Poland and analyzed for their fatty acid composition, unsaponifiable compound content and volatile compounds. Oils were also subjected to quality tests according to standard methods. The fatty acid composition and sterol content/composition were relatively stable among the tested oils. Tocol content varied in the range of 140-631 mg/kg, and among them, ß-tocotrienol and γ-tocopherol prevailed. Oils' volatile compounds were dominated by seven terpenes (p-cymene, α-thujene, α-pinene, ß-pinene, thymoquinone, γ-terpinene, and sabinene). The highest contents of these volatiles were determined in samples from Poland and in two of six samples from India. High acid and peroxide values were typical features of N. sativa L. oils. To sum up, future research on the medicinal properties of black cumin oil should always be combined with the analysis of its chemical composition.


Asunto(s)
Benzoquinonas , Nigella sativa , Aceites Volátiles , Nigella sativa/química , Aceites de Plantas/química , Semillas/química , Ácidos Grasos/análisis , Aceites Volátiles/química
7.
J Food Sci ; 89(4): 1865-1893, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38407314

RESUMEN

Nigella sativa is one of the nutraceuticals that has gained popularity and studied extensively in recent decades as it is considered a safe medicinal plant for use as a dietary supplement. N. sativa contains a wide variety of bioactive substances, which include polyphenols, volatile oils (thymoquinone and p-cymene), proteins, and peptides. The biological attributes of N. sativa include antioxidant, antimicrobial, antifungal, anti-inflammatory, anticancer, antidiabetic, antihypertensive, hypolipidemic, and antioxidant activities, which have potential applications for the prevention of a variety of chronic diseases. In the food industry, N. sativa improves the sensory qualities, shelf life, strength, and freshness of foods, such as bread, pizza, biscuits, cookies, and cakes. This review discusses the industrial use of N. sativa, which includes processing technologies to enhance its health-promoting properties as well as the isolation of nutraceutical components.


Asunto(s)
Nigella sativa , Plantas Medicinales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Nigella sativa/química , Alimentos Funcionales , Antioxidantes
8.
Molecules ; 29(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38338478

RESUMEN

The characteristic chemical composition of Nigella seeds is directly linked to their beneficial properties. This study aimed to investigate the phytochemical composition of Nigella sativa seeds using a 100% ethanolic extract using HPLC-ESI-MS/MS. Additionally, it explored the potential biological effects of the extract on female rat reproduction. Follicle Stimulating Hormone (FSH), Luteinizing Hormone (LH), Estrogen (E2), and Progesterone (P4) hormone levels were also assessed, along with the morphological and histological effects of the extract on ovarian, oviductal, and uterine tissues. Molecular docking was performed to understand the extract's activity and its role in regulating female reproduction by assessing its binding affinity to hormonal receptors. Twenty metabolites, including alkaloids, saponins, terpenes, flavonoids, phenolic acids, and fatty acids, were found in the ethanolic extract of N. sativa seeds through the HPLC-ESI-MS/MS study. The N. sativa seed extract exhibited strong estrogenic and LH-like activities (p < 0.05) with weak FSH-like activity. Furthermore, it increased the serum levels of LH (p < 0.05), P4 hormones (p < 0.001), and E2 (p < 0.0001). Molecular docking results displayed a strong interaction with Erß, LH, GnRH, and P4 receptors, respectively. Based on these findings, N. sativa seeds demonstrated hormone-like activities, suggesting their potential as a treatment for improving female fertility.


Asunto(s)
Nigella sativa , Ratas , Femenino , Animales , Nigella sativa/química , Espectrometría de Masas en Tándem , Simulación del Acoplamiento Molecular , Cromatografía Líquida de Alta Presión , Extractos Vegetales/química , Hormona Luteinizante , Hormona Folículo Estimulante , Semillas/química , Fertilidad
9.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38339101

RESUMEN

Nigella sativa (NS) is a native herb consumed habitually in several countries worldwide, possessing manifold therapeutic properties. Among them, anti-inflammatory features have been reported, presumably relating to mechanisms involved in the nuclear factor kappa-B pathway, among others. Given the observed association between neuroimmune factors and mental illness, the primary aim of the present study was to examine the effects of chronic NS use on manic-like behavior in rats, as well as analyze levels of brain inflammatory mediators following NS intake. Using male and female rats, baseline tests were performed; thereafter, rats were fed either regular food (control) or NS-containing food (treatment) for four weeks. Following intervention, behavioral tests were induced (an open field test, sucrose consumption test, three-chamber sociality test, and amphetamine-induced hyperactivity test). Subsequently, brain samples were extracted, and inflammatory mediators were evaluated, including interleukin-6, leukotriene B4, prostaglandin E2, tumor necrosis factor-α, and nuclear phosphorylated-p65. Our findings show NS to result in a marked antimanic-like effect, in tandem with a positive modulation of select inflammatory mediators among male and female rats. The findings reinforce the proposed therapeutic advantages relating to NS ingestion.


Asunto(s)
Antimaníacos , Encefalitis , Nigella sativa , Ratas , Masculino , Femenino , Animales , Aceites de Plantas , Encefalitis/tratamiento farmacológico , Mediadores de Inflamación
10.
Mol Biol Rep ; 51(1): 61, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38170326

RESUMEN

BACKGROUND: Breast adenocarcinoma cells (MCF-7) are characterized by the overexpression of apoptotic marker genes and proliferative cell nuclear antigen (PCNA), which promote cancer cell proliferation. Thymol, derived from Nigella sativa (NS), has been investigated for its potential anti-proliferative and anticancer properties, especially its ability to suppress Cyclin D1 and PCNA expression, which are crucial in the proliferation of cancer cells. METHODS: The cytotoxicity of thymol on MCF-7 cells was assessed using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) release methods. Thymol was tested at increasing concentrations (0-1000 µM) to evaluate its impact on MCF-7 cell growth. Additionally, Cyclin D1 and PCNA gene expression in thymol-treated and vehicle control groups of MCF-7 were quantified using real-time Polymerase Chain Reaction (RT-qPCR). Protein-ligand interactions were also investigated using the CB-Dock2 server. RESULTS: Thymol significantly inhibited MCF-7 cell growth, with a 50% inhibition observed at 200 µM. The gene expression of Cyclin D1 and PCNA was down-regulated in the thymol-treated group relative to the vehicle control. The experimental results were verified through protein-ligand interaction investigations. CONCLUSIONS: Thymol, extracted from NS, demonstrated specific cytotoxic effects on MCF-7 cells by suppressing the expression of Cyclin D1 and PCNA, suggesting its potential as an effective drug for MCF-7. However, additional in vivo research is required to ascertain its efficacy and safety in medical applications.


Asunto(s)
Neoplasias de la Mama , Nigella sativa , Humanos , Femenino , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Células MCF-7 , Neoplasias de la Mama/genética , Timol/farmacología , Timol/uso terapéutico , Nigella sativa/metabolismo , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Antígenos Nucleares/uso terapéutico , Ciclina D1/genética , Ciclina D1/metabolismo , Regulación hacia Abajo , Ligandos , Proliferación Celular
11.
BMC Complement Med Ther ; 24(1): 22, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38178093

RESUMEN

BACKGROUND: Nigella sativa (NS) oil has been found to have advantageous benefits in the management of inflammation and obesity. This study investigated the effect of NS supplementation on blood mRNA expressions and serum levels of IL-1ß, IL-6, leptin, and insulin concentrations in overweight/obese women. METHODS: In a crossover design, participants were randomized to receive either NS supplements(2000 mg/day) or placebo for 2 durations(8 weeks). With between-subject and within-subject components and interactions, a repeated-measure ANOVA model was used considering the treatment, time, and the carryover effects. Cohen's d(d) was used to measure the magnitude of the effects. RESULTS: Forty-six eligible participants were included. NS supplementation significantly reduced the mRNA expressions(d=-0.68, P = 0.03) and serum levels of IL-1ß with medium-high effect sizes(d=-1.6, P < 0.001). Significant reductions with large effect sizes were observed in the gene expression and serum levels of IL-6(d=-1.8, d=-0.78, respectively; P < 0.01) and Leptin(d=-1.9, d=-0.89, respectively; P < 0.01, serum leptin P carryover < 0.001). Despite the meaningful carryover effect for serum leptin, results remained significant following the first intervention period analysis(P < 0.001). A significant but low effect size decrease in serum insulin was observed(d=-0.3, P = 0.02). CONCLUSIONS: The clinical significance of present findings regarding improvements in obesity-related pro-inflammatory markers must be interpreted with caution due to some observed medium-low effect sizes. TRIAL REGISTRATION: IRCT20180430039475N1 (Date:25/6/2018).


Asunto(s)
Suplementos Dietéticos , Nigella sativa , Obesidad , Sobrepeso , Femenino , Humanos , Insulina , Interleucina-6 , Leptina , Obesidad/tratamiento farmacológico , Sobrepeso/tratamiento farmacológico , ARN Mensajero
13.
Curr Mol Med ; 24(3): 327-334, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37038292

RESUMEN

Ischemic stroke is one of the major causes of global mortality, which puts great demands on health systems and social welfare. Ischemic stroke is a complex pathological process involving a series of mechanisms such as ROS accumulation, Ca2+ overload, inflammation, and apoptosis. The lack of effective and widely applicable pharmacological treatments for ischemic stroke patients has led scientists to find new treatments. The use of herbal medicine, as an alternative or complementary therapy, is increasing worldwide. For centuries, our ancestors had known the remedial nature of Nigella sativa (Family Ranunculaceae) and used it in various ways, either as medicine or as food. Nowadays, N. sativa is generally utilized as a therapeutic plant all over the world. Most of the therapeutic properties of this plant are attributed to the presence of thymoquinone which is the major biological component of the essential oil. The present review describes the pharmacotherapeutic potential of N. sativa in ischemic stroke that has been carried out by various researchers. Existing literature highlights the protective effects of N. sativa as well as thymoquinone in ischemia stroke via different mechanisms including anti-oxidative stress, anti-inflammation, anti-apoptosis, neuroprotective, and vascular protective effects. These properties make N. sativa and thymoquinone promising candidates for developing potential agents for the prevention and treatment of ischemic stroke.


Asunto(s)
Benzoquinonas , Accidente Cerebrovascular Isquémico , Nigella sativa , Plantas Medicinales , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Accidente Cerebrovascular Isquémico/tratamiento farmacológico
14.
Inflammopharmacology ; 32(1): 273-285, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37966624

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused over 500 million reported cases of COVID-19 worldwide with relatively high morbidity and mortality. Although global vaccination drive has helped control the pandemic, the newer variant of the virus still holds the world in ransom. Several medicinal herbs with antiviral properties have been reported, and one such promising herb is Nigella sativa (NS). Recent molecular docking, pre-clinical, and clinical studies have shown that NS extracts may have the potential to prevent the entry of coronaviruses into the host cell as well as to treat and manage COVID-19 symptoms. Several active compounds from NS, such as nigelledine, α-hederin, dithymoquinone (DTQ), and thymoquinone (TQ), have been proposed as excellent ligands to target angiotensin-converting enzyme 2 (ACE2 receptors) and other targets on host cells as well as the spike protein (S protein) on SARS-CoV-2. By binding to these target proteins, these ligands could potentially prevent the binding between ACE2 and S protein. Though several articles have been published on the promising therapeutic role of NS and its constituents against SARS-CoV-2 infection, in this review, we consolidate the published information on NS and SARS-CoV-2, focusing on pre-clinical in silico studies as well as clinical trials reported between 2012 and 2023.


Asunto(s)
COVID-19 , Nigella sativa , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Simulación del Acoplamiento Molecular
15.
J Biomol Struct Dyn ; 42(3): 1544-1558, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37194426

RESUMEN

Cancer is a multifactorial disease that can cause morbidity and mortality in humans. An altered gene expression in cancer leads to a change in the overall activity of the human cell. Overexpression of cancer protein may give a piece of wide information about the specific type of tumor. Sphingosine kinase-1 (SK-1) is a metabolic enzyme that is mainly overexpressed in several types of cancer and other inflammatory diseases. Similarly, pyruvate kinase-M2 (PK-M2) is an important oncogenic ATP-producing glycolytic enzyme that is upregulated in most cancer cells. The phytocompound of medicinal plants such as Nigella sativa contains a variety of micronutrients that inhibit the proliferation and activity of tumor cells. In this study, the role of phytocompounds in combating cancer was studied against the model kinase proteins, that is, PK-M2 and SK-1. In silico tool like the PASS-Way2Drug server was used to predict the anticancer properties of phytocompounds. Moreover, the CLC-Pred web server provided the cytotoxicity prediction of chemical compounds against several human cancer cell lines. The pharmacokinetics and toxicity profiles were predicted by the SwissADME and pkCSM software. The binding energies were obtained by molecular docking to confirm the intermolecular interaction of selected phytocompounds with proteins. Consequently, molecular dynamics (MD) simulation confirmed the stability, conformational changes, and dynamic behavior of the kinase proteins complexed with the lead phytocompounds, that is, epicatechin, apigenin, and kaempferol.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Neoplasias , Nigella sativa , Fosfotransferasas (Aceptor de Grupo Alcohol) , Humanos , Detección Precoz del Cáncer , Piruvato Quinasa , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico
16.
Infect Disord Drug Targets ; 24(2): e251023222677, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37885111

RESUMEN

The recent outbreaks of Nipah viral infection were associated with severe respiratory illness, lethal encephalitis, and an extremely high mortality rate. As there are no approved antiviral medications, patients with NiV infections are currently treated with repurposed or investigational antivirals and supportive care. This review examines the potential health benefits of N. sativa in the treatment of NiV infection. To identify relevant studies, the literature was searched in online databases like Medline/PubMed, Google Scholar, Science Direct, and reference lists. Through its antiviral, anti-inflammatory, antioxidant, anticonvulsant, immunomodulatory, bronchodilatory, and other properties, a number of studies have demonstrated that N. sativa is effective against a variety of viral infections, inflammatory conditions, neurological and respiratory illnesses, and other conditions. As a result, in the treatment of NiV-infected patients, N. sativa could be added as an adjuvant treatment alongside repurposed or investigational antivirals and supportive care. The efficacy of N. sativa in the treatment of NiV infection will be determined by the results of upcoming randomized controlled clinical trials.


Asunto(s)
Cuminum , Infecciones por Henipavirus , Nigella sativa , Humanos , Extractos Vegetales/uso terapéutico , Infecciones por Henipavirus/tratamiento farmacológico , Semillas , Antivirales/uso terapéutico
17.
Drug Res (Stuttg) ; 74(1): 5-17, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38016656

RESUMEN

Skin diseases have recently become a major concern among people of all ages due to their highly visible symptoms and persistent and difficult treatment, which significantly impact their quality of life. Nigella sativa seeds, also known as "black seeds" or "kalonji," are one of the most commonly used herbal medicines due to their wide range of biological and pharmacological activities. It contains a wide range of bioactive constituents found in both fixed and essential oils. It has been used for hundreds of years as an alternative ethnomedicine to treat a wide range of skin conditions. N. sativa's dermatological applications in skin diseases are attributed to its potent antioxidant, anti-inflammatory, antimicrobial, and immunomodulatory properties, making it an intriguing skincare candidate. Several studies unravelled positive results associated with N. sativa on skin diseases. As N. sativa is the most studied medicinal plant, several preclinical and clinical studies have been conducted to establish its use in the treatment of various skin diseases. Thymoquinone has anti-inflammatory, antioxidant, and antibacterial properties, which mainly contributed to the treatment of skin diseases. In this context, the present review explores all the available studies on the association of N. sativa and its effect on treating skin diseases in light of recent studies and patents supporting its therapeutic applications.


Asunto(s)
Nigella sativa , Plantas Medicinales , Enfermedades de la Piel , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Calidad de Vida , Enfermedades de la Piel/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Semillas
18.
Biomed Pharmacother ; 170: 116080, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38147737

RESUMEN

The current study aimed to explore the possible prophylactic and therapeutic effect of Nigella sativa L. oil (NSO) against disruption of endocrine signals and injuries in the thyroid gland, ovary, and uterine tissues induced by sodium fluoride (NaF). Twenty-eight mature female Wistar rats were randomly allocated into four experimental groups (n = 7/group) as follows: control group; NaF group, orally received NaF (20 mg/kg b.wt.) daily; NSO/NaF, orally received NSO (300 mg/kg b.wt.) two weeks before being given NaF and continued throughout the experiment; and NSO+NaF group orally received NSO concurrently with NaF. Our results indicated that NSO restored hormonal balance and suppressed oxidative damage and inflammation. Moreover, the levels of triiodothyronine, thyroxine, thyroid peroxidase, estrogen (E2), progesterone, follicle-stimulating hormone, and luteinizing hormone were elevated, while prostaglandins F2-α and cortisol levels were decreased in NSO treated groups compared to NaF-intoxicated rats. As well, NSO significantly boosted levels of antioxidant molecules, and lowered lipid peroxidation of examined tissues, unlike NaF-treated group. NSO also up-regulated antioxidant enzymes, anti-apoptotic protein, zona pellucida sperm-binding protein, bone morphogenetic protein, and thyroid stimulating hormone, conversely down-regulated inflammatory cytokines, apoptotic proteins, estrogen receptor-α, estrogen receptor-ß, and thyroid stimulating hormone receptors compared to NaF-intoxicated group. Additionally, NSO ameliorated tissue damage of the thyroid gland, ovary, and uterus induced by NaF. -Overall, the prophylactic group (NSO/NaF) performed better antioxidant and anti-inflammatory activities than the treated group almost in all examined tissues, which is reflected by the improvement in the structure of the thyroid, ovarian, and uterine tissues.


Asunto(s)
Nigella sativa , Glándula Tiroides , Ratas , Femenino , Masculino , Animales , Ratas Wistar , Antioxidantes/farmacología , Antioxidantes/metabolismo , Ovario , Fluoruro de Sodio/toxicidad , Fluoruro de Sodio/metabolismo , Aceites de Plantas/farmacología , Estrés Oxidativo , Útero/metabolismo , Receptores de Estrógenos/metabolismo , Semillas
19.
Medicina (Kaunas) ; 59(11)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38004077

RESUMEN

Background and Objectives: This study evaluated the in vitro anti-adipogenic and anti-inflammatory properties of black cumin (Nigella sativa L.) seed extract (BCS extract) as a potential candidate for developing herbal formulations targeting metabolic disorders. Materials and Methods: We evaluated the BCS extract by assessing its 2,2-diphenyl-1-picrohydrazyl (DPPH) radical scavenging activity, levels of prostaglandin E2 (PGE2) and nitric oxide (NO), and mRNA expression levels of key pro-inflammatory mediators. We also quantified the phosphorylation of nuclear factor kappa light chain enhancer of activated B cells (NF-κB) and mitogen-activated protein kinases (MAPK) signaling molecules. To assess anti-adipogenic effects, we used differentiated 3T3-L1 cells and BCS extract in doses from 10 to 100 µg/mL. We also determined mRNA levels of key adipogenic genes, including peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding protein α (C/BEPα), adipocyte protein 2 (aP2), lipoprotein lipase (LPL), fatty acid synthase (FAS), and sterol-regulated element-binding protein 1c (SREBP-1c) using real-time quantitative polymerase chain reaction (qPCR). Results: This study showed a concentration-dependent DPPH radical scavenging activity and no toxicity at concentrations up to 30 µg/mL in Raw264.7 cells. BCS extract showed an IC50 of 328.77 ± 20.52 µg/mL. Notably, pre-treatment with BCS extract (30 µg/mL) significantly enhanced cell viability in lipopolysaccharide (LPS)-treated Raw264.7 cells. BCS extract treatment effectively inhibited LPS-induced production of PGE2 and NO, as well as the expression of monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), inducible NO synthase (iNOS), interleukin (IL)-1ß and IL-6, possibly by limiting the phosphorylation of p38, p65, inhibitory κBα (I-κBα), and c-Jun N-terminal kinase (JNK). It also significantly attenuated lipid accumulation and key adipogenic genes in 3T3-L1 cells. Conclusions: This study highlights the in vitro anti-adipogenic and anti-inflammatory potential of BCS extract, underscoring its potential as a promising candidate for managing metabolic disorders.


Asunto(s)
Enfermedades Metabólicas , Nigella sativa , Humanos , Animales , Ratones , Nigella sativa/metabolismo , Células 3T3-L1 , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Macrófagos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Adipocitos , Semillas , ARN Mensajero/metabolismo , Enfermedades Metabólicas/metabolismo , Óxido Nítrico/metabolismo
20.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38003621

RESUMEN

Thymoquinone (TQ) is the primary component of Nigella sativa L. (NS) oil, which is renowned for its potent hepatoprotective effects attributed to its antioxidant, anti-fibrotic, anti-inflammatory, anti-carcinogenic, and both anti- and pro-apoptotic properties. The aim of this work was to establish a method of measuring TQ in serum in order to investigate the pharmacokinetics of TQ prior to a targeted therapeutic application. In the first step, a gas chromatography-mass spectrometry method for the detection and quantification of TQ in an oily matrix was established and validated according to European Medicines Agency (EMA) criteria. For the assessment of the clinical application, TQ concentrations in 19 oil preparations were determined. Second, two serum samples were spiked with TQ to determine the TQ concentration after deproteinization using toluene. Third, one healthy volunteer ingested 1 g and another one 3 g of a highly concentrated NS oil 30 and 60 min prior to blood sampling for the determination of serum TQ level. After the successful establishment and validation of the measurement method, the highest concentration of TQ (36.56 g/L) was found for a bottled NS oil product (No. 1). Since a capsule is more suitable for oral administration, the product with the third highest TQ concentration (No. 3: 24.39 g/L) was used for all further tests. In the serum samples spiked with TQ, the TQ concentration was reliably detectable in a range between 5 and 10 µg/mL. After oral intake of NS oil (No. 3), however, TQ and/or its derivatives were not detectable in human serum. This discrepancy in detecting TQ after spiking serum or following oral ingestion may be attributed to the instability of TQ in biomatrices as well as its strong protein binding properties. A pharmacokinetics study was therefore not viable. Studies on isotopically labeled TQ in an animal model are necessary to study the pharmacokinetics of TQ using alternative modalities.


Asunto(s)
Nigella sativa , Animales , Humanos , Cromatografía de Gases y Espectrometría de Masas , Nigella sativa/química , Aceites de Plantas , Benzoquinonas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA