Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell Environ ; 46(11): 3464-3480, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37553868

RESUMEN

Herbivore-induced plant volatiles (HIPVs) are critical compounds that directly or indirectly regulate the tritrophic interactions among herbivores, natural enemies and plants. The synthesis and release of HIPVs are regulated by many biotic and abiotic factors. However, the mechanism by which multiple factors synergistically affect HIPVs release remains unclear. Tea plant (Camellia sinensis) is the object of this study because of its rich and varied volatile metabolites. In this study, benzyl nitrile was released from herbivore-attacked tea plants more in the daytime than at night, which was consistent with the feeding behaviour of tea geometrid (Ectropis grisescens Warren) larvae. The Y-tube olfactometer assay and insect resistance analysis revealed that benzyl nitrile can repel tea geometrid larvae and inhibit their growth. On the basis of enzyme activities in transiently transformed Nicotiana benthamiana plants, CsCYP79 was identified as a crucial regulator in the benzyl nitrile biosynthetic pathway. Light signalling-related transcription factor CsPIF1-like and the jasmonic acid (JA) signalling-related transcription factor CsMYC2 serve as the activator of CsCYP79 under light and damage conditions. Our study revealed that light (abiotic factor) and herbivore-induced damage (biotic stress) synergistically regulate the synthesis and release of benzyl nitrile to protect plants from diurnal herbivorous tea geometrid larvae.


Asunto(s)
Camellia sinensis , Lepidópteros , Animales , Camellia sinensis/metabolismo , Herbivoria , Nitrilos/metabolismo , Larva/fisiología , Té/metabolismo
2.
Biotechnol Appl Biochem ; 69(5): 2081-2090, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34617628

RESUMEN

Nitrilases and nitrile hydratases/amidases hydrolyze nitriles into carboxylic acids and/or amides, which are used in industrial chemical processes. In the present study, 26 microorganisms, including yeasts and filamentous fungi, in a minimum solid mineral medium supplemented with glucose and phenylacetonitrile were screened to evaluate their biocatalytic potential. Of these microorganisms, five fungi of the genus Aspergillus were selected and subjected to colorimetry studies to evaluate the production and distinction of nitrilase and nitrile hydratase/amidase enzymes. Aspergillus parasiticus Speare 7967 and A. niger Tiegh. 8285 produced nitrilases and nitrile hydratase, respectively. Nitrilase optimization was performed using a Box-Behnken design (BBD) and fungus A. parasiticus Speare 7967 with phenylacetonitrile volume (µl), pH, and carbohydrate source (starch:glucose; g/g) as independent variables and nitrilase activity (U ml-1 ) as dependent variable. Maximum activity (2.97 × 10-3  U ml-1 ) was obtained at pH 5.5, 80 µl of phenylacetonitrile, and 15 g of glucose. A. parasiticus Speare 7967 showed promise in the biotransformation of nitriles to carboxylic acids.


Asunto(s)
Aminohidrolasas , Ensayos Analíticos de Alto Rendimiento , Hongos , Nitrilos/metabolismo , Ácidos Carboxílicos/metabolismo , Aspergillus/metabolismo , Glucosa
3.
Pak J Biol Sci ; 24(4): 477-491, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34486307

RESUMEN

<b>Background and Objective:</b> The continuous use of pesticides in the ecosystem is of great concern, as some of them are highly stable and impact non-target organisms. The effect was tested of different concentrations of insecticides such as (Deltamethrin and Malathion) and natural products, Including, lemongrass oil on Fruit Fly (<i>Drosophila melanogaster</i>), to calculate the concentration at which the highest mortality occurred and death half the number of individuals after 96 hrs, as well as calculating the half-lethal time for individuals. <b>Materials and Methods:</b> This study, which evaluated the toxicity of five different concentrations (0.75, 1.00, 1.25, 1.50 and 1.75 mg L<sup>1</sup>) of Malathion, (0.05, 0.10, 0.21, 0.53 and 1.48 mg L<sup>1</sup>) of Deltamethrin and lemongrass oil (0.25, 0.50, 0.75, 1.00 and 1.50 mg L<sup>1</sup>) on the insect of <i>Drosophila melanogaster</i> after 96 hrs of treatment. <b>Results:</b> From the results of this study, the concentration (LC<sub>50 </sub>= 2.938 mg L<sup>1</sup>) of Malathion leads to kills half of the individuals, compared to Deltamethrin a higher concentration (LC<sub>50 </sub>= 4.8673 mg L<sup>1</sup>) that leads to killing half of the individuals. While lemongrass oil the concentration (LC<sub>50 </sub>= 9.7478 mg L<sup>1</sup>) leads to kills half of individuals. Also, when used Deltamethrin it takes (LT<sub>50 </sub>= 660.277) hours to kill half of the individuals compared to Malathion, which takes approximately (LT<sub>50</sub> = 321.862) hours to death half of the individuals. But lemongrass oil (LT<sub>50 </sub>= 819.745) hours to kill half of the individuals. <b>Conclusion:</b> In conclusion, the lemon plant and its components have excellent potential for being used in the control of <i>Drosophila melanogaster</i>, which had an effective role in biological control.


Asunto(s)
Drosophila/efectos de los fármacos , Malatión/efectos adversos , Nitrilos/efectos adversos , Aceites de Plantas/efectos adversos , Piretrinas/efectos adversos , Terpenos/efectos adversos , Animales , Drosophila/microbiología , Insecticidas/efectos adversos , Insecticidas/metabolismo , Malatión/metabolismo , Nitrilos/metabolismo , Aceites de Plantas/metabolismo , Piretrinas/metabolismo , Terpenos/metabolismo
4.
Pak J Biol Sci ; 24(3): 424-433, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34486328

RESUMEN

<b>Background and Objective:</b> Tri-sodium Copper of chlorophyllins (Agri-Safe) is a novel biocide using recently to control the mosquitoes as a larvicide. Because, the lack of adequate data on the toxicity of this compound, more toxicological studies on this new compound are necessary. Therefore the study aimed to evaluate the adverse effects of this new insecticide and in comparison with the traditional insecticide Deltamethrin (DM). <b>Materials and Methods:</b> Twenty-five adult male rats were randomly divided into five groups. The first group was kept in control. The second and third groups were administered at doses of 0.59 and 0.24 mg kg<sup>1</sup> b.wt., of DM. The fourth and 5th groups were administrated at doses of 250 and 100 mg kg<sup>1</sup> b.wt. of Agri-Safe respectively. The administrations were orally by gavage for 90 consecutive days. The rats were humanly sacrificed and whole blood was collected for hematological parameters and bone marrow was collected for mutagenicity assays. <b>Results:</b> The estimated LD<sub>50</sub> of DM and Agri-Safe were 11.76 and more than 5000 mg kg<sup>1</sup> b.wt., respectively. Both insecticides induced slight hepatotoxicity but not nephrotoxicity. The high and low doses of DM induced prominent oxidative stress while Agri-Safe did not induce oxidative stress. The results of genotoxicity revealed that DM caused greater mutagenic effect at high and low doses, while Agri-Safe induced slight significant genotoxicity at high-dose only. <b>Conclusion:</b> It can be concluded that Deltamethrin (DM) can induce oxidative stress and prominent genotoxicity while tri-sodium copper of chlorophyllins has a low side effect and its effect is due to copper elements.


Asunto(s)
Insecticidas/toxicidad , Nitrilos/toxicidad , Piretrinas/toxicidad , Luz Solar/efectos adversos , Animales , Egipto , Insecticidas/metabolismo , Nitrilos/metabolismo , Piretrinas/metabolismo , Ratas , Ratas Wistar
5.
J Agric Food Chem ; 68(5): 1397-1404, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-31917559

RESUMEN

Volatiles affect tea (Camellia sinensis) aroma quality and have roles in tea plant defense against stresses. Some volatiles defend against stresses through their toxicity, which might affect tea safety. Benzyl nitrile is a defense-related toxic volatile compound that accumulates in tea under stresses, but its formation mechanism in tea remains unknown. In this study, l-[2H8]phenylalanine feeding experiments and enzyme reactions showed that benzyl nitrile was generated from l-phenylalanine via phenylacetaldoxime in tea. CsCYP79D73 showed activity for converting l-phenylalanine into phenylacetaldoxime, while CsCYP71AT96s showed activity for converting phenylacetaldoxime into benzyl nitrile. Continuous wounding in the oolong tea process significantly enhanced the CsCYP79D73 expression level and phenylacetaldoxime and benzyl nitrile contents. Benzyl nitrile accumulation under continuous wounding stress was attributed to an increase in jasmonic acid, which activated CsCYP79D73 expression. This represents the first elucidation of the formation mechanism of benzyl nitrile in tea.


Asunto(s)
Camellia sinensis/metabolismo , Nitrilos/metabolismo , Fenilalanina/metabolismo , Camellia sinensis/química , Camellia sinensis/genética , Colesterol 7-alfa-Hidroxilasa/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo , Ciclopentanos/metabolismo , Nitrilos/química , Oxilipinas/metabolismo , Fenilalanina/química , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico
6.
Bioresour Technol ; 282: 390-397, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30884459

RESUMEN

Simultaneous (SPW and cyhalofop-butyl) wastewater treatment and the production of biochemicals by Rhodopseudomonas palustris (R. palustris) was investigated with supplementation of soybean processing wastewater (SPW). Compared to control group, cyhalofop-butyl was removed and single cell protein, carotenoid, bacteriochlorophyll productions were enhanced with the supplementation of SPW. Cyhalofop-butyl removal reached 100% after 5 days under 4000 mg/L COD group. Cyhalofop-butyl induced chbH gene expression to synthesize cyhalofop-butyl-hydrolyzing carboxylesterase through activating MAPKKKs, MAPKKs, MAPKs genes in MAPK signal transduction pathway. The induction process took one day for R. palustris. However, lack of organics in original wastewater did not maintain R. palustris growth for over one day. The supplementation of SPW provided sufficient carbon source. This new method resulted in the mixed wastewater treatment and improvement of biochemicals simultaneously, as well as the realization of reutilization of R. palustris. High-order non-linear mathematical model of the relationship between Rchb, Xc, and Xt was established.


Asunto(s)
Butanos/metabolismo , Nitrilos/metabolismo , Rhodopseudomonas/metabolismo , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Fenómenos Bioquímicos , Modelos Teóricos
7.
Drug Test Anal ; 10(11-12): 1635-1645, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30255601

RESUMEN

Selective androgen receptor modulators (SARMs) are an emerging class of therapeutics targeted to cachexia, sarcopenia, and hypogonadism treatment. LGD-4033 is a SARM which has been included on the Prohibited List annually released by the World Anti-Doping Agency (WADA). The aim of the present work was the investigation of the metabolism of LGD-4033 in a human excretion study after administration of an LGD-4033 supplement, the determination of the metabolites' excretion profiles with special interest in the determination of its long-term metabolites, and the comparison of the excretion time of the phase I and phase II metabolites. The results were also compared to those derived from previous LGD-4033 studies concerning both in vitro and in vivo experiments. Supplement containing LGD-4033 was administered to one human male volunteer and urine samples were collected up to almost 21 days. Analysis of the hydrolyzed (with ß-glucuronidase) as well as of the non-hydrolyzed samples was performed using liquid chromatography-high resolution mass spectrometry (LC-HRMS) in negative ionization mode and revealed that, in both cases, the two isomers of the dihydroxylated metabolite (M5) were preferred target metabolites. The gluco-conjugated parent LGD-4033 and its gluco-conjugated metabolites M1 and M2 can be also considered as useful target analytes in non-hydrolyzed samples. The study also presents two trihydroxylated metabolites (M6) identified for the first time in human urine; one of them was recently reported in an LGD-4033 metabolism study in horse urine and plasma.


Asunto(s)
Andrógenos/metabolismo , Andrógenos/orina , Nitrilos/metabolismo , Nitrilos/orina , Pirrolidinas/metabolismo , Pirrolidinas/orina , Andrógenos/administración & dosificación , Andrógenos/análisis , Cromatografía Liquida/métodos , Suplementos Dietéticos/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Humanos , Hidrólisis , Masculino , Espectrometría de Masas/métodos , Nitrilos/administración & dosificación , Nitrilos/análisis , Pirrolidinas/administración & dosificación , Pirrolidinas/análisis , Detección de Abuso de Sustancias/métodos
8.
Ecotoxicol Environ Saf ; 161: 70-77, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29859410

RESUMEN

This study explores the potential of Asparagus densiflorus to treat disperse Rubin GFL (RGFL) dye and a real textile effluent in constructed vertical subsurface flow (VSbF) phytoreactor; its field cultivation for soil remediation offers a real green and economic way of environmental management. A. densiflorus decolorized RGFL (40 gm L-1) up to 91% within 48 h. VSbF phytoreactor successfully reduced American dye manufacture institute (ADMI), BOD, COD, Total Dissolved Solids (TDS) and Total Suspended Solids (TSS) of real textile effluent by 65%, 61%, 66%, 48% and 66%, respectively within 6 d. Oxidoreductive enzymes such as laccase (138%), lignin peroxidase (129%), riboflavin reductase (111%) were significantly expressed during RGFL degradation in A. densiflorus roots, while effluent transformation caused noteworthy induction of enzymes like, tyrosinase (205%), laccase (178%), veratryl oxidase (52%). Based on enzyme activities, UV-vis spectroscopy, FTIR and GC-MS results; RGFL was proposed to be transformed to 4-amino-3- methylphenyl (hydroxy) oxoammonium and N, N-diethyl aniline. Anatomical study of the advanced root tissue of A. densiflorus exhibited the progressive dye accumulation and removal during phytoremediation. HepG2 cell line and phytotoxicity study demonstrated reduced toxicity of biotransformed RGFL and treated effluent by A. densiflorus, respectively. On field remediation study revealed a noteworthy removal (67%) from polluted soil within 30 d.


Asunto(s)
Asparagus/enzimología , Compuestos Azo/metabolismo , Colorantes/metabolismo , Restauración y Remediación Ambiental/métodos , Nitrilos/metabolismo , Contaminantes del Suelo/metabolismo , Suelo/química , Textiles , Compuestos de Amonio/metabolismo , Compuestos de Anilina/metabolismo , Biodegradación Ambiental , Colorantes/toxicidad , Productos Agrícolas/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas , Células Hep G2 , Humanos , Residuos Industriales , Lacasa , Oxidorreductasas/metabolismo , Peroxidasas , Raíces de Plantas/enzimología , Industria Textil , Aguas Residuales/química , Contaminantes Químicos del Agua/metabolismo
9.
Biochemistry ; 57(26): 3702-3712, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29787228

RESUMEN

To investigate the cyanylated cysteine vibrational probe group's ability to report on binding-induced changes along a protein-protein interface, the probe group was incorporated at several sites in a peptide of the calmodulin (CaM)-binding domain of skeletal muscle myosin light chain kinase. Isothermal titration calorimetry was used to determine the binding thermodynamics between calmodulin and each peptide. For all probe positions, the binding affinity was nearly identical to that of the unlabeled peptide. The CN stretching infrared band was collected for each peptide free in solution and bound to calmodulin. Binding-induced shifts in the IR spectral frequencies were correlated with estimated solvent accessibility based on molecular dynamics simulations. This work generally suggests (1) that site-specific incorporation of this vibrational probe group does not cause major perturbations to its local structural environment and (2) that this small probe group might be used quite broadly to map dynamic protein-binding interfaces. However, site-specific perturbations due to artificial labeling groups can be somewhat unpredictable and should be evaluated on a site-by-site basis through complementary measurements. A fully quantitative, simulation-based interpretation of the rich probe IR spectra is still needed but appears to be possible given recent advances in simulation techniques.


Asunto(s)
Calmodulina/metabolismo , Cisteína/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Péptidos/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Calmodulina/química , Cisteína/química , Drosophila melanogaster , Modelos Moleculares , Quinasa de Cadena Ligera de Miosina/química , Nitrilos/análisis , Nitrilos/metabolismo , Péptidos/química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapas de Interacción de Proteínas , Conejos , Espectrofotometría Infrarroja/métodos , Termodinámica
10.
J Mycol Med ; 28(1): 15-22, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29551442

RESUMEN

Isavuconazole, the active moiety of its prodrug isavuconazonium, is a new extended-spectrum triazole whose activity against yeasts, molds, including Aspergillus and mucorales, and dimorphic fungi has been shown in vitro and in preclinical models. The most relevant pharmacokinetics features are water-solubility of the prodrug, rapid cleavage of the prodrug into active moiety and cleavage product by plasmatic esterases, high oral bioavailability of isavuconazole with an extensive penetration into most tissues and a good safety profile even in case of renal impairment. The results of two main clinical studies have led to an approval by FDA and EMA in the treatment of invasive aspergillosis and invasive mucormycosis. Isavuconazole is non-inferior to voriconazole in terms of response and survival in invasive aspergillosis and has shown improved safety and tolerability. Importantly, less hepatobiliary, skin and eye disorders have been reported in isavuconazole-treated patients. Isavuconazole has therefore been granted a grade A-I recommendation by the European Conference on Infections in Leukemia (ECIL) for the treatment of invasive aspergillosis. Efficacy has also been demonstrated in mucormycosis in an open-label study. Survival was similar to the survival of matched patients from the international Fungiscope registry and treated with an amphotericin B formulation. Isavuconazole failed to show non-inferiority to caspofungin in a large double-blind candidemia trial. The aim of this review is to give the reader an overview of the data available so far to support inclusion of isavuconazole in the anti-mold therapeutic arsenal.


Asunto(s)
Antifúngicos/farmacocinética , Azoles/farmacocinética , Infecciones Fúngicas Invasoras/tratamiento farmacológico , Nitrilos/farmacocinética , Piridinas/farmacocinética , Triazoles/farmacocinética , Animales , Antifúngicos/efectos adversos , Antifúngicos/metabolismo , Antifúngicos/uso terapéutico , Aspergilosis/tratamiento farmacológico , Azoles/efectos adversos , Azoles/metabolismo , Azoles/uso terapéutico , Candidemia/tratamiento farmacológico , Ensayos Clínicos como Asunto , Método Doble Ciego , Evaluación Preclínica de Medicamentos , Esterasas/sangre , Humanos , Ratones , Mucormicosis/tratamiento farmacológico , Nitrilos/efectos adversos , Nitrilos/metabolismo , Nitrilos/uso terapéutico , Piridinas/efectos adversos , Piridinas/metabolismo , Piridinas/uso terapéutico , Triazoles/efectos adversos , Triazoles/metabolismo , Triazoles/uso terapéutico
11.
Bioorg Med Chem Lett ; 27(14): 3201-3204, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28539219

RESUMEN

Herein we report the discovery of a series of new small molecule inhibitors of histone lysine demethylase 4D (KDM4D). Molecular docking was first performed to screen for new KDM4D inhibitors from various chemical databases. Two hit compounds were retrieved. Further structural optimization and structure-activity relationship (SAR) analysis were carried out to the more selective one, compound 2, which led to the discovery of several new KDM4D inhibitors. Among them, compound 10r is the most potent one with an IC50 value of 0.41±0.03µM against KDM4D. Overall, compound 10r could be taken as a good lead compound for further studies.


Asunto(s)
Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Nitrilos/química , Pirazoles/química , Pirimidinas/química , Sitios de Unión , Evaluación Preclínica de Medicamentos , Humanos , Concentración 50 Inhibidora , Histona Demetilasas con Dominio de Jumonji/metabolismo , Simulación del Acoplamiento Molecular , Nitrilos/síntesis química , Nitrilos/metabolismo , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Relación Estructura-Actividad
12.
Free Radic Biol Med ; 104: 54-63, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28062359

RESUMEN

2,6-Dibromohydroquinone (2,6-DBrHQ) has been identified as an reactive metabolite of many brominated phenolic environmental pollutants such as tetrabromobisphenol-A (TBBPA), bromoxynil and 2,4,6-tribromophenol, and was also found as one of disinfection byproducts in drinking water. In this study, we found that the combination of 2,6-DBrHQ and Cu(II) together could induce synergistic DNA damage as measured by double strand breakage in plasmid DNA and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation, while either of them alone has no effect. 2,6-DBrHQ/Cu(II)-induced DNA damage could be inhibited by the Cu(I)-specific chelating agent bathocuproine disulfonate and catalase, but not by superoxide dismutase, nor by the typical hydroxyl radical (•OH) scavengers such as DMSO and mannitol. Interestingly, we found that Cu(II)/Cu(I) could be combined with DNA to form DNA-Cu(II)/Cu(I) complex by complementary application of low temperature direct ESR, circular dichroism, cyclic voltammetry and oxygen consumption methods; and the highly reactive •OH were produced synergistically by DNA-bound-Cu(I) with H2O2 produced by the redox reactions between 2,6-DBrHQ and Cu(II), which then immediately attack DNA in a site-specific manner as demonstrated by both fluorescent method and by ESR spin-trapping studies. Further DNA sequencing investigations provided more direct evidence that 2,6-DBrHQ/Cu(II) caused preferential cleavage at guanine, thymine and cytosine residues. Based on these data, we proposed that the synergistic DNA damage induced by 2,6-DBrHQ/Cu(II) might be due to the synergistic and site-specific production of •OH near the binding site of copper and DNA. Our findings may have broad biological and environmental implications for future research on the carcinogenic polyhalogenated phenolic compounds.


Asunto(s)
Cobre/toxicidad , Daño del ADN/efectos de los fármacos , Agua Potable , Contaminantes Ambientales/toxicidad , 8-Hidroxi-2'-Desoxicoguanosina , Quelantes/farmacología , Roturas del ADN de Doble Cadena/efectos de los fármacos , Desoxiguanosina/análogos & derivados , Desoxiguanosina/química , Desoxiguanosina/metabolismo , Contaminantes Ambientales/metabolismo , Humanos , Hidroquinonas/metabolismo , Hidroquinonas/toxicidad , Radical Hidroxilo/metabolismo , Radical Hidroxilo/toxicidad , Nitrilos/metabolismo , Nitrilos/toxicidad , Oxidación-Reducción , Fenantrolinas/farmacología , Fenoles/metabolismo , Fenoles/toxicidad , Bifenilos Polibrominados/metabolismo , Bifenilos Polibrominados/toxicidad , Especies Reactivas de Oxígeno , Superóxido Dismutasa/química
13.
J Biochem Mol Toxicol ; 30(12): 580-587, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27271987

RESUMEN

Kaliotoxin (KTX), a specific blocker of potassium channels, exerts various toxic effects due to its action on the central nervous system. Its use in experimental model could help the understanding of the cellular and molecular mechanisms involved in the neuropathological processes related to potassium channel dysfunctions. In this study, the ability of KTX to stimulate neuro-immuno-endocrine axis was investigated. As results, the intracerebroventricular injection of KTX leads to severe structural-functional alterations of both hypothalamus and thyroid. These alterations were characterized by a massive release of hormones' markers of thyroid function associated with damaged tissue which was infiltrated by inflammatory cell and an imbalanced redox status. Taken together, these data highlight that KTX is able to modulate the neuro-endocrine response after binding to its targets leading to the hypothalamus and the thyroid stimulation, probably by inflammatory response activation and the installation of oxidative stress in these organs.


Asunto(s)
Eosinófilos/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Venenos de Escorpión/toxicidad , Escorpiones/química , Glándula Tiroides/efectos de los fármacos , Animales , Calcitonina/biosíntesis , Calcitonina/metabolismo , Catalasa/metabolismo , Eosinófilos/inmunología , Glutatión/metabolismo , Hipotálamo/inmunología , Hipotálamo/metabolismo , Inyecciones Intraventriculares , Malondialdehído/metabolismo , Ratones , Infiltración Neutrófila/efectos de los fármacos , Neutrófilos/inmunología , Nitrilos/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Venenos de Escorpión/aislamiento & purificación , Escorpiones/fisiología , Glándula Tiroides/inmunología , Glándula Tiroides/metabolismo , Tirotropina/biosíntesis , Tirotropina/metabolismo , Tiroxina/biosíntesis , Tiroxina/metabolismo , Triyodotironina/biosíntesis , Triyodotironina/metabolismo
14.
J Ethnopharmacol ; 179: 356-66, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26719286

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The Mahuang-Xingren (MX) herb pair, the combination of Herba Ephedrae (Mahuang in Chinese) and Semen Armeniacae Amarum (Xingren in Chinese), is a core component of traditional Chinese medicine formulations used to treat asthma and bronchitis. Although Xingren is considered to be toxic, MX is widely used in the clinic and has few adverse effects. The mechanism underlying detoxification of Xingren by Mahuang in MX remains unknown and merits investigation. AIM OF THE STUDY: To determine the mechanism underlying detoxification of Xingren by Mahuang in MX. MATERIALS AND METHODS: Acute toxic effects were evaluated in mice after oral administration of Mahuang, Xingren, and MX aqueous extracts. Synergism, additivity, and antagonism were quantified by determining the CI (combination index) and DRI (dose-reduction index), which were calculated by the median effect method. High performance liquid chromatography analysis of bioactive compounds (ephedrine, pseudoephedrine and amygdalin) in aqueous extracts and data from previous pharmacokinetic studies in rats were combined to explore the potential mechanism of toxicity antagonism by the components of MX. Moreover, the cytotoxic effects of amygdalin and amygdalin activated by ß-glucosidase (including different proportions of l-amygdalin and d-amygdalin) were also investigated. RESULTS: Mahuang prevented and antagonized the acute toxicity of Xingren and allowed escalation of the Xingren dose. Pearson correlation analysis indicated that the proportion of d-amygdalin was closely correlated with the antagonism of Xingren toxicity. The antagonism of its acute toxicity was primarily attributed to stereoselective metabolism of amygdalin. Interestingly, the process was facilitated by Mahuang, which led to reduced levels of the d-prunasin in vivo and thus reduced toxicity. Furthermore, the mechanism was also evaluated by testing the cytotoxicity of amygdalin. Metabolism of d-amygdalin was a major cause of cytotoxicity and no stereoselective metabolism occurred in culture medium. CONCLUSIONS: A comprehensive study of Xingren detoxification in the context of the MX combination suggested that stereoselective metabolism of amygdalin facilitated by Mahuang may be the crucial mechanism underlying detoxification of Xingren in the MX combination. Therefore, Mahuang acts to enhance and control the effects of Xingren in the MX combination. These results illustrate the rationale behind the combination of Mahuang and Xingren.


Asunto(s)
Amigdalina/metabolismo , Amigdalina/toxicidad , Medicamentos Herbarios Chinos/farmacología , Ephedra sinica , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Combinación de Medicamentos , Medicamentos Herbarios Chinos/metabolismo , Medicamentos Herbarios Chinos/toxicidad , Nitrilos/metabolismo , Estereoisomerismo
15.
Proc Natl Acad Sci U S A ; 112(34): 10605-10, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26261304

RESUMEN

Hydroxynitrile lyase (HNL) catalyzes the degradation of cyanohydrins and causes the release of hydrogen cyanide (cyanogenesis). HNL can enantioselectively produce cyanohydrins, which are valuable building blocks for the synthesis of fine chemicals and pharmaceuticals, and is used as an important biocatalyst in industrial biotechnology. Currently, HNLs are isolated from plants and bacteria. Because industrial biotechnology requires more efficient and stable enzymes for sustainable development, we must continuously explore other potential enzyme sources for the desired HNLs. Despite the abundance of cyanogenic millipedes in the world, there has been no precise study of the HNLs from these arthropods. Here we report the isolation of HNL from the cyanide-emitting invasive millipede Chamberlinius hualienensis, along with its molecular properties and application in biocatalysis. The purified enzyme displays a very high specific activity in the synthesis of mandelonitrile. It is a glycosylated homodimer protein and shows no apparent sequence identity or homology with proteins in the known databases. It shows biocatalytic activity for the condensation of various aromatic aldehydes with potassium cyanide to produce cyanohydrins and has high stability over a wide range of temperatures and pH values. It catalyzes the synthesis of (R)-mandelonitrile from benzaldehyde with a 99% enantiomeric excess, without using any organic solvents. Arthropod fauna comprise 80% of terrestrial animals. We propose that these animals can be valuable resources for exploring not only HNLs but also diverse, efficient, and stable biocatalysts in industrial biotechnology.


Asunto(s)
Acetonitrilos/metabolismo , Aldehído-Liasas/aislamiento & purificación , Aldehídos/metabolismo , Artrópodos/enzimología , Aldehído-Liasas/química , Aldehído-Liasas/metabolismo , Animales , Secuencia de Bases , Benzaldehídos/metabolismo , Biocatálisis , ADN Complementario/genética , Glicosilación , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Estructura Molecular , Nitrilos/metabolismo , Especificidad de Órganos , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Estereoisomerismo
16.
Steroids ; 99(Pt A): 32-8, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25163006

RESUMEN

PURPOSE: We determined hormone concentrations (estradiol [E2], estrone [E1], estrone conjugates [E1-C], androstenedione [A], testosterone [T]) before and on anastrozole therapy where we also determined plasma concentrations of anastrozole and its metabolites. EXPERIMENTAL: Postmenopausal women who were to receive adjuvant anastrozole for resected early breast cancer were studied. Pretreatment, blood samples were obtained for the acquisition of DNA and for plasma hormone measurements (E2, E1, E1-C, A, and T). A second blood draw was obtained at least 4 weeks after starting anastrozole for hormone, anastrozole and metabolite measurements. For hormone assays, a validated bioanalytical method using gas chromatography negative ionization tandem mass spectrometry was used. Anastrozole and metabolite assays involved extraction of plasma followed by LC/MS/MS assays. RESULTS: 649 patients were evaluable. Pretreatment and during anastrozole, there was large inter-individual variability in E2, E1, and E1-C as well as anastrozole and anastrozole metabolite concentrations. E2 and E1 concentrations were below the lower limits of quantitation in 79% and 70%, respectively, of patients on anastrozole therapy, but those with reliable concentrations had a broad range (0.627-234.0 pg/mL, 1.562-183.2 pg/mL, respectively). Considering E2, 8.9% had the same or higher concentration relative to baseline while on anastrozole, documented by the presence of drug. CONCLUSIONS: We demonstrated large inter-individual variability in anastrozole and anastrozole metabolite concentrations as well as E1, E2, E1-C, A, and T concentrations before and while on anastrozole. These findings suggest that the standard 1mg daily dose of anastrozole is not optimal for a substantial proportion of women with breast cancer.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Estrógenos/sangre , Nitrilos/uso terapéutico , Posmenopausia/efectos de los fármacos , Triazoles/uso terapéutico , Adulto , Anciano , Anciano de 80 o más Años , Anastrozol , Androstenodiona/sangre , Inhibidores de la Aromatasa/uso terapéutico , Neoplasias de la Mama/metabolismo , Estradiol/sangre , Estrona/sangre , Femenino , Humanos , Persona de Mediana Edad , Nitrilos/sangre , Nitrilos/metabolismo , Posmenopausia/sangre , Testosterona/sangre , Triazoles/sangre , Triazoles/metabolismo
17.
J Agric Food Chem ; 62(51): 12287-93, 2014 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-25420216

RESUMEN

Ethyl-1-(14)C-ethion and some of its degradation products have been prepared for comparison purposes. Cotton plants were treated with (14)C-ethion alone and in the presence of deltamethrin and dimilin pesticides under conditions simulating local agricultural practice. (14)C-Residues in seeds were determined at harvest time; about 47.5% of (14)C-activity was associated with oil. After further extraction of seeds with ethanol, the ethanol-soluble (14)C-residues accounted for 10.6% of the total seed residues, whereas the cake contained about 37.3% of the total residues as bound residues in the case of ethion only. The bound residues decreased in the presence of deltamethrin and dimilin pesticides and amounted to 8.1 and 10.4% of the total residues, respectively. About 95% of the (14)C-activity in the crude oil could be eliminated by simulated commercial processes locally used for oil refining. Chromatographic analysis of crude cotton oil revealed the presence of ethion monooxon, O,O-diethyl phosphorothioate, and O,O-diethyl phosphoric acid in addition to one unknown compound in the case of ethion alone or ethion and dimilin. The same degradation products are found in the case of ethion and deltamethrin in addition to ethion dioxon, whereas ethanol extract revealed the presence of ethion dioxon and O,O-diethyl phosphoric acid as free metabolites. Acid hydrolysis of the conjugated metabolites in the ethanol extract yielded O,O-diethyl S-hydroxymethyl phosphorodithioate. The bound residues were quite readily bioavailable to the rats. After feeding rats with the cake containing ethion-bound residues, a substantial amount (60%) of (14)C-residues was eliminated in the urine, whereas the (14)C-residues excreted in expired air and feces were 10 and 9%, respectively. About 11% of the radioactive residues were distributed among various organs.


Asunto(s)
Aceite de Semillas de Algodón/análisis , Diflubenzurón/análisis , Gossypium/química , Nitrilos/análisis , Compuestos Organotiofosforados/metabolismo , Residuos de Plaguicidas/análisis , Piretrinas/análisis , Semillas/química , Animales , Isótopos de Carbono/análisis , Isótopos de Carbono/metabolismo , Diflubenzurón/metabolismo , Gossypium/metabolismo , Masculino , Nitrilos/metabolismo , Compuestos Organotiofosforados/química , Residuos de Plaguicidas/metabolismo , Piretrinas/metabolismo , Ratas , Ratas Sprague-Dawley , Semillas/metabolismo
18.
Chemosphere ; 111: 291-5, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24997931

RESUMEN

The dynamics and residues of deltamethrin in a tea grown in an open field ecosystem were investigated. The quantification was performed using gas chromatography-electron capture detection (GC-ECD) and confirmed by gas chromatograph-mass spectrometry (GC-MS) in selective ion monitoring (SIM) mode. The method was validated using blank samples spiked at three levels and the results showed that recoveries ranged from 87% to 101% with relative standard deviations (RSD) ranging of 0.7-7.1%. The residues of deltamethrin were found to dissipate following first order kinetics with half-life ranging between 3.04 and 3.54d for two different rates of foliar application. The deltamethrin residues are present in the processed tea are not transferred into the tea infusion during the infusion process, since their water solubility is extremely low. These results can be utilized in formulating the spray schedule and safety evaluation on deltamethrin tea crop.


Asunto(s)
Contaminación de Alimentos/análisis , Insecticidas/análisis , Nitrilos/análisis , Hojas de la Planta/química , Piretrinas/análisis , Té/química , Cromatografía de Gases y Espectrometría de Masas , Semivida , Insecticidas/metabolismo , Cinética , Nitrilos/metabolismo , Hojas de la Planta/metabolismo , Piretrinas/metabolismo , Té/crecimiento & desarrollo , Té/metabolismo
19.
ScientificWorldJournal ; 2014: 423259, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24987732

RESUMEN

Hyperglycaemia, a characteristic feature of diabetes mellitus, induces endothelial dysfunction and vascular complications by limiting the proliferative potential of these cells. Here we aimed to investigate the effect of an ethanolic extract of Sanguis draconis (SD), a kind of dragon's blood resin that is obtained from Daemonorops draco (Palmae), on human umbilical vein endothelial cells (HUVEC) under high-glucose (HG) stimulation and its underlying mechanism. Concentration-dependent (0-50 µg/mL) assessment of cell viability showed that SD does not affect cell viability with a similar trend up to 48 h. Remarkably, SD (10-50 µg/mL) significantly attenuated the high-glucose (25 and 50 mM) induced cell toxicity in a concentration-dependent manner. SD inhibited high glucose-induced nitrite (NO) and lipid peroxidation (MDA) production and reactive oxygen species (ROS) formation in HUVEC. Western blot analysis revealed that SD treatments abolished HG-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK 1/2), nuclear transcription factor, κB (NF-κB), VCAM-1, and E-selectin, and it also blocked the breakdown of PARP-116 kDa protein in a dose-dependent manner. Furthermore, we found that SD increased the expression of Bcl-2 and decreased Bax protein expression in HG-stimulated HUVEC. Thus, these results of this study demonstrate for the first time that SD inhibits glucose induced oxidative stress and vascular inflammation in HUVEC by inhibiting the ERK/NF-κB/PARP-1/Bax signaling cascade followed by suppressing the activation of VCAM-1 and E-selectin. These data suggest that SD may have a therapeutic potential in vascular inflammation due to the decreased levels of oxidative stress, apoptosis, and PARP-1 activation.


Asunto(s)
Glucosa/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Moléculas de Adhesión Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glucosa/farmacología , Humanos , Peroxidación de Lípido/efectos de los fármacos , FN-kappa B/metabolismo , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa de Tipo III/metabolismo , Nitrilos/metabolismo , Fosforilación , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína X Asociada a bcl-2/metabolismo
20.
J Am Chem Soc ; 136(17): 6159-62, 2014 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-24494589

RESUMEN

We demonstrate the use of fluorescent molecular rotors as probes for detecting biomolecular interactions, specifically peptide-protein interactions. Molecular rotors undergo twisted intramolecular charge transfer upon irradiation, relax via the nonradiative torsional relaxation pathway, and have been typically used as viscosity probes. Their utility as a tool for detecting specific biomolecular interactions has not been explored. Using the well characterized p53-Mdm2 interaction as a model system, we designed a 9-(2-carboxy-2-cyanovinyl) julolidine-based p53 peptide reporter, JP1-R, which fluoresces conditionally only upon Mdm2 binding. The reporter was used in a rapid, homogeneous assay to screen a fragment library for antagonists of the p53-Mdm2 interaction, and several inhibitors were identified. Subsequent validation of these hits using established secondary assays suggests increased sensitivity afforded by JP1-R. The fluorescence of molecular rotors contingent upon target binding makes them a versatile tool for detecting specific biomolecular interactions.


Asunto(s)
Colorantes Fluorescentes/metabolismo , Nitrilos/metabolismo , Péptidos/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Quinolizinas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Secuencia de Aminoácidos , Evaluación Preclínica de Medicamentos/métodos , Colorantes Fluorescentes/química , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Nitrilos/química , Péptidos/química , Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Quinolizinas/química , Espectrometría de Fluorescencia/métodos , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA