Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.731
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 7766, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565927

RESUMEN

The occurrence of major depressive disorder is widespread and can be observed in individuals belonging to all societies. It has been suggested that changes in the NO pathway and heightened oxidative stress may play a role in developing this condition. Anethole is a diterpene aromatic compound found in the Umbelliferae, Apiaceae, and Schisandraceae families. It has potential pharmacological effects like antioxidant, anxiolytic, analgesic, anti-inflammatory, antidiabetic, gastroprotective, anticancer, estrogenic, and antimicrobial activities. This study aimed to investigate the potential antidepressant properties of Anethole in a mouse model experiencing maternal separation stress while also examining its impact on oxidative stress and nitrite levels. The research involved the participation of 40 male NMRI mice, separated into five distinct groups to conduct the study. The control group was administered 1 ml/kg of normal saline, while the MS groups were given normal saline and Anethole at 10, 50, and 100 mg/kg doses. The study comprised various behavioural tests, including the open field test (OFT), forced swimming test (FST), and splash test, to assess the effects of Anethole on the mice. In addition to the behavioural tests, measurements were taken to evaluate the total antioxidant capacity (TAC), malondialdehyde (MDA), and nitrite levels in the hippocampus of the mice. According to the findings, maternal separation stress (MS) led to depressive-like conduct in mice, including a rise in immobility duration during the FST and a reduction in the duration of grooming behaviour in the splash test. Additionally, the results indicated that MS correlated with an increase in the levels of MDA and nitrite and a reduction in the TAC in the hippocampus. However, the administration of Anethole resulted in an increase in grooming activity time during the splash test and a decrease in immobility time during the FST. Anethole also exhibited antioxidant characteristics, as demonstrated by its ability to lower MDA and nitrite levels while increasing the TAC in the hippocampus. The results suggest that Anethole may have an antidepressant-like impact on mice separated from their mothers, likely partly due to its antioxidant properties in the hippocampus.


Asunto(s)
Derivados de Alilbenceno , Anisoles , Antioxidantes , Trastorno Depresivo Mayor , Humanos , Ratones , Masculino , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Depresión/tratamiento farmacológico , Depresión/metabolismo , Nitritos/metabolismo , Trastorno Depresivo Mayor/tratamiento farmacológico , Privación Materna , Solución Salina/farmacología , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Antidepresivos/metabolismo , Estrés Oxidativo , Hipocampo/metabolismo , Modelos Animales de Enfermedad , Conducta Animal
2.
Carbohydr Polym ; 334: 122068, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38553197

RESUMEN

The fabrication of highly elastic, fatigue-resistant and conductive hydrogels with antibacterial properties is highly desirable in the field of wearable devices. However, it remains challenging to simultaneously realize the above properties within one hydrogel without compromising excellent sensing ability. Herein, we fabricated a highly elastic, fatigue-resistant, conductive, antibacterial and cellulose nanocrystal (CNC) enhanced hydrogel as a sensitive strain sensor by the synergistic effect of biosynthesized selenium nanoparticles (BioSeNPs), MXene and nanocellulose. The structure and potential mechanism to generate biologically synthesized SeNPs (BioSeNPs) were systematically investigated, and the role of protease A (PrA) in enhancing the adsorption between proteins and SeNPs was demonstrated. Additionally, owing to the incorporation of BioSeNPs, CNC and MXene, the synthesized hydrogels showed high elasticity, excellent fatigue resistance and antibacterial properties. More importantly, the sensitivity of hydrogels determined by the gauge factor was as high as 6.24 when a high strain was applied (400-700 %). This study provides a new horizon to synthesize high-performance antibacterial and conductive hydrogels for soft electronics applications.


Asunto(s)
Nanopartículas , Nitritos , Selenio , Elementos de Transición , Antibacterianos/farmacología , Celulosa/farmacología , Conductividad Eléctrica , Hidrogeles/farmacología
3.
J Hazard Mater ; 469: 134074, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38518702

RESUMEN

In this study, ferrous ion (Fe(II)) had the potential to promote ecological functions in constructed wetlands (CWs) under perfluorooctanoic acid (PFOA) stress. Concretely, Fe(II) at 30 mg/L and 20-30 mg/L even led to 11.37% increase of urease and 93.15-243.61% increase of nitrite oxidoreductase respectively compared to the control. Fe(II) promotion was also observed on Nitrosomonas, Nitrospira, Azospira, and Zoogloea by 1.00-6.50 folds, which might result from higher expression of nitrogen fixation and nitrite redox genes. These findings could be explanation for increase of ammonium removal by 7.47-8.75% with Fe(II) addition, and reduction of nitrate accumulation with 30 mg/L Fe(II). Meanwhile, both Fe(II) stimulation on PAOs like Dechloromonas, Rhodococcus, Mesorhizobium, and Methylobacterium by 1.58-2.00 folds, and improvement on chemical phosphorus removal contributed to higher total phosphorus removal efficiency under high-level PFOA exposure. Moreover, Fe(II) raised chlorophyll content and reduced the oxidative damage brought by PFOA, especially at lower dosage. Nevertheless, combination of Fe(II) and high-level PFOA caused inhibition on microbial alpha diversity, which could result in decline of PFOA removal (by 4.29-12.83%). Besides, decrease of genes related to nitrate reduction demonstrated that enhancement on denitrification was due to nitrite reduction to N2 pathways rather than the first step of denitrifying process.


Asunto(s)
Caprilatos , Desnitrificación , Fluorocarburos , Hierro , Hierro/metabolismo , Nitratos/metabolismo , Nitritos , Eliminación de Residuos Líquidos , Humedales , Fósforo , Compuestos Ferrosos , Nitrógeno
4.
Food Funct ; 15(8): 4065-4078, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38546454

RESUMEN

The decline in vascular function and increase in blood pressure with aging contribute to an increased cardiovascular disease risk. In this randomized placebo-controlled crossover study, we evaluated whether previously reported cardiovascular benefits of plant-derived inorganic nitrate via nitric oxide (NO) translate into improved vascular function and blood pressure-lowering in 15 men and women (age range: 56-71 years) with treated hypertension. We investigated the effects of a single ∼400 mg-dose at 3 hours post-ingestion (3H POST) and the daily consumption of 2 × âˆ¼400 mg of nitrate through nitrate-rich compared with nitrate-depleted (placebo) beetroot juice over 4 weeks (4WK POST). Measurements included nitrate and nitrite in plasma and saliva; endothelial-dependent and -independent forearm blood flow (FBF) responses to acetylcholine (FBFACh) and glyceryltrinitrate (FBFGTN); and clinic-, home- and 24-hour ambulatory blood pressure. Compared to placebo, plasma and salivary nitrate and nitrite increased at 3H and 4WK POST following nitrate treatment (P < 0.01), suggesting a functioning nitrate-nitrite-NO pathway in the participants of this study. There were no differences between treatments in FBFACh and FBFGTN-area under the curve (AUC) ratios [AUC ratios after (3H POST, 4WK POST) compared with before (PRE) the intervention], or 24-hour ambulatory blood pressure or home blood pressure measures (P > 0.05). These findings do not support the hypothesis that an increased intake of dietary nitrate exerts sustained beneficial effects on FBF or blood pressure in hypertensive older adults, providing important information on the efficacy of nitrate-based interventions for healthy vascular aging. This study was registered under ClinicialTrials.gov (NCT04584372).


Asunto(s)
Beta vulgaris , Presión Sanguínea , Estudios Cruzados , Jugos de Frutas y Vegetales , Hipertensión , Nitratos , Humanos , Masculino , Femenino , Anciano , Persona de Mediana Edad , Nitratos/administración & dosificación , Nitratos/metabolismo , Beta vulgaris/química , Presión Sanguínea/efectos de los fármacos , Hipertensión/dietoterapia , Hipertensión/metabolismo , Hipertensión/tratamiento farmacológico , Jugos de Frutas y Vegetales/análisis , Nitritos/análisis , Saliva/química , Saliva/metabolismo
5.
Environ Geochem Health ; 46(4): 131, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483704

RESUMEN

Potato is one of the essential food products whose health quality is greatly influenced by soil contamination and properties. In the current study, we have investigated the physicochemical characteristics of agricultural areas and the accumulation of nitrite/nitrate and metals in potato products in Hamedan, Iran. After determining the physicochemical characteristics of soil samples from four agricultural regions of Hamedan, 48 potato samples were collected from these regions. The heavy metals and nitrate/nitrite content were determined by ICP-OES and calorimetric methods, respectively. A negative correlation was observed between soil pH changes with nitrite/nitrate content and the accumulation of some heavy elements in potatoes. Furthermore, a positive correlation was found between soil phosphorus content and lead accumulation in potato. In present study, the amounts of lead, nitrate, and nitrite in 83.3%, 56%, and 12% of the collected samples were higher than the permissible limit reported by the World Health Organization (WHO), respectively. The EDI range for nitrate and nitrite was determined to be 130-260 and 1.4-2.7 µg/kg/day, respectively, which is much lower than the RfD set by the US Environmental Protection Agency (USEPA) for nitrite and nitrate. Among metal pollutants, the toxic risk caused by lead in potato consumers was higher than the threshold limit. In conclusion, our findings showed that the physicochemical characteristics of the soil could effectively increase the availability of metal pollutants and nitrite/nitrate to the potato product and significantly reduce its health quality. Therefore, monitoring these pollutants in the soil-potato system, preventing the entry of industrial wastewater, and managing the use of agricultural fertilizers can effectively improve the health of this product for consumers.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Contaminantes del Suelo , Solanum tuberosum , Suelo , Nitratos , Nitritos , Irán , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Metales Pesados/toxicidad , Metales Pesados/análisis , Medición de Riesgo , Monitoreo del Ambiente
6.
J Colloid Interface Sci ; 665: 389-398, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38537587

RESUMEN

Photothermal therapy (PTT) has attracted much attention due to its less invasive, controllable and highly effective nature. However, PTT also suffers from intrinsic cancer resistance mediated by cell survival pathways. These survival pathways are regulated by a variety of proteins, among which heat shock protein (HSP) triggers thermotolerance and protects tumor cells from hyperthermia-induced apoptosis. Confronted by this challenge, we propose and validate here a novel MXene-based HSP-inhibited mild photothermal platform, which significantly enhances the sensitivity of tumor cells to heat-induced stress and thus improves the PPT efficacy. The Ti3C2@Qu nanocomposites are constructed by utilizing the high photothermal conversion ability of Ti3C2 nanosheets in combination with quercetin (Qu) as an inhibitor of HSP70. Qu molecules are loaded onto the nanoplatform in a pH-sensitive controlled release manner. The acidic environment of the tumor causes the burst-release of Qu molecules, which deplete the level of heat shock protein 70 (HSP70) in tumor cells and leave the tumor cells out from the protection of the heat-resistant survival pathway in advance, thus sensitizing the hyperthermia efficacy. The nanostructure, photothermal properties, pH-responsive controlled release, synergistic photothermal ablation of tumor cells in vitro and in vivo, and hyperthermia effect on subcellular structures of the Ti3C2@Qu nanocomposites were systematically investigated.


Asunto(s)
Hipertermia Inducida , Nanocompuestos , Nanopartículas , Neoplasias , Nitritos , Elementos de Transición , Humanos , Preparaciones de Acción Retardada , Titanio/farmacología , Fototerapia , Neoplasias/terapia , Línea Celular Tumoral , Nanopartículas/química
8.
Bioresour Technol ; 397: 130473, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387844

RESUMEN

This study investigated nutrient conversion pathways and corresponding interactive mechanisms in a mainstream partial-nitritation (PN)/anaerobic ammonium oxidation (anammox)/partial-denitrification-(PD)-enhanced biological phosphorus-removal (EBPR) (PN/A/PD-EBPR) process. A laboratory-scale sequencing batch reactor was operated for 301 days under different operational strategies. Mainstream PN/A/PD-EBPR was successfully operated with aerobic and anoxic utilization of organic matter. Aerobic utilization of organic matter was an effective strategy for conversion to denitrifying polyphosphate-accumulating organism-based phosphorus removal, referring to a biological reaction that outperformed nitrite-oxidizing bacteria. Aerobically adsorbed organic matter could be used as a carbon source for PD, which further enhanced nitrogen removal by PN/A. Ultimately, the interaction between complex nutrient conversion pathways served to achieve stable performance. High-throughput sequencing results elucidated the core microbe functioning in the mainstream PN/A/PD-EBPR process with respect to various nutrients. The outcomes of this study will be beneficial to those attempting to implement mainstream PN/A/PD-EBPR.


Asunto(s)
Compuestos de Amonio , Nitritos , Anaerobiosis , Reactores Biológicos/microbiología , Oxidación-Reducción , Nutrientes , Nitrógeno , Fósforo , Aguas del Alcantarillado , Desnitrificación
9.
Chemosphere ; 352: 141339, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301838

RESUMEN

In this study, we successfully developed a hybrid architecture referred to as MoS2@MX, involving the integration of MoS2 layered onto MXene using a straightforward co-precipitation method. This innovative hybrid photocatalyst exhibited remarkable efficiency in removing oxytetracycline (OTC) molecules from aqueous solutions under visible-light irradiation. During the photocatalytic process, both MoS2 and MX played distinct yet complementary roles. MoS2 facilitated efficient electron transfer, while MX contributed to the generation of radicals. This unique collaboration resulted in a noteworthy 99 % oxidation efficiency for OTC degradation within a brief 60 min of visible light exposure in an aqueous environment. The radicals 1O2 and •OH were identified as the principal drivers behind OTC degradation, underscoring the vital role of the hybrid material. Mechanistically, the degradation of OTC involved several key steps, including C-H bond cleavage, de-carboxylation, C-N bond oxidation, and de-chlorination. Importantly, the MoS2@MX hybrid composite demonstrated remarkable stability, maintaining a noteworthy photocatalytic efficiency of 89 % for targeted OTC removal after undergoing five consecutive cycles. In conclusion, this study emphasizes the potential of the MoS2@MX hybrid material as an effective agent for degrading organic OTC compounds within aquatic environments. The hybrid's multifaceted roles and exceptional performance suggest promising applications in sustainable water treatment.


Asunto(s)
Molibdeno , Nitritos , Oxitetraciclina , Elementos de Transición , Transporte de Electrón , Halogenación
10.
Chemosphere ; 352: 141304, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309602

RESUMEN

Endogenous partial denitrification (EPD) has drawn a lot of interest due to its abundant nitrite (NO2--N) accumulation capacity. However, the poor phosphate (PO43--P) removal rate of EPD restricts its promotion and application. In this study, the potentiality of various nano zero-valent iron (nZVI) concentrations (0, 20, 40, and 80 mg/L) on NO2--N accumulation and PO43--P removal in EPD systems had been investigated. Results showed that nZVI improved NO2--N accumulation and PO43--P removal, with the greatest nitrate-to-nitrite transformation ratio (NTR) and PO43--P removal rate of 97.74 % and 64.76 % respectively at the optimum nZVI level (80 mg/L). Microbial community analysis also proved that nZVI had a remarkable influence on the microbial community of EPD. Candidatus_Competibacter was contribute to NO2--N accumulation which was enriched from 24.74 % to 40.02 %. The enrichment of Thauera, Rhodobacteraceae, Pseudomonas were contributed to PO43--P removal. The chemistry of nZVI not only compensated for the deficiency of biological PO43--P removal, but also enhanced NO2--N enrichment. Therefore, nZVI had the huge potentiality to improve the operational performance of the EPD system.


Asunto(s)
Nitratos , Nitritos , Fósforo , Hierro , Desnitrificación , Dióxido de Nitrógeno , Nitrógeno , Aguas del Alcantarillado , Reactores Biológicos
11.
ACS Appl Mater Interfaces ; 16(8): 9968-9979, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38358298

RESUMEN

Foreseen as foundational in forthcoming oncology interventions are multimodal therapeutic systems. Nevertheless, the tumor microenvironment (TME), marked by heightened glucose levels, hypoxia, and scant concentrations of endogenous hydrogen peroxide could potentially impair their effectiveness. In this research, two-dimensional (2D) Ti3C2 MXene nanosheets are engineered with CeO2 nanozymes and glucose oxidase (GOD), optimizing them for TME, specifically targeting cancer therapy. Following our therapeutic design, CeO2 nanozymes, embodying both peroxidase-like and catalase-like characteristics, enable transformation of H2O2 into hydroxyl radicals for catalytic therapy while also producing oxygen to mitigate hypoxia. Concurrently, GOD metabolizes glucose, thereby augmenting H2O2 levels and disrupting the intracellular energy supply. When subjected to a near-infrared laser, 2D Ti3C2 MXene accomplishes photothermal therapy (PTT) and photodynamic therapy (PDT), additionally amplifying cascade catalytic treatment via thermal enhancement. Empirical evidence demonstrates robust tumor suppression both in vitro and in vivo by the CeO2/Ti3C2-PEG-GOD nanocomposite. Consequently, this integrated approach, which combines PTT/PDT and enzymatic catalysis, could offer a valuable blueprint for the development of advanced oncology therapies.


Asunto(s)
Hipertermia Inducida , Neoplasias , Nitritos , Elementos de Transición , Humanos , Glucosa Oxidasa , Peróxido de Hidrógeno , Titanio/farmacología , Hipertermia , Neoplasias/terapia , Glucosa , Hipoxia , Microambiente Tumoral , Línea Celular Tumoral
12.
Water Res ; 251: 121050, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38241807

RESUMEN

While the adsorption/bio-oxidation (A/B) process has been widely studied for carbon capture and shortcut nitrogen (N) removal, its integration with enhanced biological phosphorus (P) removal (EBPR) has been considered challenging and thus unexplored. Here, full-scale pilot testing with an integrated system combining A-stage high-rate activated sludge with B-stage partial (de)nitrification/anammox and side-stream EBPR (HRAS-P(D)N/A-S2EBPR) was conducted treating real municipal wastewater. The results demonstrated that, despite the relatively low influent carbon load, the B-stage P(D)N-S2EBPR system could achieve effective P removal performance, with the carbon supplement and redirection of the A-stage sludge fermentate to the S2EBPR. The novel process configuration design enabled a system shift in carbon flux and distribution for efficient EBPR, and provided unique selective factors for ecological niche partitioning among different key functionally relevant microorganisms including polyphosphate accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs). The combined nitrite from B-stage to S2EBPR and aerobic-anoxic conditions in our HRAS-P(D)N/A-S2EBPR system promoted DPAOs for simultaneous internal carbon-driven denitrification via nitrite and P removal. 16S rRNA gene-based oligotyping analysis revealed high phylogenetic microdiversity within the Accumulibacter population and discovered coexistence of certain oligotypes of Accumulibacter and Competibacter correlated with efficient P removal. Single-cell Raman micro-spectroscopy-based phenotypic profiling showed high phenotypic microdiversity in the active PAO community and the involvement of unidentified PAOs and internal carbon-accumulating organisms that potentially played an important role in system performance. This is the first pilot study to demonstrate that the P(D)N-S2EBPR system could achieve shortcut N removal and influent carbon-independent EBPR simultaneously, and the results provided insights into the effects of incorporating S2EBPR into A/B process on metabolic activities, microbial ecology, and resulted system performance.


Asunto(s)
Aguas del Alcantarillado , Purificación del Agua , Desnitrificación , Fósforo/metabolismo , Ríos , Nitrógeno , ARN Ribosómico 16S , Filogenia , Nitritos , Proyectos Piloto , Reactores Biológicos , Purificación del Agua/métodos , Polifosfatos/metabolismo , Carbono
13.
Bioresour Technol ; 395: 130322, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38228222

RESUMEN

This study provides for the first time a systematic understanding of Acinetobacter indicus CZH-5 performance, metabolic pathway and genomic characteristics for aerobic nitrogen (N) and phosphorus (P) removal. Acinetobacter indicus CZH-5 showed promising performance in heterotrophic nitrification aerobic denitrification and aerobic phosphorus removal. Under optimal conditions, the maximum ammonia-N, total nitrogen and orthophosphate-P removal efficiencies were 90.17%, 86.33%, and 99.89%, respectively. The wide tolerance range suggests the strong environmental adaptability of the bacteria. The complete genome of this strain was reconstructed. Whole genome annotation was used to re-construct the N and P metabolic pathways, and related intracellular substance metabolic pathways were proposed. The transcription levels of related functional genes and enzyme activities further confirmed these metabolic mechanisms. N removal was achieved via the nitrification-denitrification pathway. Furthermore, CZH-5 exhibited significant aerobic P uptake, with phosphate diesters as the main species of intracellular P.


Asunto(s)
Acinetobacter , Desnitrificación , Nitrificación , Fósforo , Nitritos , Aerobiosis , Procesos Heterotróficos , Fosfatos , Nitrógeno/metabolismo , Genómica
14.
Nat Commun ; 15(1): 762, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38278810

RESUMEN

A wearable biological patch capable of producing multiple responses to light and electricity without interfering with daily activities is highly desired for skin cancer treatment, but remains a key challenge. Herein, the skin-mountable electrostimulation-augmented photothermal patch (eT-patch) comprising transparent ionic gel with MXene (Ti3C2Tx) doping is developed and applied for the treatment of melanoma under photostimulation at 0.5 W/cm2. The eT-patch designed has superior photothermal and electrical characteristics owing to ionic gels doped with MXene which provides high photothermal conversion efficiency and electrical conductivity as a medium. Simultaneously, the ionic gel-based eT-patch having excellent optical transparency actualizes real-time observation of skin response and melanoma treatment process under photothermal and electrical stimulation (PES) co-therapy. Systematical cellular study on anti-tumor mechanism of the eT-patch under PES treatment revealed that eT-patch under PES treatment can synergically trigger cancer cell apoptosis and pyroptosis, which together lead to the death of melanoma cells. Due to the obvious advantages of relatively safe and less side effects in healthy organs, the developed eT-patch provides a promising cost-effective therapeutic strategy for skin tumors and will open a new avenue for biomedical applications of ionic gels.


Asunto(s)
Terapia por Estimulación Eléctrica , Melanoma , Nitritos , Neoplasias Cutáneas , Elementos de Transición , Dispositivos Electrónicos Vestibles , Humanos , Melanoma/terapia , Neoplasias Cutáneas/terapia , Geles , Iones
15.
J Mater Chem B ; 12(5): 1379-1392, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38247429

RESUMEN

To date, implant-associated infection is still a significant clinical challenge, which cannot be effectively eliminated by single therapies due to the formation of microbial biofilms. Herein, a pH-responsive nanoplatform was constructed via the in situ growth of zinc sulfide (ZnS) nanoparticles on the surface of Ti3C2 MXene nanosheets, which was subsequently introduced in poly(L-lactic acid) (PLLA) to prepare a composite bone scaffold via selective laser sintering technology. In the acidic biofilm microenvironment, the degradation of ZnS released hydrogen sulfide (H2S) gas to eliminate the biofilm extracellular DNA (eDNA), thus destroying the compactness of the biofilm. Then, the bacterial biofilm became sensitive to hyperthermia, which could be further destroyed under near-infrared light irradiation due to the excellent photothermal property of MXene, finally achieving gas/photothermal synergistic antibiofilm and efficient sterilization. The results showed that the synergistic gas/photothermal therapy for the composite scaffold not only evidently inhibited the formation of biofilms, but also effectively eradicated the eDNA of the already-formed biofilms and killed 90.4% of E. coli and 84.2% of S. aureus under near infrared light irradiation compared with single gas or photothermal therapy. In addition, the composite scaffold promoted the proliferation and osteogenic differentiation of mouse bone marrow mesenchymal stem cells. Thus, the designed scaffold with excellent biofilm elimination and osteogenesis ability has great potential as an alternative treatment for implant-associated bone infections.


Asunto(s)
Hipertermia Inducida , Nitritos , Terapia Fototérmica , Elementos de Transición , Ratones , Animales , Staphylococcus aureus , Osteogénesis , Escherichia coli , Rayos Infrarrojos , Biopelículas , Concentración de Iones de Hidrógeno , Ácido Láctico
16.
Phys Sportsmed ; 52(1): 65-76, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36752064

RESUMEN

BACKGROUND: Supplementation with Angiotensin-(1-7) [(Ang-1-7)] has received considerable attention due to its possible ergogenic effects on physical performance. The effects of a single dose of Ang-(1-7) on the performance of mountain bike (MTB) athletes during progressive load tests performed until the onset of voluntary fatigue have previously been demonstrated. This study tested the effects of Ang-(1-7) in two different exercise protocols with different metabolic demands: aerobic (time trial) and anaerobic (repeated sprint). METHODS: Twenty one male recreational athletes were given capsules containing an oral formulation of HPßCD-Ang-(1-7) (0.8 mg) and HPßCD-placebo (only HPßCD) over a 7-day interval; a double-blind randomized crossover design was used. Physical performance was examined using two protocols: a 20-km cycling time trial or 4 × 30-s repeated all-out sprints on a leg cycle ergometer. Data were collected before and after physical tests to assess fatigue parameters, and included lactate levels, and muscle activation during the sprint protocol as evaluated by electromyography (EMG); cardiovascular parameters: diastolic and systolic blood pressure and heart rate; and performance parameters, time to complete (time trial), maximum power and mean power (repeated sprint). RESULTS: Supplementation with an oral formulation of HPßCD-Ang-(1-7) reduced basal plasma lactate levels and promoted the maintenance of plasma glucose levels after repeated sprints. Supplementation with HPßCD-Ang-(1-7) also increased baseline plasma nitrite levels and reduced resting diastolic blood pressure in a time trial protocol. HPßCD-Ang-(1-7) had no effect on the time trial or repeat sprint performance, or on the EMG recordings of the vastus lateralis and vastus medialis. CONCLUSIONS: Supplementation with HPßCD-Ang-(1-7) did not improve physical performance in time trial or in repeated sprints; however, it promoted the maintenance of plasma glucose and lactate levels after the sprint protocol and at rest, respectively. In addition, HPßCD-Ang-(1-7) also increased resting plasma nitrite levels and reduced diastolic blood pressure in the time trial protocol. TRIAL REGISTRATION: RBR-2nbmpbc, registered January 6th, 2023. The study was prospectively registered.


Asunto(s)
Angiotensina I , Rendimiento Atlético , Nitritos , Fragmentos de Péptidos , Humanos , Masculino , Estudios Cruzados , 2-Hidroxipropil-beta-Ciclodextrina , Ciclismo/fisiología , Glucemia , Lactatos , Suplementos Dietéticos , Atletas , Fatiga
17.
J Biomol Struct Dyn ; 42(3): 1145-1156, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37066617

RESUMEN

Two-dimensional (2D) nanomaterials can improve drug delivery by reducing toxicity, increasing bioavailability and boosting efficacy. In this study, the simultaneous use of transition metal carbides and nitrides (MXenes) along with copper (II) benzene-1, 3, 5-tricarboxylate metal-organic framework (Cu - BTC/MOF) as attractive nanocarriers are investigated for loading and delivering curcumin (CUR) and paclitaxel (PTX) drugs to cancer cells. The efficiency of surface termination (bare and oxygen) in the adsorption of PTX and CUR drugs and the co-loading of these two drugs are evaluated. Our results show that the strongest interaction energy belongs to the adsorption of drug CUR on the MXNNO-Cu-BTC adsorbent, while the interaction of PTX drug with the MXNO- Cu-BTC in the MXNO-Cu-BTC/PTX&CUR system is the lowest due to the particular structure of the drug and the adsorbent. Our results show that at the beginning simulation, the interaction energy between the PTX drug and water in PTX/MXN system is -4645.48 kJ/mol, which reduces to -3848.71 kJ/mol after the system reaches equilibrium. Therefore, the inspected adsorbents have a good performance in adsorbing CUR and PTX drugs. The obtained results from this investigation provide valuable information about experimental studies by medical scientists in the future.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Curcumina , Neoplasias , Nitritos , Elementos de Transición , Paclitaxel/farmacología , Paclitaxel/química , Curcumina/farmacología , Curcumina/química , Adsorción , Cobre/química , Agua , Neoplasias/tratamiento farmacológico
18.
Bioresour Technol ; 393: 130031, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37993071

RESUMEN

In anaerobic/aerobic/anoxic (A/O/A) process, endogenous denitrification (ED) is critically important, and achieving steady endogenous partial denitrification (EdPD) is crucial to carbon saving and anammox application. In this study, EdPD was rapidly realized from conventional activated sludge by expelling phosphorus accumulating organisms (PAOs) in anaerobic/anoxic (A/A) mode during 40 days, with nitrite transformation rate (NTR) surging to 82.8 % from 29.4 %. Competibacter was the prime EdPD-fulfilling bacterium, soaring to 28.9 % from 0.5 % in phase II. Afterwards, balance of high NTR and phosphorus removal efficiency (PRE) were attained by well regulating competition and cooperation between PAOs and glycogen accumulating organisms (GAOs) in A/O/A mode, when the Competibacter (21.7 %) and Accumulibacter (7.3 %, mainly Acc_IIC and Acc_IIF) were in dominant position with balance. The PRE recovered to 88.6 % and NTR remained 67.7 %. Great balance of GAOs and PAOs contributed to advanced nitrogen removal by anammox.


Asunto(s)
Fósforo , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Desnitrificación , Glucógeno , Reactores Biológicos/microbiología , Nitritos , Nitrógeno
19.
Small ; 20(4): e2304119, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37759420

RESUMEN

Although antibiotic is still the main choice for antibacteria both in hospital and community, phototherapy has become a possibly one of the alternative approaches in the treatment of microbe-associated infections nowadays because of its considerable potential in effective eradication of pathogenic bacteria. However, overwhelming reactive oxygen species (ROS) generated from phototherapy inevitably provoke an inflammatory response, complicating the healing process. To address this outstanding issue, a MXene-decorated nanofibrious is devised that not only yield localized heat but also elevate ROS levels under near-infrared laser exposure ascribed to the synergistic photothermal/photodynamic effect, for potent bacterial inactivation. After being further loaded with aspirin, the nanofibrous membranes exhibit benign cytocompatibility, boosting cell growth and suppressing the (nuclear factor kappa-B ( NF-κB) signaling pathways through RNA sequencing analysis, indicating an excellent anti-inflammatory effect. Interestingly, in vivo investigations also corroborate that the nanofibrous membranes accelerate infectious cutaneous regeneration by efficiently killing pathogenic bacteria, promoting collagen deposition, boosting angiogenesis, and dampening inflammatory reaction via steering NF-κB pathway. As envisaged, this work furnishes a decorated nanofibrous membrane with programmed antibacterial and anti-inflammatory effects for remedy of refractory bacteria-invaded wound regeneration.


Asunto(s)
FN-kappa B , Nanofibras , Nitritos , Elementos de Transición , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Cicatrización de Heridas , Antiinflamatorios/farmacología , Antibacterianos/farmacología
20.
Bioresour Technol ; 393: 130141, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38040316

RESUMEN

Fungi with multiple contaminant removal function have rarely been studied. Here, a novel fungal strain Fusarium keratoplasticum FSP1, which was isolated from halophilic granular sludge, is reported for first time to perform simultaneous nitrogen and phosphate removal. The strain showed wide adaptability under C/N ratios of 30-35, salinities of 0 %-3 % (m/v), and pH of 7.5-9.5. The maximum removal rates of ammonium, nitrate and nitrite were 4.43, 4.01 and 2.97 mg N/L/h. The nitrogen balance, enzyme activity and substrate conversion experiments demonstrated a single strain FSP1 can assimilate inorganic nitrogen and convert inorganic nitrogen to gaseous nitrogen through heterotrophic nitrification or aerobic denitrification. About 39 %-42 % of the degraded phosphorus was in the extracellular polymeric substances (EPS). Orthophosphate was the main phosphorus species in the cell, whereas phosphate monoester and diester were in the EPS. The novel strain FSP1 is a potential candidate for wastewater treatment.


Asunto(s)
Compuestos de Amonio , Desnitrificación , Fusarium , Fosfatos , Nitrógeno/metabolismo , Aguas Residuales , Aerobiosis , Nitrificación , Procesos Heterotróficos , Nitritos/química , Fósforo , Compuestos de Amonio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA