Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 867
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
J Clin Psychopharmacol ; 43(6): 507-510, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37930202

RESUMEN

PURPOSE/BACKGROUND: Phenibut (4-amino-3-phenyl-butyric acid) is a structural analog of GABA with central nervous system depressant and anxiolytic properties, developed in the former Soviet Union for anxiety, insomnia, and alcohol withdrawal. Its primary mechanism of action is believed to be a GABA-B receptor agonist-with high affinity at the α 2 δ subunit-containing voltage-dependent calcium channels and therefore gabapentinoid activity-as well as, to a lesser extent, GABA-A agonist activity. While not approved or regulated by the FDA, phenibut is easily obtainable online, where it is marketed as a nootropic, or cognitive enhancer. However, phenibut can lead to problems related to intoxication, dependency, and withdrawal, similar to other sedatives. METHODS/PROCEDURES: We present a case of phenibut intoxication and withdrawal delirium that provided diagnostic and management challenges because of a patient that was initially not forthcoming about his phenibut use which resulted in five presentations to the hospital including two admissions. FINDINGS/RESULTS: Initial differential including adrenergic, serotonergic or anticholinergic toxidrome based on clinical picture and history reported at that time, however phenibut use of 50 g daily was eventually revealed, an amount exceeding the highest reported cases in our review of the English literature. IMPLICATIONS/CONCLUSIONS: High-dose phenibut intoxication and withdrawal can appear as dramatic and dangerous as high-dose sedative withdrawal, however given its specified receptor affinity and binding profile we found that a pharmacotherapeutic approach targeting GABA-B, GABA-A, and gabapentenoid receptors were effective in stabilizing this patient, eventually leading to the patient's full and sustained recovery.


Asunto(s)
Alcoholismo , Delirio , Nootrópicos , Síndrome de Abstinencia a Sustancias , Humanos , Ácido gamma-Aminobutírico , Delirio/inducido químicamente
2.
Artículo en Ruso | MEDLINE | ID: mdl-37966440

RESUMEN

Bacosides are the main biologically active components derived from the plant bacopa monnieri (Bacopa monnieri (L.) Wettst.), which has been used as a nootropic in Indian medicine for many centuries. In recent years, these compounds have attracted attention because of their wide range of neurobiological effects. The neuroprotective effects of bacosides on brain neurons under the influence of various damaging factors (neurotoxins, oxidative stress, beta-amyloid deposition, cigarette smoke, etc.) have been established. It was shown that these substances reduce the levels of inflammatory cytokines and inhibit the processes of demyelination of neurons. The anticonvulsant effect of bacosides has been established. These compounds also improve cognitive functions, including memory and learning abilities. The effects associated with the influence on the dopaminergic and serotonergic systems of the striatum are of interest for the therapy of morphine addiction. The theoretical justifications for the future use of bacosides as a multipurpose means of complex therapy of individual diseases in neurological and psychiatric practice are presented.


Asunto(s)
Anticonvulsivantes , Cognición , Saponinas , Triterpenos , Humanos , Encéfalo , Cuerpo Estriado , Triterpenos/farmacología , Saponinas/farmacología , Nootrópicos/farmacología
3.
Cent Nerv Syst Agents Med Chem ; 23(2): 126-136, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37608652

RESUMEN

BACKGROUND: The primary phytoconstituents reported to have neuroprotective effects are flavonoids and phenolic compounds. Aerva persica roots are reported to be rich in flavonoids and phenolic compounds. Therefore, this study aimed to explore the nootropic potential of Aerva persica roots. OBJECTIVE: The objective of this study was to evaluate the nootropic potential of Aerva persica roots against D-galactose-induced memory impairment. METHODS: In this study, the roots of Aerva persica were extracted with 70% ethanol. The obtained extract was evaluated for total phenolic content using the Folin-Ciocalteu method and total flavonoid content using the aluminium chloride colorimetric assay. Afterward, the acute oral toxicity of the extract was determined following the Organisation for Economic Co-operation and Development (OECD) guideline 423. Additionally, two doses of Aerva persica (100 and 200 mg/kg body weight (BW)) were evaluated for their nootropic potential against D-galactose-induced memory impairment. The nootropic potential of the crude extract was assessed through a behavioural study and brain neurochemical analysis. Behavioural studies involved the evaluation of spatial reference- working memory using the radial arm maze test and the Y-maze test. Neurochemical analysis was performed to determine the brain's acetylcholine, acetylcholinesterase, glutathione (GSH), and malondialdehyde (MDA) levels. RESULTS: The total phenolic content and total flavonoid content were found to be 179.14 ± 2.08 µg GAE/mg and 273.72 ± 3.94 µg QE/mg, respectively. The Aerva persica extract was found to be safe up to 2000 mg/kg BW. Following the safety assessment, the experimental mice received various treatments for 14 days. The behavioural analysis using the radial maze test showed that the extract at both doses significantly improved spatial reference-working memory and reduced the number of total errors compared to disease control groups. Similarly, in the Y-maze test, both doses significantly increased the alteration percentage and the percentage of novel arm entry (both indicative of intact spatial memory) compared to disease control. In neurochemical analysis, Aerva persica at 200 mg/kg significantly normalised the acetylcholine level (p<0.0001) and GSH level (p<0.01) compared to disease control. However, the same effect was not observed with Aerva persica at 100 mg/kg. Additionally, Aerva persica at 200mg/kg BW significantly decreased the acetylcholinesterase level (p<0.0001) and decreased the brain's MDA level (p<0.01) compared to the disease control, whereas the effect of Aerva persica at 100 mg/kg BW in reducing acetylcholinesterase was non-significant. CONCLUSION: Based on the results, it can be concluded that the nootropic potential of Aerva persica was comparable to that of the standard drug, Donepezil, and the effect might be attributed to the higher content of flavonoids and phenolic compounds.


Asunto(s)
Amaranthaceae , Nootrópicos , Ratones , Animales , Nootrópicos/farmacología , Galactosa/toxicidad , Acetilcolinesterasa , Acetilcolina/efectos adversos , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Glutatión/efectos adversos , Etanol , Flavonoides/farmacología , Flavonoides/uso terapéutico , Aprendizaje por Laberinto
4.
Artículo en Inglés | MEDLINE | ID: mdl-37352374

RESUMEN

Recently, the demand for improved brain function and concentration has increased in the dietary supplement market. However, to artificially enhance their pharmacological efficacy, dietary supplements may be illegally adulterated with unauthorised substances. Therefore, we developed a rapid and accurate method to simultaneously determine 11 nootropic substances using an ultra-high-performance liquid chromatography (UPLC) system equipped with a photodiode array (PDA) detector. In addition, sample preparation procedures were semi-optimised for various types of matrices, including solid (hard capsule, tablet, powder, and pill) and liquid (oil and extract) samples. The method was validated to determine the limit of detection (LOD), limit of quantification (LOQ), method detection limit (MDL), method quantitation limit (MQL), specificity, linearity, precision, accuracy, recovery, stability, and matrix effects. The validation results satisfied international validation guideline requirements. To test the applicability of the method, 55 real samples advertised as effective brain health, memory, and cognition supplements were analysed. Among the real samples, vinpocetine (2.483 and 7.296 µg/g), and kavain (69-44.056 µg/g) were detected. In addition, the detected compounds were confirmed by comparing their fragmentation patterns with those of the reference standards using liquid chromatography-quadrupole-time-of-flight mass spectrometry (LC-QTOF/MS). In conclusion, the UPLC-PDA method not only rapidly and accurately quantifies illegal nootropics but also enables the pre-emptive investigation and identification of 11 nootropic substances in illegal dietary supplements to protect public health.


Asunto(s)
Nootrópicos , Límite de Detección , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Cromatografía Líquida de Alta Presión/métodos , Suplementos Dietéticos/análisis
5.
Drug Test Anal ; 15(8): 803-839, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37357012

RESUMEN

The first nootropic prohibited in sport was fonturacetam (4-phenylpiracetam, carphedon) in 1998. Presented here 25 years later is a broad-scale consideration of the history, pharmacology, prevalence, regulations, and doping potential of nootropics viewed through a lens of 50 selected dietary supplements (DS) marketed as "cognitive enhancement," "brain health," "brain boosters," or "nootropics," with a focus on unauthorized ingredients. Nootropic DS have risen to prominence over the last decade often as multicomponent formulations of bioactive ingredients presenting compelling pharmacological questions and potential public health concerns. Many popular nootropics are unauthorized food or DS ingredients according to the European Commission including huperzine A, yohimbine, and dimethylaminoethanol; unapproved pharmaceuticals like phenibut or emoxypine (mexidol); previously registered drugs like meclofenoxate or reserpine; EU authorized pharmaceuticals like piracetam or vinpocetine; infamous doping agents like methylhexaneamine or dimethylbutylamine; and other investigational substances and peptides. Several are authorized DS ingredients in the United States resulting in significant global variability as to what qualifies as a legal nootropic. Prohibited stimulants or ß2-agonists commonly used in "pre-workout," "weight loss," or "thermogenic" DS such as octodrine, hordenine, or higenamine are often stacked with nootropic substances. While stimulants and ß2-agonists are defined as doping agents by the World Anti-Doping Agency (WADA), many nootropics are not, although some may qualify as non-approved substances or related substances under catch-all language in the WADA Prohibited List. Synergistic combinations, excessive dosing, or recently researched pharmacology may justify listing certain nootropics as doping agents or warrant additional attention in future regulations.


Asunto(s)
Estimulantes del Sistema Nervioso Central , Doping en los Deportes , Nootrópicos , Prevalencia , Estimulantes del Sistema Nervioso Central/farmacología , Suplementos Dietéticos , Preparaciones Farmacéuticas
6.
Hum Psychopharmacol ; 38(4): e2872, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37194920

RESUMEN

OBJECTIVES: This study aimed to investigate the efficacy of taking Mind Lab Pro, a plant-based nootropic on memory in a group of healthy adults. Auditory, visual, visual working memory, immediate and delayed recall (DR) were assessed. METHODS: The study employed a pseudo randomised, double blinded, placebo-controlled design. A total of 49 healthy individuals completed the study with 36 in the experimental group and 13 in the control group. Participants ranged between 20 and 68 years with a mean age of 31.4 ± 14.4 years. Pre and post taking either the Mind Lab Pro supplement or placebo for 30 days. All participants completed the Wechsler Memory Scale Fourth UK Edition (WSM-IV UK). RESULTS: We found that the experimental group significantly improved in all memory subtests assessed (p < 0.05) whilst the control group only significantly improved in auditory memory and immediate recall (p = 0.004 and p = 0.014 respectively). A significant difference in immediate and DR was also found between the control and experimental group (p = 0.005 and 0.034 respectively). CONCLUSION: The use of Mind Lab Pro for 4 weeks improves memory with the experimental group significantly improving in all sub areas of memory as assessed by the WSM-IV UK.


Asunto(s)
Nootrópicos , Humanos , Adulto , Adolescente , Adulto Joven , Persona de Mediana Edad , Memoria a Corto Plazo , Trastornos de la Memoria , Método Doble Ciego , Suplementos Dietéticos
7.
Biochem Biophys Res Commun ; 667: 64-72, 2023 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-37209564

RESUMEN

Chemotherapy-induced cognitive impairment (CICI) is a novel clinical condition characterized by memory, learning, and motor function deficits. Oxidative stress and inflammation are potential factors contributing to chemotherapy's adverse effects on the brain. Inhibition of soluble epoxide hydrolase (sEH) has been proven effective in neuroinflammation and reversal of memory impairment. The research aims to evaluate the memory protective effect of sEH inhibitor and dual inhibitor of sEH and COX and compare its impact with herbal extracts with known nootropic activity in an animal model of CICI. In vitro sEH, the inhibitory activity of hydroalcoholic extracts of Sizygium aromaticum, Nigella sativa, and Mesua ferrea was tested on murine and human sEH enzyme as per the protocol, and IC50 was determined. Cyclophosphamide (50 mg/kg), methotrexate (5 mg/kg), and fluorouracil (5 mg/kg) combination (CMF) were administered intraperitoneally to induce CICI. The known herbal sEH inhibitor, Lepidium meyenii and the dual inhibitor of COX and sEH (PTUPB) were tested for their protective effect in the CICI model. The herbal formulation with known nootropic activity viz Bacopa monnieri and commercial formulation (Mentat) were also used to compare the efficacy in the CICI model. Behavioral parameter such as cognitive function was assessed by Morris Water Maze besides investigating oxidative stress (GSH and LPO) and inflammatory (TNFα, IL-6, BDNF and COX-2) markers in the brain. CMF-induced CICI, which was associated with increased oxidative stress and inflammation in the brain. However, treatment with PTUPB or herbal extracts inhibiting sEH preserved spatial memory via ameliorating oxidative stress and inflammation. S. aromaticum and N. sativa inhibited COX2, but M. Ferrea did not affect COX2 activity. Lepidium meyenii was the least effective, and mentat showed superior activity over Bacopa monnieri in preserving memory. Compared to untreated animals, the mice treated with PTUPB or hydroalcoholic extracts showed a discernible improvement in cognitive function in CICI.


Asunto(s)
Deterioro Cognitivo Relacionado con la Quimioterapia , Fármacos Neuroprotectores , Nootrópicos , Humanos , Ratones , Animales , Ciclooxigenasa 2 , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Epóxido Hidrolasas , Inflamación
8.
J Integr Neurosci ; 22(3): 76, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37258429

RESUMEN

PURPOSE: Opioid use disorder is a significant global problem. Chronic heroin use is associated with impairment of cognitive function and conscious control ability. The cholinergic system can be disrupted following heroin administration, indicating that activation of the cholinergic system may prevent chronic heroin misuse. Donepezil as an inhibitor of cholinesterase has been reported to clinically improve cognition and attention. In this study, the inhibition of heroin self-administration and heroin-seeking behaviours by donepezil were evaluated in rats. METHODS: Rats were trained to self-administer heroin every four hours for 14 consecutive days under a fixed ratio 1 (FR1) reinforcement schedule, then underwent withdrawal for two weeks. A progressive ratio schedule was then used to evaluate the relative motivational value of heroin reinforcement. After withdrawal, a conditioned cue was introduced for the reinstatement of heroin-seeking behaviour. Donepezil (0.3-3 mg/kg, i.p.) was used during both the FR1 heroin self-administration and progressive ratio schedules. Immunohistochemistry was used to investigate the mechanism of action of donepezil in the rat brain. RESULTS: Pre-treatment with high dose donepezil (3 mg/kg) but not low doses (0.3-1 mg/kg) significantly inhibited heroin self-administration under the FR1 schedule. Donepezil decreased motivation values under the progressive ratio schedule in a dose-dependent manner. All doses of donepezil (1-3 mg/kg) decreased the reinstatement of heroin seeking induced by cues. Correlation analysis indicated that the inhibition of donepezil on heroin-seeking behaviour was positively correlated with an increased expression of dopamine receptor 1 (D1R) and dopamine receptor 2 (D2R) in the nucleus accumbens (NAc) and increased expression of choline acetyltransferase (ChAT) in the ventral tegmental area (VTA). CONCLUSIONS: The present study demonstrated that donepezil could inhibit heroin intake and heroin-seeking behaviour. Further, donepezil could regulate dopamine receptors in the NAc via an increase of acetylcholine. These results suggested that donepezil could be developed as a potential approach for the treatment of heroin misuse.


Asunto(s)
Dependencia de Heroína , Nootrópicos , Ratas , Animales , Heroína/farmacología , Heroína/uso terapéutico , Donepezilo/farmacología , Señales (Psicología) , Nootrópicos/farmacología , Condicionamiento Operante , Dependencia de Heroína/tratamiento farmacológico , Dependencia de Heroína/psicología , Ratas Sprague-Dawley , Receptores Dopaminérgicos , Colinérgicos/uso terapéutico , Extinción Psicológica
9.
Nutrients ; 15(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36986277

RESUMEN

Alzheimer's disease is regarded as a common neurodegenerative disease that may lead to dementia and the loss of memory. We report here the nootropic and anti-amnesic effects of both peppermint and rosemary oils using a rat model of scopolamine-induced amnesia-like AD. Rats were administered orally with two doses (50 and 100 mg/kg) of each single oil and combined oils. The positive group used donepezil (1 mg/kg). In the therapeutic phase, rats were administered scopolamine (1 mg/kg) through the oral administration of oils. During the nootropic phase, both oils showed a significant (p < 0.05) decrease in radial arm maze latency times, working memory, and reference memory errors compared with the normal group, along with significant (p < 0.05) enhancements of long-term memory during the passive avoidance test. Therapeutic phase results revealed significant enhancements of memory processing compared with the positive groups. In the hippocampus, oils exhibited an elevation of BDNF levels in a dose-dependent manner. Immunohistochemistry findings showed increased hippocampal neurogenesis suppressed by scopolamine in the sub-granular zone, and the anti-amnesic activity of single oil was enhanced when the two oils combined. Gas chromatography-mass spectrometry (GCMS) of the two oils revealed sufficient compounds (1,8-Cineole, α-Pinene, menthol and menthone) with potential efficacy in the memory process and cognitive defects. Our work suggests that both oils could enhance the performance of working and spatial memory, and when combined, more anti-amnesic activity was produced. A potential enhancement of hippocampal growth and neural plasticity was apparent with possible therapeutic activity to boost memory in AD patients.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Nootrópicos , Aceites Volátiles , Rosmarinus , Ratas , Animales , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Escopolamina/efectos adversos , Mentha piperita , Rosmarinus/química , Nootrópicos/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Aceites Volátiles/farmacología , Aceites Volátiles/química , Memoria Espacial , Suplementos Dietéticos , Hipocampo
10.
Crit Rev Biotechnol ; 43(6): 956-970, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35819370

RESUMEN

Bacopa monnieri L. Pennell, commonly known as Brahmi, is an important medicinal plant that belongs to the family Plantaginaceae. Brahmi is rich in innumerable bioactive secondary metabolites, especially bacosides that can be employed to reduce many health issues. This plant is used as a neuro-tonic and treatment for mental health, depression, and cognitive performance. Brahmi is also known for its antioxidant, anti-inflammatory, and anti-hepatotoxic activities. There is a huge demand for its raw materials, particularly for the extraction of bioactive molecules. The conventional mode of propagation could not meet the required commercial demand. To overcome this, biotechnological approaches, such as plant tissue culture techniques have been established for the production of important secondary metabolites through various culture techniques, such as callus and cell suspension cultures and organ cultures, to allow for rapid propagation and conservation of medicinally important plants with increased production of bioactive compounds. It has been found that a bioreactor-based technology can also enhance the multiplication rate of cell and organ cultures for commercial propagation of medicinally important bioactive molecules. The present review focuses on the propagation and production of bacoside A by cell and organ cultures of Bacopa monnieri, a nootropic plant. The review also focuses on the biosynthesis of bacoside A, different elicitation strategies, and the over-expression of genes for the production of bacoside-A. It also identifies research gaps that need to be addressed in future studies for the sustainable production of bioactive molecules from B. monnieri.


Asunto(s)
Bacopa , Nootrópicos , Saponinas , Triterpenos , Bacopa/genética , Bacopa/metabolismo , Nootrópicos/metabolismo , Triterpenos/metabolismo , Extractos Vegetales
11.
Crit Rev Food Sci Nutr ; 63(22): 5521-5545, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34978226

RESUMEN

Substances with modulatory capabilities on certain aspects of human cognition have been revered as nootropics from the dawn of time. The plant kingdom provides most of the currently available nootropics of natural origin. Here, in this systematic review, we aim to provide state-of-the-art information regarding proven and unproven effects of plant-derived nootropics (PDNs) on human cognition in conditions of health and disease. Six independent searches, one for each neurocognitive domain (NCD), were performed in parallel using three independent scientific library databases: PubMed, Cochrane and Scopus. Only scientific studies and systematic reviews with humans published between January 2000 and November 2021 were reviewed, and 256 papers were included. Ginkgo biloba was the most relevant nootropic regarding perceptual and motor functions. Bacopa monnieri improves language, learning and memory. Withania somnifera (Ashwagandha) modulates anxiety and social-related cognitions. Caffeine enhances attention and executive functions. Together, the results from the compiled studies highlight the nootropic effects and the inconsistencies regarding PDNs that require further research.Supplemental data for this article is available online at https://doi.org/10.1080/10408398.2021.2021137.


Asunto(s)
Nootrópicos , Humanos , Nootrópicos/farmacología , Extractos Vegetales/farmacología , Cognición , Fitoterapia
12.
J Ethnopharmacol ; 300: 115671, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36055476

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Kalyanaka ghrita (KG) is an Ayurvedic formulation traditionally used in the treatment of Daurbalya (debility) and Smritidaurbalya (impairment of intellectual activities). Clinical studies have reported the effect of KG in the treatment of Manasmandata or Buddhimandyata which is associated with impaired learning, social adjustment and maturation. AIM OF THE STUDY: The present study aims to standardization of KG and validation of its use in experimental models of neurodegeneration. MATERIALS AND METHODS: KG was Standardized for biomarkers curcumin, gallic acid, tannic acid, chebulagic acid, and berberine. In male wistar rats, neurodegeneration was induced by administration of intracerebroventricular Amyloid ß (Aß1-42). The effect of KG (oral and intranasal treatment) was evaluated through behavioral parameters such as Morris water maze, social recognition test, novel object recognition, locomotor activity, and molecular parameters, brain acetylcholinesterase, brain-derived neurotrophic factor (BDNF), inflammatory cytokines, oxidative stress markers, and antioxidants. Brain histopathology was performed for studying the architecture of the brain and plaque formation. RESULTS AND DISCUSSION: A novel HPLC method has been developed for the standardization of KG. Treatment with KG significantly improved cognition and memory and increased brain BDNF and antioxidant status in Aß1-42 induced rats. It also reduced brain acetylcholinesterase, oxidative stress, and inflammatory cytokines and prevented neuronal damage. There were more marked effects with intra-nasal administration compared to oral treatment. CONCLUSION: The findings suggest that KG has neuroprotective potential and along with its nootropic property could be a promising therapy for neurodegenerative diseases like Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Berberina , Curcumina , Fármacos Neuroprotectores , Nootrópicos , Acetilcolinesterasa , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/toxicidad , Animales , Antioxidantes , Berberina/farmacología , Factor Neurotrófico Derivado del Encéfalo , Curcumina/farmacología , Citocinas/farmacología , Modelos Animales de Enfermedad , Masculino , Aprendizaje por Laberinto , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Nootrópicos/farmacología , Ratas , Ratas Wistar , Taninos/farmacología
13.
Nutrients ; 14(16)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36014874

RESUMEN

Nootropics, also known as "smart drugs" are a diverse group of medicinal substances whose action improves human thinking, learning, and memory, especially in cases where these functions are impaired. This review provides an up-to-date overview of the potential effectiveness and importance of nootropics. Based on their nature and their effects, this heterogeneous group of drugs has been divided into four subgroups: classical nootropic compounds, substances increasing brain metabolism, cholinergic, and plants and their extracts with nootropic effects. Each subgroup of nootropics contains several main representatives, and for each one, its uses, indications, experimental treatments, dosage, and possible side effects and contraindications are discussed. For the nootropic plant extracts, there is also a brief description of each plant representative, its occurrence, history, and chemical composition of the medicinal part. Lastly, specific recommendations regarding the use of nootropics by both ill and healthy individuals are summarized.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Nootrópicos , Humanos , Aprendizaje , Nootrópicos/uso terapéutico
14.
J Food Biochem ; 46(5): e14089, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35102569

RESUMEN

This study is focused on potential effects of ginsenosides from Panax ginseng (PG) against amnesic shell fish poison, that is, domoic acid-induced excitotoxicity. Mice received PG at two different dosages by oral feeding for a period of 28 days (50 and 100 mg kg-1 bwt.-1 ). Domoic acid was injected to the mice to induce excitotoxicity (DA; 3 mg kg-1  bwt.-1 ) and piracetam-injected animals (PIR; 100 mg kg-1  bwt.-1 ) were treated as positive control. DA-induced cognitive impairment was reverted by PG supplementation, which was observed in Morris water maze and novel object task. Moreover, PG supplementation restored levels of GABA and antioxidant enzymes. Our results further elucidated ameliorative effects of PG supplementation on DA-induced changes in the expression of synaptic plasticity (BDNF), inflammation (NFkB), and apoptotic (Bcl2, Bax, and Caspase 3) markers. Hence, this study elucidates potential nootropic effects of ginsenosides from P. ginseng extract against DA-induced neuronal impairments via, modulation of behavioral and biochemical mechanisms involved in excitotoxicity, oxidative stress, neuro-inflammation, and apoptosis. PRACTICAL APPLICATIONS: This study highlights potential effects of ginsenosides from Panax ginseng against amnesic shell fish poison, that is, domoic acid-induced excitotoxicity for the first time. This study confirms that ginsenosides have the beneficial effects against amelioration of DA-induced toxicity. This study elucidates the potential nootropic effects of P. ginseng extract against DA-induced neuronal impairments via, modulation of synaptic plasticity markers and oxido-inflammatory responses leading to apoptosis. This study will be helpful in offering various mechanisms involved in pharmacological applications of P. ginseng in the management of DA-induced excitotoxicity.


Asunto(s)
Ginsenósidos , Nootrópicos , Panax , Venenos , Animales , Ginsenósidos/farmacología , Inflamación/tratamiento farmacológico , Ácido Kaínico/análogos & derivados , Ratones , Extractos Vegetales/farmacología
15.
Curr Med Sci ; 42(1): 39-47, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35122611

RESUMEN

OBJECTIVE: Angelica (A.) sinensis is used as a traditional medical herb for the treatment of neurodegeneration, aging, and inflammation in Asia. A. sinensis optimal formula (AOF) is the best combination in A. sinensis that has been screened to rescue the cognitive ability in ß-amyloid peptide (Aß25-35)-treated Alzheimer's disease (AD) rats. The objective of this study was to investigate the effect of AOF on the learning and memory of AD rats as well as to explore the underlying mechanisms. METHODS: Male Wistar rats were infused with Aß25-35 for AD model induction or saline (negative control). Five groups of AD rats were fed on AOF at 20, 40, or 80 mL/kg every day, donepezil at 0.9 mg/kg every day (positive control), or an equal volume of water (AD model) intragastrically once a day for 4 weeks, while the negative control rats were fed on water. The Morris water maze test was used to evaluate the cognitive function of the rats. The Aß accumulation, cholinergic levels, and antioxidative ability were detected by ELISA. Additionally, the candidate mechanism was determined by gene sequencing and quantitative real-time polymerase chain reaction. RESULTS: The results showed that AOF administration significantly ameliorated Aß25-35-induced memory impairment. AOF decreased the levels of amyloid-ß precursor protein and Aß in the hippocampus, rescued the cholinergic levels, increased the activity of superoxide dismutase, and decreased the malondialdehyde level. In addition, AOF inhibited the expression of IL1b, Mpo, and Prkcg in the hippocampus. CONCLUSION: These experimental findings illustrate that AOF prevents the decrease in cognitive function and Aß deposits in Aß25-35-treated rats via modulating neuroinflammation and oxidative stress, thus highlighting a potential therapeutic avenue to promote the co-administration of formulas that act on different nodes to maximize beneficial effects and minimize negative side effects.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/farmacología , Angelica sinensis , Trastornos de la Memoria/tratamiento farmacológico , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Nootrópicos/farmacología , Estrés Oxidativo/efectos de los fármacos , Preparaciones de Plantas/farmacología , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/metabolismo , Animales , Modelos Animales de Enfermedad , Masculino , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/inmunología , Trastornos de la Memoria/metabolismo , Enfermedades Neuroinflamatorias/inducido químicamente , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/metabolismo , Nootrópicos/administración & dosificación , Preparaciones de Plantas/administración & dosificación , Ratas , Ratas Wistar
16.
J Alzheimers Dis ; 85(3): 1195-1204, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34924395

RESUMEN

BACKGROUND: Evidence summaries for efficacy and safety of frequently employed treatments of Alzheimer's disease (AD) are sparse. OBJECTIVE: We aimed to perform an updated umbrella review to identify an efficacious and safe treatment for AD patients. METHODS: We conducted a search for meta-analyses and systematic reviews on the Embase, PubMed, The Cochrane Library, and Web of Science to address this knowledge gap. We examined the cognitive functions, behavioral symptoms, global clinical assessment, and Activities of Daily Living as efficacy endpoints, and the incidence of adverse events as safety profiles. RESULTS: Sixteen eligible papers including 149 studies were included in the umbrella review. The results showed that AChE inhibitors (donepezil, galantamine, rivastigmine, Huperzine A), Ginkgo biloba, and cerebrolysin appear to be beneficial for cognitive, global performances, and activities of daily living in patients with AD. Furthermore, anti-Aß agents are unlikely to have an important effect on slowing cognitive or functional impairment in mild to moderate AD. CONCLUSION: Our study demonstrated that AChE inhibitors, Ginkgo biloba, and cerebrolysin are the optimum cognitive and activities of daily living medication for patients with AD.


Asunto(s)
Actividades Cotidianas/psicología , Enfermedad de Alzheimer/tratamiento farmacológico , Inhibidores de la Colinesterasa/uso terapéutico , Nootrópicos/uso terapéutico , Seguridad del Paciente , Aminoácidos/uso terapéutico , Cognición/efectos de los fármacos , Donepezilo/uso terapéutico , Galantamina/uso terapéutico , Ginkgo biloba , Humanos , Extractos Vegetales/uso terapéutico , Rivastigmina/uso terapéutico
17.
J Biomol Struct Dyn ; 40(17): 7991-8003, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-33970806

RESUMEN

N-Methyl-d-aspartate receptor (NMDAR)-mediated excitotoxicity has been implicated in multi-neurodegenerative diseases. Owing to dearth of efficacy and adverse effects of NMDA receptor antagonists, search for herbal remedies acting like salutary agents is a dynamic expanse of investigation to contest neurodegenerative disease. Withania somnifera (W. somnifera) has been used since antiquity as a nerve tonic and nootropic agents in Ayurveda, an old Indian system of medicine. In the present study, we have explored phytochemicals from Ayurvedic herb W. somnifera as an inhibitor of NMDA receptor-mediated excitotoxicity through allosteric reticence of the GluN1-GluN2B encompassing NMDARs by dint of molecular docking and dynamics studies. Thus, steering and constraining GluN1-GluN2B may be effective in the management of neurodegenerative diseases including Alzheimer's disease. Out of the curtained phytochemicals, chlorogenic acid revealed significant docking scores of -8.856 and -8.645 kcal/mol and free binding energies of -49.84 and -50.67 kcal/mol in Chain AB and Chain CD of NMDARs, respectively. Chlorogenic acid in AB chain forms four hydrogen bonding with Glu110, Arg115, Leu135 and Asp136 amino acid residues and five hydrogen bond with Glu106, Ala107, Ile133, Ile335and Arg155 amino acid residues of CD chain. To further validate the interaction of top scored molecule chlorogenic acid, molecular dynamics study of 100 ns was carried out. It indicated that the protein-ligand complex was stable throughout the simulation period, and minimal backbone fluctuations have ensued in the system. In silico pharmacokinetic predictions of the screened phytochemicals were within the defined range described for human use.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Enfermedades Neurodegenerativas , Nootrópicos , Panax , Withania , Aminoácidos , Ácido Clorogénico , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fitoquímicos/farmacología , Extractos Vegetales , Receptores de N-Metil-D-Aspartato , Withania/química
18.
Alcohol Clin Exp Res ; 45(12): 2471-2484, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34697823

RESUMEN

BACKGROUND: Fetal alcohol spectrum disorders (FASD) are preventable adverse outcomes consequent to prenatal alcohol exposure. Supplemental choline confers neuroprotection to the alcohol-exposed offspring, but its actions outside the brain are unclear. We previously reported that prenatal exposure of mice to 4.5 g/kg of alcohol decreased placental weight in females only, but decreased body weight and liver-to-body weight ratio and increased brain-to-body weight ratio in both sexes. Here we test the hypotheses that a lower alcohol dose will elicit similar outcomes, and that concurrent choline treatment will mitigate these outcomes. METHODS: Pregnant C57BL/6J mice were gavaged with alcohol (3 g/kg; Alc) or maltodextrin (MD) from embryonic day (E) 8.5-17.5. Some also received a subcutaneous injection of 100 mg/kg choline chloride (Alc + Cho, MD + Cho). Outcomes were evaluated on E17.5. RESULTS: Alc dams had lower gestational weight gain than MD; this was normalized by choline. In males, Alc decreased placental weight whereas choline increased placental efficiency, and Alc + Cho (vs. MD) tended to further reduce placental weight and increase efficiency. Despite no significant alcohol effects on these measures, choline increased fetal body weight but not brain weight, thus reducing brain-to-body weight ratio in both sexes. This ratio was also lower in the Alc + Cho (vs. MD) fetuses. Alc reduced liver weight and the liver-to-body weight ratio; choline did not improve these. Placental weight and efficiency correlated with litter size, whereas placental efficiency correlated with fetal morphometric measurements. CONCLUSIONS: Choline prevents an alcohol-induced reduction in gestational weight gain and fetal body weight and corrects fetal brain sparing, consistent with clinical findings of improvements in alcohol-exposed children born to mothers receiving choline supplementation. Importantly, we show that choline enhances placental efficiency in the alcohol-exposed offspring but does not normalize fetal liver growth. Our findings support choline supplementation during pregnancy to mitigate the severity of FASD and emphasize the need to examine choline's actions in different organ systems.


Asunto(s)
Colina/administración & dosificación , Trastornos del Espectro Alcohólico Fetal/prevención & control , Nootrópicos/administración & dosificación , Efectos Tardíos de la Exposición Prenatal/prevención & control , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Femenino , Desarrollo Fetal/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Embarazo , Desempeño Psicomotor/efectos de los fármacos
19.
Food Funct ; 12(21): 10690-10699, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34605514

RESUMEN

Memory decline occurs due to various factors, including stress, depression, and aging, and lowers the quality of life. Several nutritional supplements and probiotics have been used to enhance memory function, and efforts have been made to develop mixed supplements with maximized efficacy. In this study, we aimed to examine whether a novel formulation composed of Cuscuta seeds and Lactobacillus paracasei NK112, CCL01, enhances memory function and induces neurogenesis via nerve growth factor (NGF) induction. Firstly, we orally administered CCL01 to normal mice and assessed their memory function 4 weeks after the first administration by performing a step-through passive avoidance test. We found that CCL01 at 100 mg kg-1 treatment enhanced the fear-based memory function. By analyzing the expression of Ki-67 and doublecortin, which are the markers of proliferating cells and immature neurons, respectively, we observed that CCL01 induced neuronal proliferation and differentiation in the hippocampus of the mice. Additionally, we found that the expression of synaptic markers increased in the hippocampus of CCL01-treated mice. We measured the NGF expression in the supernatant of C6 cells after CCL01 treatment and found that CCL01 increased NGF release. Furthermore, treatment of CCL01-conditioned glial media on N2a cells increased neuronal differentiation via the TrkA/ERK/CREB signaling pathway and neurotrophic factor expression. Moreover, when CCL01 was administered and scopolamine was injected, CCL01 ameliorated memory decline. These results suggest that CCL01 is an effective enhancer of memory function and can be applied to various age groups requiring memory improvement.


Asunto(s)
Cuscuta/química , Lacticaseibacillus paracasei , Memoria/efectos de los fármacos , Factor de Crecimiento Nervioso/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Semillas/química , Animales , Línea Celular Tumoral , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Glioma/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos ICR , Neuroblastoma/tratamiento farmacológico , Neurogénesis/fisiología , Neuronas/efectos de los fármacos , Nootrópicos/farmacología , Fitoterapia , Piracetam/farmacología , Ratas , Receptor trkA/genética , Receptor trkA/metabolismo , Sinaptofisina/genética , Sinaptofisina/metabolismo
20.
J Neurophysiol ; 126(5): 1622-1634, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34495785

RESUMEN

Choline is an essential nutrient under evaluation as a cognitive enhancing treatment for fetal alcohol spectrum disorders (FASD) in clinical trials. As a result, there is increased pressure to identify therapeutic mechanism(s) of action. Choline is not only a precursor for several essential cell membrane components and signaling molecules but also has the potential to directly affect synaptic mechanisms that are believed important for cognitive processes. In the current work, we study how the direct application of choline can affect synaptic transmission in the dentate gyrus (DG) of hippocampal slices obtained from adolescent (postnatal days 21-28) Sprague-Dawley rats (Rattus norvegicus). The acute administration of choline chloride (2 mM) reliably induced a long-term depression (LTD) of field excitatory postsynaptic potentials (fEPSPs) in the DG in vitro. The depression required the involvement of M1 receptors, and the magnitude of the effect was similar in slices obtained from male and female animals. To further study the impact of choline in an animal model of FASD, we examined offspring from dams fed an ethanol-containing diet (35.5% ethanol-derived calories) throughout gestation. In slices from the adolescent animals that experienced prenatal ethanol exposure (PNEE), we found that the choline induced an LTD that uniquely involved the activation of N-methyl-d-aspartate (NMDA) and M1 receptors. This study provides a novel insight into how choline can modulate hippocampal transmission at the level of the synapse and that it can have unique effects following PNEE.NEW & NOTEWORTHY Choline supplementation is a nutraceutical therapy with significant potential for a variety of developmental disorders; however, the mechanisms involved in its therapeutic effects remain poorly understood. Our research shows that choline directly impacts synaptic communication in the brain, inducing a long-term depression of synaptic efficacy in brain slices. The depression is equivalent in male and female animals, involves M1 receptors in control animals, but uniquely involves NMDA receptors in a model of FASD.


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Colina/farmacología , Giro Dentado/efectos de los fármacos , Etanol/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Trastornos del Espectro Alcohólico Fetal/fisiopatología , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Nootrópicos/farmacología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Receptor Muscarínico M1/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA