Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.376
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
An Acad Bras Cienc ; 96(1): e20230745, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38597492

RESUMEN

Phenoselenazines are nitrogen and selenium-based heterocyclic compounds that have important biological activities. However, their preparation methods are scarce and difficult to handle. The synthesis of a phenoselenazine from a simple and robust CuO nanoparticle catalyzed methodology, using bis-aniline-diselenide and 1,2-dihalobenzenes under microwave irradiation. Also, the double-cross-coupling reaction mechanism for C-Se and C-N bond formation, including the observation of a reaction intermediate by mass spectrometry have been studied.


Asunto(s)
Selenio , Nitrógeno/química
2.
J Agric Food Chem ; 72(14): 7672-7683, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38530782

RESUMEN

Agrochemical residues and nitrous oxide (N2O) emissions have caused considerable threats to agricultural soil ecology. Nanoscale zerovalent iron (nZVI) and nitrification inhibitors might be complementary to each other to diminish soil agrochemical residues and N2O emissions and enhance soil bacterial community diversities. Compared to the control, the nZVI application declined soil paclobutrazol residues by 5.9% but also decreased the bacterial community co-occurrence network node. Combined nZVI and Dicyandiamide applications significantly decreased soil N2O emission rates and paclobutrazol residues but promoted Shannon diversity of the bacterial community. The increased soil pH, ammonium nitrogen, and Actinobacteriota could promote soil paclobutrazol dissipation. The nZVI generated double-edged sword effects of positively decreasing paclobutrazol residues and N2O emissions but negatively influencing soil multifunctionalities. The nZVI and Dicyandiamide could be complementary to each other in diminishing soil agrochemical residues and N2O emission rates but promoting soil bacterial community diversities simultaneously.


Asunto(s)
Guanidinas , Óxido Nitroso , Suelo , Triazoles , Suelo/química , Óxido Nitroso/química , Nitrificación , Agricultura , Bacterias/genética , Fertilizantes/análisis , Agroquímicos/farmacología , Nitrógeno/química
3.
Molecules ; 29(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38474517

RESUMEN

Nitrogen and phosphorus play essential roles in ecosystems and organisms. However, with the development of industry and agriculture in recent years, excessive N and P have flowed into water bodies, leading to eutrophication, algal proliferation, and red tides, which are harmful to aquatic organisms. Biochar has a high specific surface area, abundant functional groups, and porous structure, which can effectively adsorb nitrogen and phosphorus in water, thus reducing environmental pollution, achieving the reusability of elements. This article provides an overview of the preparation of biochar, modification methods of biochar, advancements in the adsorption of nitrogen and phosphorus by biochar, factors influencing the adsorption of nitrogen and phosphorus in water by biochar, as well as reusability and adsorption mechanisms. Furthermore, the difficulties encountered and future research directions regarding the adsorption of nitrogen and phosphorus by biochar were proposed, providing references for the future application of biochar in nitrogen and phosphorus adsorption.


Asunto(s)
Fósforo , Contaminantes Químicos del Agua , Fósforo/química , Aguas Residuales , Adsorción , Nitrógeno/química , Ecosistema , Carbón Orgánico/química , Agua , Contaminantes Químicos del Agua/química
4.
Sci Total Environ ; 923: 171404, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38432381

RESUMEN

Increased nitrogen deposition has important effects on below-ground ecological processes. Fine roots are the most active part of the root system in terms of physiological activity and the main organs for nutrient and water uptake by plants. However, there is still a limited understanding of how nitrogen deposition affects the fine root dynamics in subtropical Abies georgei (Orr) forests. Consequently, a three-year field experiment was conducted to quantify the effects of three forms of nitrogen sources ((NH4)2SO4, NaNO3, and NH4NO3) at four levels (0, 5, 15, and 30 kg N·ha-1·yr-1) on the fine root dynamics in Abies georgei forests using a randomized block-group experimental design and minirhizotron technique. The first year of nitrogen addition did not affect the first-class fine roots (FR1, 0 < diameter < 0.5 mm) and second-class fine roots (FR2, 0.5 < diameter < 1.0 mm). The next two years of nitrogen addition significantly increased the production, mortality, and turnover of FR1 and FR2; the three year of nitrogen addition did not affect the dynamics of the third- class fine roots (FR3, 1.0 < diameter < 1.5 mm) and fourth- class fine roots (FR4,1.5 < diameter < 2.0 mm). Nitrogen addition positively affected the dynamics of FR1, FR2, FR3 and FR4 by positively affecting the carbon, nitrogen, and phosphorus contents of fine roots and indirectly affecting the soil pH. Increased carbon allocation to FR1 and FR2 may represent a phosphorus acquisition strategy when nitrogen is not the limiting factor. The nitrogen addition forms and levels affected the fine root dynamics in the following orde: NH4NO3 > (NH4)2SO4 > NaNO3 and high nitrogen > medium nitrogen > low nitrogen. The results suggest that the different-diameter fine root dynamics respond differently to different nitrogen addition forms and levels, and linking the different-diameter fine roots to nitrogen deposition is crucial.


Asunto(s)
Abies , Nitrógeno , Nitrógeno/química , Raíces de Plantas , Bosques , Suelo/química , Fósforo , Carbono , Biomasa , Ecosistema , Árboles
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124207, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38554691

RESUMEN

In the current work, sulfur and nitrogen co-doped carbon dots (S,N-CDs) as simple, sensitive, and selective turn-off fluorescent nanosensors were utilized for analysis of three phenothiazine derivatives, including acetophenazine (APZ), chlorpromazine (CPH), and promethazine (PZH). S,N-CDs were synthesized through a green one-pot microwave-assisted technique using widely available precursors (thiourea and ascorbic acid). HRTEM, EDX, FTIR spectroscopy, UV-Vis absorption spectroscopy, and fluorescence spectroscopy were used to characterize the as-synthesized CDs. When excited at 330 nm, the carbon dots produced a maximum emission peak at 410 nm. The cited drugs statically quenched the S,N-CDs fluorescence as revealed by the Stern-Volmer equation. The current method represents the first spectrofluorimetric approach for the determination of the studied drugs without the need for chemical derivatization or harsh reaction conditions. The importance of the proposed work is magnified as the cited drugs do not have any fluorescent properties. The fluorescence of the developed sensor exhibited a linear response to APZ, CPH, and PZH in the concentration ranges of 5.0-100.0, 10.0-100.0, and 10.0-200.0 µM with detection limits of 1.53, 1.66, and 2.47 µM, respectively. The developed fluorescent probes have the advantages of rapidity and selectivity for APZ, CPH, and PZH analysis in tablets with acceptable % recoveries of (98.06-101.66 %). Evaluation of the method's greenness was performed using the Complementary Green Analytical Procedure Index (ComplexGAPI) and Analytical GREEnness metric (AGREE) metrics, indicating that the method is environmentally friendly. Validation of the proposed method was performed according to ICHQ2 (R1) guidelines.


Asunto(s)
Antipsicóticos , Puntos Cuánticos , Colorantes Fluorescentes/química , Puntos Cuánticos/química , Fenotiazinas , Carbono/química , Nitrógeno/química , Azufre/química
6.
J Hazard Mater ; 467: 133717, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38325100

RESUMEN

Nitrogen (N2)-fixing legumes can be used for phytoremediation of toxic heavy metal Mercury (Hg) contaminated soil, but N2-fixation highly relies on phosphorus (P) availability for nodule formation and functioning. Here, we characterized the significance of P deficiency for Hg accumulation and toxicity in woody legume plants. Consequences for foliar and root traits of rhizobia inoculation, Hg exposure (+Hg) and low P (-P) supply, individually and in combination were characterized at both the metabolite and transcriptome levels in seedlings of two Robinia pseudoacacia L. provenances originating from contrasting climate and soil backgrounds, i.e., GS in northwest and the DB in northeast China. Our results reveal that depleted P mitigates the toxicity of Hg at the transcriptional level. In leaves of Robinia depleted P reduced oxidative stress and improved the utilization strategy of C, N and P nutrition; in roots depleted P regulated the expression of genes scavenging oxidative stress and promoting cell membrane synthesis. Rhizobia inoculation significantly improved the performance of both Robinia provenances under individual and combined +Hg and -P by promoting photosynthesis, increasing foliar N and P content and reducing H2O2 and MDA accumulation despite enhanced Hg uptake. DB plants developed more nodules, had higher biomass and accumulated higher Hg amounts than GS plants and thus are suggested as the high potential Robinia provenance for future phytoremediation of Hg contaminated soils with P deficiency.


Asunto(s)
Fabaceae , Mercurio , Robinia , Peróxido de Hidrógeno , Mercurio/toxicidad , Suelo , Nitrógeno/química
7.
Environ Sci Technol ; 58(6): 2902-2911, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38294202

RESUMEN

Conventional biological nutrient removal processes rely on external aeration and produce significant carbon dioxide (CO2) emissions. This study constructed a phototrophic simultaneous nitrification-denitrification phosphorus removal (P-SNDPR) system to treat low carbon to nitrogen (C/N) ratios wastewater and investigated the impact of sludge retention time (SRT) on nutrient removal performance, nitrogen conversion pathway, and microbial structure. Results showed that the P-SNDPR system at SRT of 15 days had the highest nutrient removal capacity, achieving over 85% and 98% removal of nitrogen and phosphorus, respectively, meanwhile maintaining minimal CO2 emissions. Nitrogen removal was mainly through assimilation at SRTs of 5 and 10 days, and nitrification-denitrification at SRTs of 15 and 20 days. Stable partial nitrification was facilitated by photoinhibition and low DO levels. Flow cytometry sorting technique results revealed SRT drove community structural changes in translational activity (BONCAT+) microbes, where BONCAT+ microbes were mainly simultaneous nitrogen and phosphorus removal bacteria (Candidatus Accumulibacter), denitrifying bacteria (Candidatus Competibacter and Plasticicumulans), ammonia-oxidizing bacteria (Nitrosomonas), and microalgae (Chlorella and Dictyosphaerium). The P-SNDPR system represents a novel, carbon-neutral process for efficient nutrient removal from low C/N ratio wastewater without aeration and external carbon source additions.


Asunto(s)
Chlorella , Aguas Residuales , Nitrificación , Desnitrificación , Fósforo/metabolismo , Nitrógeno/química , Nitrógeno/metabolismo , Dióxido de Carbono , Chlorella/metabolismo , Eliminación de Residuos Líquidos/métodos , Reactores Biológicos/microbiología , Aguas del Alcantarillado/microbiología
8.
ACS Appl Bio Mater ; 7(1): 114-123, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38096155

RESUMEN

Precise visualization of biological processes necessitates reliable coloring technologies, and fluorescence imaging has emerged as a powerful method for capturing dynamic cellular events. Low emission intensity and solubility of intrinsic fluorescence are still challenging, hindering their application in the biomedical field. The nanostructurization and functionalization of the insoluble phytochemicals, such as chlorophyll and curcumin, into carbon dots (CDs) were conducted to address these challenges. Due to their unique fluorescence characteristics and biocompatibility, CDs derived from medicinal plants hold promise as bioimaging agents. Further, the nitrogen in situ functionalization of the as-synthesized CDs offered tunable optical properties and enhanced solubility. The surface modification aims to achieve a more positive zeta potential, facilitating penetration through biological membranes. This work provides valuable insights into utilizing functionalized phytochemical-embedded carbon dots for bioimaging applications. The doping of nitrogen by adding urea showed an alteration of surface charge, which is more positive based on zeta potential measurement. The more positive CD particles showed that Andrographis paniculata-urea-based CDs were the best particles to penetrate cells than others related to the alteration of the surface charge and the functional group of the CDs, with the optimum dose of 12.5 µg/mL for 3 h of treatment for bioimaging assay.


Asunto(s)
Plantas Medicinales , Puntos Cuánticos , Puntos Cuánticos/química , Carbono/química , Nitrógeno/química , Urea
9.
Bioresour Technol ; 393: 130021, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37979887

RESUMEN

The application of soil infiltration systems (SISs) in rural domestic sewage (RDS) is limited due to suboptimal denitrification resulting from factors such as low C/N (<5). This study introduced filler-enhanced SISs and investigated parameter impacts on pollutant removal efficiency and greenhouse gas (GHG) emission reduction. The results showed that Mn sand-pyrite SISs, with hydraulic load ratios of 0.003 m3/m2·h and dry-wet ratios of 3:1, achieved excellent removal efficiency of COD (92.7 %), NH4+-N (95.8 %), and TN (76.4 %). Moreover, N2O and CH4 emission flux were 0.046 and 0.019 mg/m2·d, respectively. X-ray photoelectron spectroscopy showed that the relative concentrations of Mn(Ⅱ) in Mn sand and Fe(Ⅲ) and SO42- in pyrite increased after the experiment. High-throughput sequencing indicated that denitrification was mainly performed by Thiobacillus. This study demonstrated that RDS treatment using the enhanced SIS resulted in efficient denitrification and GHG reduction.


Asunto(s)
Gases de Efecto Invernadero , Hierro , Suelo , Sulfuros , Desnitrificación , Compuestos Férricos , Manganeso , Nitrógeno/química , Aguas del Alcantarillado , Suelo/química
10.
J Environ Manage ; 350: 119559, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38016236

RESUMEN

This review discusses the micro-nano plastics (MNPs) and their interaction with physical, chemical and biological processes in a constructed wetland (CW) system that is typically used as a nature-based tertiary wastewater treatment for municipal as well as industrial applications. Individual components of the CW system such as substrate, microorganisms and plants were considered to assess how MNPs influence the CW processes. One of the main functions of a CW system is removal of nutrients like nitrogen (N) and phosphorus (P) and here we highlight the pathways through which the MNPs influence CW's efficacy of nutrient removal. The presence of morphologically (size and shape) and chemically different MNPs influence the growth rate of microorganisms important in N and P cycling, invertebrates, decomposers, and the plants which affect the overall efficiency of a CW treatment system. Certain plant species take up the MNPs, and some toxicity has been observed. This review focuses on two significant aspects: (1) the presence of MNPs in a significant concentration affects the efficiency of N and P removal, and (2) the removal of MNPs. Because MNPs reduce the enzyme activities in abundance and overproduction of ROS oxidizes the enzyme active sites, resulting in the depletion of proteins, ultimately inhibiting nitrogen and phosphorus removal within the substrate layer. The review found that the majority of the studies used sand-activated carbon (SAC), granular-activated carbon (GAC), rice straw, granular limestone, and calcium carbonate, as a substrate for CW treatment systems. Common plant species used in the CW include Phragmites, Arabidopsis thaliana, Lepidium sativum, Thalia dealbata, and Canna indica, which were also found to be dominant in the uptake of the MNPs in the CWs. The MNPs were found to affect earthworms such as Eisenia fetida, Caenorhabditis elegans, and, Enchytraeus crypticus, whereas Metaphire vulgaris were found unaffected. Though various mechanisms take place during the removal process, adsorption and uptake mechanism effectively emphasize the removal of MNPs and nitrogen and phosphorus in CW. The MNPs characteristics (type, size, and concentration) play a crucial role in the removal efficiency of nano-plastics (NPs) and micro-plastics (MPs). The enhanced removal efficiency of NPs compared to MPs can be attributed to their smaller size, resulting in a faster reaction rate. However, NPs dose variation showed fluctuating removal efficiency, whereas MPs dose increment reduces removal efficiency. MP and NPs dose variation also affected toxicity to plants and earthworms as observed from data. Understanding the fate and removal of microplastics in wetland systems will help determine the reuse potential of wastewater and restrict the release of microplastics. This study provides information on various aspects and highlights future gaps and needs for MNP fate study in CW systems.


Asunto(s)
Microplásticos , Oligoquetos , Animales , Microplásticos/metabolismo , Plásticos , Humedales , Carbón Orgánico/metabolismo , Plantas/metabolismo , Nutrientes , Nitrógeno/química , Oligoquetos/metabolismo , Fósforo/metabolismo , Eliminación de Residuos Líquidos/métodos
11.
Colloids Surf B Biointerfaces ; 232: 113603, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37898044

RESUMEN

This research was conducted by synthesizing carbon dots MNE-CDs (mixed natural extract-carbon dots) based on mixed natural extract (ginger, garlic, turmeric) through the hydrothermal routh. Menthol and thymol were loaded as multi-therapeutic drugs with the addition of the bio-enhancer loaded on MNE-CDs with the hydrothermal method during a separate stage. These nanostructures were successfully encapsulated in chitosan by the nanospray drying method to enhance sustainability and release control. This study answered three of these issues by fabricating novel carbon dots for anticancer potential, release behavior and bioimaging at the same time. Preparation carbon dots are characterized using UV-vis, PL, FE-SEM, DLS, EDX, and FT-IR analysis. A moderate and sustained release profile of encapsulated carbon dots was noticed in comparison to the free carbon dots over 48 h of study in both simulated physicological environment (pH 7.4) and tumor tissue (pH 5.2) conditions. It was found that the release of bioactive substances from encapsulated samples was significantly attenuated. The cell viability assay showed all the samples, including free and encapsulated carbon dots, offered acceptable cytotoxicity against MCF-7 breast cancer cells. Despite this, the toxicity of free carbon dots is more than the encapsulated samples, and also the enhancement in anticancer potential was not observed for carbon dots loaded with menthol and thymol. Upon the obtained results, the synthesized fluorescence N/S co-doped carbon dots hold great anticancer potential and biological fluorescent labeling.


Asunto(s)
Mentol , Puntos Cuánticos , Humanos , Mentol/farmacología , Timol/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Carbono/química , Medicina de Precisión , Puntos Cuánticos/química , Nitrógeno/química
12.
Microb Ecol ; 86(4): 2993-3002, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37712979

RESUMEN

Nitrogen (N) and phosphorus (P) addition, either individually or in combination, has been demonstrated to enhance plant productivity in grassland ecosystems. Soil bacterial community, which is the driver of litter decomposition and nutrient cycling, is assumed to control responses of terrestrial ecosystem structure and function to N and P addition. Using a high-throughput Illumina MiSeq sequencing platform, we conducted a 9-year field experiment of N (0, 5, 10, and 20 g N m-2 yr-1) and P (0 and 10 g P m-2 yr-1) additions in the Inner Mongolian steppes to elucidate long-term effects of N and P addition on soil bacterial richness, diversity and composition. We found that N addition reduced the relative abundance of Acidobacteria, Chloroflexi, and Nitrospirae, while increased that of Bacteroides. The results showed that the bacterial biomarker was enriched in P addition treatments, either individually or combined with N addition. Both N and P addition altered the bacterial community structure, while only N addition greatly decreased bacterial richness and diversity. More importantly, we showed that all of these effects were most significant in N3P treatment (20 g N m-2 yr-1 and 10 g P m-2 yr-1), implying that P coupled with a high-level N addition exerted a great influence on soil bacterial community. Structural equation models revealed that N and P addition had a great direct effect on soil bacterial community and an indirect effect on it mainly by changing the litter biomass. Our findings highlighted that severe niche differentiation was induced by P along with a high-level N, further emphasizing the importance of simultaneously evaluating response of soil bacterial community to N and P addition, especially in the context of increasing anthropogenic nutrient additions.


Asunto(s)
Ecosistema , Suelo , Suelo/química , Pradera , Nitrógeno/química , Fósforo , Bacterias/genética , Microbiología del Suelo , China
13.
Int J Mol Sci ; 24(14)2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37511556

RESUMEN

The removal of nitrogen from coal tar pitch (CTP) through the hydrodenitrogenation (HDN) of CTP and its molecular behavior were evaluated in the presence of NiMo/γ-alumina and CoMo/γ-alumina catalysts. Fourier transform ion cyclotron resonance mass spectrometry with atmospheric pressure photoionization was used to analyze the complicated chemical classes and species of CTP and the treated products at the molecular level. Nitrogen species were qualitatively analyzed before and after hydrotreatment. A single-stage hydrotreatment with an HDN catalyst resulted in a high sulfur removal performance (85.6-94.7%) but a low nitrogen removal performance (26.8-29.2%). Based on relative abundance analyses of nitrogen and binary nitrogen species, CcHh-NnSs was the most challenging species to remove during HDN treatment. Furthermore, prior hydrodesulfurization was combined with HDN treatment, and the dual hydrotreatments yielded a significantly improved nitrogen removal performance (46.4-48.7%).


Asunto(s)
Alquitrán , Nitrógeno/química , Óxido de Aluminio , Desnitrificación , Espectrometría de Masas/métodos
14.
Bioresour Technol ; 386: 129502, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37506947

RESUMEN

Effect of ß-cyclodextrin (ß-CD) on simultaneous removal of NH4+-N, NO3--N, COD, and phosphorus (P) in biogenic manganese oxides (BioMnOx) driven moving bed biofilm reactor (MBBR) was investigated. 58.64% and 86.32%, 79.65% and 98.39%, 62.45% and 97.30%, and 24.80% and 95.90% of TN and COD were removed in phases I-IV, indicating that simultaneous nitrification and denitrification (SND) efficiencies were 75.44%, 83.91%, 72.71%, and 35.83%, respectively. Composition and fluorescence spectral characteristics of extracellular polymeric substance (EPS) were evaluated including the removal kinetics of TN and COD. Metabolic activity of Mn2+, decolorization performance of BioMnOx, and reactive oxygen species (ROS) characteristics were determined in biofilm. Furthermore, intermediate Mn3+ and BioMnOx concentration were analyzed. Finally, the removal process of nitrogen (N) and P was proposed based on characterizations of elemental characterization, electrochemistry, and microbial community. This study provides new insights into the N and P removal mediated by BioMnOx and ß-CD.


Asunto(s)
Microbiota , beta-Ciclodextrinas , Nitrificación , Desnitrificación , Aguas Residuales , Manganeso , Eliminación de Residuos Líquidos , Biopelículas , Matriz Extracelular de Sustancias Poliméricas , Fósforo , Reactores Biológicos , Óxidos , Nitrógeno/química
15.
Bioresour Technol ; 379: 129003, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37019412

RESUMEN

An integrated process of electrochemical pre-treatment with carrier-based membrane bioreactor (MBR) was constructed for fresh leachate from waste transfer stations with high organic and NH4+-N content. Results showed that within a hydraulic retention time 40 h, the removal efficiencies of chemical oxygen demand (COD), NH4+-N, suspended solids (SS) and total phosphorus (TP) were over 98.5%, 91.2%, 98.3% and 98.4%, respectively, with the organic removal rate of 18.7 kg/m3. The effluent met the Grade A Standard of China (GB/T31962-2015). Pre-treatment contributed about 70 % of the degraded refractory organics and almost all the SS, with the transformation of the humic-like acid to readily biodegradable organics. Biotreatment further removed over 50% of nitrogen pollutants through simultaneous nitrification and denitrification (SND) and consumed about 30% of organics. Meanwhile, the addition of carriers in the oxic MBR enhanced the attached biomass and denitrification enzyme activity, alleviating membrane fouling.


Asunto(s)
Reactores Biológicos , Nitrificación , Nitrógeno/química , Fósforo , Análisis de la Demanda Biológica de Oxígeno
16.
J Chromatogr A ; 1697: 463989, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37075497

RESUMEN

Gas chromatography mass spectrometry (GC-MS) is a commonly used method for organic geochemistry for both academic research and applications such as petroleum analysis. Gas chromatography requires a carrier gas, which needs to be both volatile and stable and in most organic geochemical applications helium or hydrogen have been used, with helium predominating for gas chromatography mass spectrometry. Helium, however, is becoming an increasingly scarce resource and is not sustainable. Hydrogen is the most commonly considered alternative carrier gas to helium but has characteristics that in certain respects make its use less practical, foremost is that hydrogen is flammable and explosive. But as hydrogen is increasingly used as a fuel, higher demand may also make its use less desirable. Here we show that nitrogen can be used for the GC-MS analysis of fossil lipid biomarkers. Using nitrogen, chromatographic separation of isomers and homologues can be achieved, but sensitivity is orders of magnitude less than for helium. It is reasonable to use nitrogen as a carrier gas in applications where low levels of detection are not needed, such as the characterization of samples of crude oil or foodstuffs, or potentially as part of a gas-mixture seeking to reduce helium-demand but maintain a level of chromatographic separation sufficient to support proxy-based characterizations of petroleum.


Asunto(s)
Nitrógeno , Petróleo , Cromatografía de Gases y Espectrometría de Masas/métodos , Nitrógeno/química , Petróleo/análisis , Helio/química , Hidrógeno/química
17.
Water Res ; 237: 119975, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37104936

RESUMEN

River regulation by dams can alter flow regimes and organic matter dynamics, but less is known about how unregulated tributaries regulate organic matter composition and processing in the regulated river below the confluence. This study reports on water chemistry, especially dissolved organic matter (DOM) concentration and composition (dissolved organic carbon (DOC), organic nitrogen (DON), organic phosphorus (DOP) and combined amino acids (DCAA)) along the regulated Tumut and unregulated Goobarragandra (tributary) rivers under different flow conditions (base flow vs storm event) in south-east Australia. The tributary was significantly different from regulated and downstream sites during base flow conditions with higher temperature, pH, buffering capacity, DOC and nutrient concentrations (DON, DOP, DCAA). DOM characterisation by spectrometry and size exclusion chromatography revealed that the tributary contained a higher proportion of terrestrially derived humic-like and fulvic-like DOM. In contrast, regulated and downstream sites contained higher proportion of microbially derived DOM such as low molecular weight neutrals and protein-like components. Storm pulses of tributary flows into the regulated system, influenced both concentration and composition of DOM at the downstream site, which more strongly resembled the tributary site than the regulated site during the storm event. Additionally, we found that the tributary supplied fresh DOM, including small organic molecules to the regulated system during storm events. The presence of these different types of labile DOM can increase primary productivity and ecological functioning within regulated river reaches downstream of tributary junctions. This has important implications for the protection of unregulated tributary inflows within regulated river basins.


Asunto(s)
Materia Orgánica Disuelta , Ríos , Ríos/química , Nitrógeno/química , Fósforo
18.
Environ Sci Pollut Res Int ; 30(21): 59660-59675, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37014596

RESUMEN

Electrolytic manganese residue (EMR) and red mud (RM) are solid waste by-products of the metal manganese and alumina industries, respectively. Under long-term open storage, ammonia nitrogen and soluble manganese ions in EMR and alkaline substances in RM severely pollute and harm the environment. In order to alleviate the pollution problem of EMR and RM. In this study, the alkaline substances in RM were used to treat ammonia nitrogen and soluble manganese ions in EMR. The results confirm the following suitable treatment conditions for the mutual treatment of EMR and RM: EMR-RM mass ratio = 1:1, liquid-solid ratio = 1.4:1, and stirring time = 320 min. Under these conditions, the elimination ratios of ammonia nitrogen (emitted in the form of ammonia gas) and soluble manganese ions (solidified in the form of Mn3.88O7(OH) and KMn8O16) are 85.87 and 86.63%, respectively. Moreover, the alkaline substances in RM are converted into neutral salts (Na2SO4 and Mg3O(CO3)2), achieving de-alkalinisation. The treatment method can also solidify the heavy metal ions-Cr3+, Cu2+, Ni2+, and Zn2+-present in the waste residue with leaching concentrations of 1.45 mg/L, 0.099 mg/L, 0.294 mg/L, and 0.449 mg/L, respectively. This satisfies the requirements of the Chinese standard GB5085.3-2007. In the mutual treatment of EMR and RM, the kinetics of ammonia nitrogen removal and manganese-ion solidification reactions are controlled via a combination of membrane diffusion and chemical reaction mechanisms.


Asunto(s)
Amoníaco , Electrólitos , Manganeso , Amoníaco/química , Electrólitos/química , Iones , Manganeso/química , Nitrógeno/química , Metalurgia
19.
Anal Bioanal Chem ; 415(10): 1917-1931, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36864311

RESUMEN

Low-dimensional (<10 nm) semiconductor carbon quantum dots (CQDs) have been widely used in metal ion sensing and bioimaging. Here, we used the renewable resource Curcuma zedoaria as a carbon source and prepared green carbon quantum dots with good water solubility by a hydrothermal method without any chemical reagent. At different pH values (4-6) and high NaCl concentrations, the photoluminescence of the CQDs was very stable, which indicated that they were suitable for a wide range of applications even under harsh conditions. The CQDs exhibited fluorescence quenching in the presence of Fe3+ ions, indicating their application potential as fluorescence probes for the sensitive and selective detection of Fe3+ ions. The CQDs showed high photostability, low cytotoxicity, and good hemolytic activity, and were successfully applied to bioimaging experiments, i.e. multicolor cell imaging in L-02 (human normal hepatocytes) and CHL (Chinese hamster lung) cells with and without Fe3+, as well as wash-free labeling imaging of Staphylococcus aureus and Escherichia coli. The CQDs also showed good free radical scavenging activity and demonstrated a protective effect against photooxidative damage to L-02 cells. These results indicate that CQDs obtained from medicinal herb sources have multiple potential applications in the fields of sensing, bioimaging, and even disease diagnosis.


Asunto(s)
Curcuma , Puntos Cuánticos , Humanos , Puntos Cuánticos/química , Carbono/química , Nitrógeno/química , Iones
20.
Int J Biol Macromol ; 236: 123994, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36914059

RESUMEN

The porous structure and hydrophilicity of coating shells affect the nutrient controlled-release performance of castor oil-based (CO) coated fertilizers. In order to solve these problems, in this study, the castor oil-based polyurethane (PCU) coating material was modified with liquefied starch polyol (LS) and siloxane, and a new coating material with cross-linked network structure and hydrophobic surface was synthesized, and used it to prepare the coated controlled-release urea (SSPCU). The results demonstrated that the cross-linked network formed by LS and CO improved the density and reduced the pores on the surface of the coating shells. The siloxane was grafted on the surface of coating shells to improve its hydrophobicity and thus delayed water entry. The nitrogen release experiment indicated that the synergistic effects of LS and siloxane improved the nitrogen controlled-release performance of bio-based coated fertilizers. Nutrient released longevity of SSPCU with 7 % coating percentage reached >63 days. Moreover, the nutrient release mechanism of coated fertilizer was further revealed by the analysis of the release kinetics analysis. Therefore, the results of this study provide a new idea and technical support for development of efficient and environment-friendly bio-based coated controlled-release fertilizers.


Asunto(s)
Fertilizantes , Siloxanos , Preparaciones de Acción Retardada/química , Aceite de Ricino , Nitrógeno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA