Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.513
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Physiol Behav ; 275: 114431, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38072036

RESUMEN

Intermittent fasting (IMF) is associated with many health benefits in animals and humans. Yet, little is known if an IMF diet affects mood and cognitive processing. We have previously identified that IMF in diet-induced obese males increases norepinephrine and dopamine content in the hypothalamus and increases arcuate neuropeptide Y (NPY) gene expression more than in ad libitum control males. This suggests that IMF may improve cognition through activation of the hindbrain norepinephrine neuronal network and reverse the age-dependent decline in NPY expression. Less is known about the association between anxiety and IMF. Although, in humans, IMF during Ramadan may alleviate anxiety. Here, we address the impact of IMF on anxiety-like behavior using the open field test, hippocampal-dependent memory using the Y-maze and spatial object recognition, and hippocampal-independent memory using novel object recognition in middle-aged male and female (12 mo) and aged male and female (18 mo) mice. Using ELISA, we determined norepinephrine (NE) content in the dorsal hippocampus (DH) and prefrontal cortex (PFC). We also investigated gene expression in the arcuate nucleus (ARC), the lateral hypothalamus (LH), and the locus coeruleus (LC). In IMF-treated females at both ages, we observed an improvement in spatial navigation although an impairment in spatial object orientation. IMF-treated females (12 mo) had a reduction and IMF-treated males (12 mo) displayed an improvement in novel object recognition memory. IMF-treated females (18 mo) exhibited anxiolytic-like behavior and increased locomotion. In the DH, IMF-treated males (12 mo) had a greater amount of NE content and IMF-treated males (18 mo) had a reduction. In the ARC, IMF-treated males (12 mo) exhibited an increase in Agrp and Npy and a decrease in Adr1a. In the ARC, IMF-treated males (18 mo) exhibited an increase in Npy and a decrease in Adr1a; females had a trending decrease in Cart. In the LH at 12 months, IMF-treated males had a decrease in Npy5r, Adr1a, and Adr1b; both males and females had a reduction in Npy1r. In the LH, IMF-treated females (18 mo) had a decrease in Hcrt. In the LC at both ages, mice largely exhibited sex effects. Our findings indicate that IMF produces alterations in mood, cognition, DH NE content, and ARC, LH, and LC gene expression depending on sex and age.


Asunto(s)
Ayuno Intermitente , Norepinefrina , Humanos , Ratones , Masculino , Femenino , Animales , Persona de Mediana Edad , Anciano , Norepinefrina/metabolismo , Neuropéptido Y/metabolismo , Hipotálamo/metabolismo , Hipocampo/metabolismo
2.
J Med Food ; 26(12): 890-901, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38010856

RESUMEN

Depression, a prevalent psychiatric disorder, presents a serious health risk to humans. Increasing evidence suggested that the gut microbiota and the 5-hydroxytryptamine (5-HT) pathway both contribute significantly to depression. This research aimed to investigate how Corydalis yanhusuo polysaccharides (CYP) could potentially alleviate depression induced by chronic unpredictable mild stress in mice, as well as its underlying mechanism. The sucrose preference test, tail suspension test, and forced swimming test were employed to evaluate the behavior of mice. Enzyme-linked immunosorbent assay and PCR techniques were utilized to measure depression-related factors (dopamine [DA], 5-HT, norepinephrine [NE], brain-derived neurotrophic factor [BDNF], tryptophan hydroxylase 2 [TPH-2], 5-hydroxytryptophan [5-HTP], and tryptophan hydroxylase [TPH-1] levels). Hematoxylin and eosin staining and Nissl staining were conducted to observe histopathological changes in the hippocampus, the differences in the diversity of gut flora between groups were analyzed using 16S rRNA sequencing, and gas chromatography-mass spectrometry metabolomics was utilized to evaluate short-chain fatty acid (SCFA) concentrations. The findings indicated that CYP treatment increased the sucrose preference index, decreased the immobility time, and improved neuropathological injury. In depressed mice, CYP improved the dysregulation of the gut microbiota, and increased the SCFA levels. In addition, CYP enhanced the DA, 5-HT, NE, BDNF, and TPH-2 levels in the brain and the expression of 5-HTP and TPH-1 in the colon, while SCFAs were positively correlated with these levels. In summary, our study suggested that CYP may mitigate depression by ameliorating gut microbiota dysregulation, promoting the generation of SCFAs, and activation of 5-HT signaling expression.


Asunto(s)
Corydalis , Microbioma Gastrointestinal , Humanos , Ratones , Animales , Depresión/tratamiento farmacológico , Serotonina/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Corydalis/metabolismo , 5-Hidroxitriptófano , Triptófano Hidroxilasa/genética , ARN Ribosómico 16S , Ácidos Grasos Volátiles/metabolismo , Norepinefrina/metabolismo , Dopamina , Sacarosa , Estrés Psicológico/tratamiento farmacológico
3.
J Affect Disord ; 329: 55-63, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36842648

RESUMEN

BACKGROUND: Major depressive disorder (MDD) is a highly heterogeneous disease, which brings great difficulties to clinical diagnosis and therapy. Its mechanism is still unknown. Prior neuroimaging studies mainly focused on mean differences between patients and healthy controls (HC), largely ignoring individual differences between patients. METHODS: This study included 112 MDD patients and 93 HC subjects. Resting-state functional MRI data were obtained to examine the patterns of individual variability of brain functional connectivity (IVFC). The genetic risk of pathways including dopamine, 5-hydroxytryptamine (5-HT), norepinephrine (NE), hypothalamic-pituitary-adrenal (HPA) axis, and synaptic plasticity was assessed by multilocus genetic profile scores (MGPS), respectively. RESULTS: The IVFC pattern of the MDD group was similar but higher than that in HCs. The inter-network functional connectivity in the default mode network contributed to altered IVFC in MDD. 5-HT, NE, and HPA pathway genes affected IVFC in MDD patients. The age of onset, duration, severity, and treatment response, were correlated with IVFC. IVFC in the left ventromedial prefrontal cortex had a mediating effect between MGPS of the 5-HT pathway and baseline depression severity. LIMITATIONS: Environmental factors and differences in locations of functional areas across individuals were not taken into account. CONCLUSIONS: This study found MDD patients had significantly different inter-individual functional connectivity variations than healthy people, and genetic risk might affect clinical manifestations through brain function heterogeneity.


Asunto(s)
Variación Biológica Individual , Encéfalo , Trastorno Depresivo Mayor , Predisposición Genética a la Enfermedad , Herencia Multifactorial , Vías Nerviosas , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/metabolismo , Encéfalo/metabolismo , Serotonina/metabolismo , Norepinefrina/metabolismo , Humanos , Masculino , Femenino , Adulto , Glándulas Suprarrenales/metabolismo , Hipófisis/metabolismo , Hipotálamo/metabolismo , Corteza Prefrontal/metabolismo
4.
Brain ; 146(6): 2259-2267, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36625030

RESUMEN

The CNS houses naturally occurring pathways that project from the brain to modulate spinal neuronal activity. The noradrenergic locus coeruleus (the A6 nucleus) originates such a descending control whose influence on pain modulation encompasses an interaction with a spinally projecting non-cerulean noradrenergic cell group. Hypothesizing the origin of an endogenous pain inhibitory pathway, our aim was to identify this cell group. A5 and A7 noradrenergic nuclei also spinally project. We probed their activity using an array of optogenetic manipulation techniques during in vivo electrophysiological experimentation. Interestingly, noxious stimulus evoked spinal neuronal firing was decreased upon opto-activation of A5 neurons (two-way ANOVA with Tukey post hoc, P < 0.0001). Hypothesizing that this may reflect activity in the noradrenergic diffuse noxious inhibitory control circuit, itself activated upon application of a conditioning stimulus, we opto-inhibited A5 neurons with concurrent conditioning stimulus application. Surprisingly, no spinal neuronal inhibition was observed; activity in the diffuse noxious inhibitory control circuit was abolished (two-way ANOVA, P < 0.0001). We propose that the A5 nucleus is a critical relay nucleus for mediation of diffuse noxious inhibitory controls. Given the plasticity of diffuse noxious inhibitory controls in disease, and its back and forward clinical translation, our data reveal a potential therapeutic target.


Asunto(s)
Control Inhibidor Nocivo Difuso , Humanos , Control Inhibidor Nocivo Difuso/fisiología , Dolor/metabolismo , Neuronas/metabolismo , Locus Coeruleus/metabolismo , Encéfalo/metabolismo , Norepinefrina/metabolismo , Médula Espinal/metabolismo
5.
Nutr Neurosci ; 26(9): 875-887, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36125026

RESUMEN

Background: Childhood malnutrition can have devastating consequences on health, behavior, and cognition. Edible insects are sustainable low cost high protein and iron nutritious foods that can prevent malnutrition. However, it is unclear whether insect-based diets may help prevent changes to brain neurochemistry associated with malnutrition.Materials and Methods: Weanling male Sprague-Dawley rats were malnourished by feeding a low protein-iron diet (LPI, 5% protein and ∼2 ppm Fe) for 3 weeks or nourished by feeding a sufficient protein-iron diet (SPI, 15% protein 20 ppm FeSO4) for the duration of the study. Following 3 weeks of LPI diet, three subsets of the malnourished rats were placed on repletion diets supplemented with cricket, palm weevil larvae, or the SPI diet for 2 weeks, while the remaining rats continued the LPI diet for an additional 2 weeks. Monoamine-related neurochemicals (e.g. serotonin (5-HT), dopamine (DA), norepinephrine) and select monoamine metabolites were measured in the hypothalamus, hippocampus, striatum, and prefrontal cortex using Ultra High-Performance Liquid Chromatography.Results: Five weeks of LPI diets disrupted brain monoamines, most notable in the hypothalamus. Two weeks supplementation with cricket and palm weevil larvae diets prevented changes to measures of 5-HT and DA turnover in the hippocampus and hypothalamus. Moreover, these insect diets prevented the malnutrition-induced imbalance of 5-HT and DA metabolites in the hippocampus, striatum, and hypothalamus.Conclusion: Edible insects such as cricket and palm weevil larvae could be sustainable nutrition intervention to prevent behavioral and cognitive impairment associated abnormal brain monoamine activities that results from early life malnutrition.


Asunto(s)
Insectos Comestibles , Desnutrición , Ratas , Animales , Masculino , Insectos Comestibles/metabolismo , Serotonina/metabolismo , Ratas Sprague-Dawley , Encéfalo/metabolismo , Desnutrición/complicaciones , Desnutrición/metabolismo , Dopamina/metabolismo , Norepinefrina/metabolismo , Hierro/metabolismo
6.
Zhongguo Zhong Yao Za Zhi ; 47(17): 4691-4697, 2022 Sep.
Artículo en Chino | MEDLINE | ID: mdl-36164876

RESUMEN

To investigate the effect of Rehmanniae Radix on depression-like behavior and monoamine neurotransmitters of chronic unpredictable mild stress(CUMS) model rats. CUMS combined with isolated feeding was used to induce the depression model of rats. The depression-like behavior of rats was evaluated by sucrose preference test, open field test, and forced swim test. Hematoxylin-Eosin(HE) staining was used to investigate the pathological changes of neurons in the CA1 and CA3 area of hippocampus. Ultra performance liquid chromatography-tandem mass spectrometry(UPLC-MS) was used to detect the contents of 5-hydroxytryptamine(5-HT), 5-hydroxyindoleacetic acid(5-HIAA), dopamine(DA), 3,4-dihydroxyphenylacetic acid(DOPAC), homovanillic acid(HVA), norepinephrine(NE), and 3-methoxy-4-hydroxyphenyl glycol(MHPG) in rats. Western blot was used to detect the protein expressions of tryptophan hydroxylase 2(TPH2), serotonin transporter(SERT), and monoamine oxidase A(MAO-A) in the hippocampus of rats. Compared with the normal group, depressive-like behavior of rats was obvious in the model group. The arrangements of neurons in the CA1 and CA3 area of hippocampus were loose and disorderly. The levels of 5-HT, 5-HIAA, and 5-HT/5-HIAA in the hippocampal area were decreased(P<0.01). The protein expression of TPH2 was decreased(P<0.01), but those of SERT and MAO-A were increased(P<0.01). In the Rehmanniae Radix groups with 1.8 g·kg~(-1) and 7.2 g·kg~(-1), the depression-like behavior of CUMS rats and pathological changes of neurons in CA1, CA3 area of hippocampus were improved. The protein expression of TPH2(P<0.05, P<0.01) was increased, and those of SERT and MAO-A were down-regulated(P<0.05, P<0.01). The levels of 5-HT, 5-HIAA, and 5-HT/5-HIAA in hippocampus were increased(P<0.05, P<0.01). The changes in DA, DOPAC, HVA, DA/(DOPAC +HVA), NE, DHPG, and NE/DHPG were not statistically significant. The results suggested that Rehmanniae Radix improved depression-like behavior of CUMS rats, and the mechanism might be related to the regulation of synthesis, transportation, and metabolism of 5-HT neurotransmitter in the hippocampus.


Asunto(s)
Antidepresivos , Depresión , Hipocampo , Ácido Hidroxiindolacético , Rehmannia , Serotonina , Ácido 3,4-Dihidroxifenilacético/metabolismo , Ácido 3,4-Dihidroxifenilacético/farmacología , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Cromatografía Liquida , Depresión/tratamiento farmacológico , Modelos Animales de Enfermedad , Dopamina , Eosina Amarillenta-(YS)/metabolismo , Eosina Amarillenta-(YS)/farmacología , Hematoxilina/metabolismo , Hematoxilina/farmacología , Hipocampo/metabolismo , Ácido Homovanílico/metabolismo , Ácido Homovanílico/farmacología , Ácido Hidroxiindolacético/metabolismo , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/metabolismo , Metoxihidroxifenilglicol/farmacología , Monoaminooxidasa/metabolismo , Neurotransmisores/metabolismo , Norepinefrina/metabolismo , Norepinefrina/farmacología , Extractos Vegetales , Ratas , Rehmannia/química , Serotonina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/farmacología , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Espectrometría de Masas en Tándem , Triptófano Hidroxilasa/metabolismo
7.
Eur J Neurosci ; 56(8): 5154-5176, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35993349

RESUMEN

Upon stress exposure, a broad network of structures comes into play in order to provide adequate responses and restore homeostasis. It has been known for decades that the main structures engaged during the stress response are the medial prefrontal cortex, the amygdala, the hippocampus, the hypothalamus, the monoaminergic systems (noradrenaline, dopamine and serotonin) and the periaqueductal gray. The lateral habenula (LHb) is an epithalamic structure directly connected to prefrontal cortical areas and to the amygdala, whereas it functionally interacts with the hippocampus. Also, it is a main modulator of monoaminergic systems. The LHb is activated upon exposure to basically all types of stressors, suggesting it is also involved in the stress response. However, it remains unknown if and how the LHb functionally interacts with the broad stress response network. In the current study we performed in rats a restraint stress procedure followed by immunohistochemical staining of the c-Fos protein throughout the brain. Using graph theory-based functional connectivity analyses, we confirm the principal hubs of the stress network (e.g., prefrontal cortex, amygdala and periventricular hypothalamus) and show that the LHb is engaged during stress exposure in close interaction with the medial prefrontal cortex, the lateral septum and the medial habenula. In addition, we performed DREADD-induced LHb inactivation during the same restraint paradigm in order to explore its consequences on the stress response network. This last experiment gave contrasting results as the DREADD ligand alone, clozapine-N-oxide, was able to modify the network.


Asunto(s)
Clozapina , Habénula , Animales , Dopamina/metabolismo , Habénula/fisiología , Hipotálamo/metabolismo , Ligandos , Norepinefrina/metabolismo , Óxidos/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Serotonina/metabolismo
8.
Oxid Med Cell Longev ; 2022: 1984706, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35814274

RESUMEN

Acute myocardial ischemia (AMI) is a condition caused by a decrease in blood flow to the heart that can sometimes predispose to acquired long QT syndrome (LQTS), thereby resulting in sudden cardiac death. Recent evidence indicates that electroacupuncture (EA) can alleviate MI injury, but its specific mechanism remains unclear. This study was aimed at investigating the efficacy of EA, which utilizes α 1A-adrenergic receptors (α 1A-AR) in alleviating MI injury as well as the resulting LQTS. The AMI model was established by ligating the left anterior descending arteries (LAD) of both the wild-type and α 1A gene-knockout mice and treating them with EA for three consecutive days. A PowerLab 16 physiological recorder was used to collect the electrocardiogram (ECG) while the serum creatine kinase isoenzymes (CK-MB), lactate dehydrogenase (LDH), and norepinephrine (NE) levels in myocardial tissue were determined by using the enzyme-linked immunosorbent assay (ELISA) kit. Moreover, TTC staining was used to observe the myocardial ischemic area, while H&E and TUNEL staining determined the pathological morphology of the myocardium. Quantitative real-time PCR (qRT-PCR) was used to detect the α 1A mRNA, and Western blot was used to detect the specific proteins, such as α 1A, cleaved caspase-3, Gq, PLC, p-PKCα, and p-hERG. Our results showed that EA could effectively reduce elevated ST-segment, shorten the extended QT interval, and reduce the serum myocardial enzyme content and the degree of pathological injury in wild mice with MI. EA can also decrease the expression of α 1A-AR, PLC, p-PKCα, and NE content in myocardial tissues of wild mice, while those of p-hERG increased in ischemic myocardial tissue. These findings suggested that α 1A-AR is involved in the development of MI as well as LQTS. Additionally, EA treatment improves the cardiac function and ischemic long QT interval and plays an important role in reducing the hERG inhibition through the α 1A-AR-mediated Gq/PLC/PKCα pathway and myocardial apoptosis. Hence, it is suggested that α 1A-AR might become a potential target for EA in treating AMI treatment of myocardial ischemia injury and acquired long QT intervals caused by MI.


Asunto(s)
Electroacupuntura , Lesiones Cardíacas , Síndrome de QT Prolongado , Isquemia Miocárdica , Animales , Lesiones Cardíacas/metabolismo , Síndrome de QT Prolongado/metabolismo , Ratones , Miocardio/metabolismo , Norepinefrina/metabolismo , Proteína Quinasa C-alfa/metabolismo
9.
J Comp Neurol ; 529(16): 3564-3592, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33978232

RESUMEN

The objective of the study was to identify brain structures that mediate reward as evidenced by positive reinforcing effects of stimuli on behavior. Testing by intracerebral self-stimulation enabled monkeys to inform whether activation of ~2900 sites in 74 structures of 4 sensorimotor pathways and 4 modulatory loop pathways was positive, negative or neutral. Stimulation was rewarding at 30% of sites, negative at 17%, neutral at 52%. Virtually all (99%) structures yielded some positive or negative sites, suggesting a ubiquitous distribution of pathways transmitting valence information. Mapping of sites to structures with dense versus sparse dopaminergic (DA) or noradrenergic (NA) innervation showed that stimulation of DA-pathways was rewarding or neutral. Stimulation of NA-pathways was not rewarding. Stimulation of association areas was generally rewarding; stimulation of purely sensory or motor structures was generally negative. Reward related more to structures' sensorimotor function than to density of DA-innervation. Stimulation of basal ganglia loop pathways was rewarding except in lateral globus pallidus, an inhibitory structure in the negative feedback loop; stimulation of the cerebellar loop was rewarding in anterior vermis and the spinocerebellar pathway; and stimulation of the hippocampal CA1 loop was rewarding. While most positive sites were in the DA reward system, numerous sites in sparsely DA-innervated posterior cingulate and parietal cortices may represent a separate reward system. DA-density represents concentrations of plastic synapses that mediate acquisition of new synaptic connections. DA-sparse areas may represent innate, genetically programmed reward-associated pathways. Implications of findings in regard to response habituation and addiction are discussed.


Asunto(s)
Encéfalo/fisiología , Recompensa , Autoestimulación/fisiología , Animales , Ganglios Basales/fisiología , Biorretroalimentación Psicológica , Mapeo Encefálico , Dopamina/fisiología , Neuronas Dopaminérgicas/fisiología , Macaca mulatta , Masculino , Vías Nerviosas/fisiología , Plasticidad Neuronal/fisiología , Norepinefrina/metabolismo , Sistema Nervioso Simpático/fisiología
10.
Clin Transl Med ; 11(4): e397, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33931975

RESUMEN

Alzheimer's disease (AD) poses a significant global health concern over the next several decades. Multiple hypotheses have been put forth that attempt to explain the underlying pathophysiology of AD. Many of these are briefly reviewed here, but to-date no disease-altering therapy has been achieved. Despite this, recent work expanding on the role of noradrenergic system dysfunction in both the pathogenesis and symptomatic exacerbation of AD has shown promise. The role norepinephrine (NE) plays in AD remains complicated but pre-tangle tau has consistently been shown to arise in the locus coeruleus (LC) of patients with AD decades before symptom onset. The current research reviewed here indicates NE can facilitate neuroprotective and memory-enhancing effects through ß adrenergic receptors, while α2A adrenergic receptors may exacerbate amyloid toxicity through a contribution to tau hyperphosphorylation. AD appears to involve a disruption in the balance between these two receptors and their various subtypes. There is also a poorly characterized interplay between the noradrenergic and cholinergic systems. LC deterioration leads to maladaptation in the remaining LC-NE system and subsequently inhibits cholinergic neuron function, eventually leading to the classic cholinergic disruption seen in AD. Understanding AD as a dysfunctional noradrenergic system, provides new avenues for the use of advanced neural stimulation techniques to both study and therapeutically target the earliest stages of neuropathology. Direct LC stimulation and non-invasive vagus nerve stimulation (VNS) have both demonstrated potential use as AD therapeutics. Significant work remains, though, to better understand the role of the noradrenergic system in AD and how electroceuticals can provide disease-altering treatments.


Asunto(s)
Neuronas Adrenérgicas/patología , Enfermedad de Alzheimer/patología , Terapia por Estimulación Eléctrica , Enfermedad de Alzheimer/terapia , Animales , Neuronas Colinérgicas/patología , Terapia por Estimulación Eléctrica/métodos , Humanos , Norepinefrina/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Adrenérgicos beta/metabolismo
11.
Int J Mol Sci ; 22(8)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923533

RESUMEN

It has been established that the selective α2A adrenoceptor agonist guanfacine reduces hyperactivity and improves cognitive impairment in patients with attention-deficit/hyperactivity disorder (ADHD). The major mechanisms of guanfacine are considered to involve the activation of the postsynaptic α2A adrenoceptor of glutamatergic pyramidal neurons in the frontal cortex, but the effects of chronic guanfacine administration on catecholaminergic and glutamatergic transmissions associated with the orbitofrontal cortex (OFC) are yet to be clarified. The actions of guanfacine on catecholaminergic transmission, the effects of acutely local and systemically chronic (for 7 days) administrations of guanfacine on catecholamine release in pathways from the locus coeruleus (LC) to OFC, the ventral tegmental area (VTA) and reticular thalamic-nucleus (RTN), from VTA to OFC, from RTN to the mediodorsal thalamic-nucleus (MDTN), and from MDTN to OFC were determined using multi-probe microdialysis with ultra-high performance liquid chromatography. Additionally, the effects of chronic guanfacine administration on the expression of the α2A adrenoceptor in the plasma membrane fraction of OFC, VTA and LC were examined using a capillary immunoblotting system. The acute local administration of therapeutically relevant concentrations of guanfacine into the LC decreased norepinephrine release in the OFC, VTA and RTN without affecting dopamine release in the OFC. Systemically, chronic administration of therapeutically relevant doses of guanfacine for 14 days increased the basal release of norepinephrine in the OFC, VTA, RTN, and dopamine release in the OFC via the downregulation of the α2A adrenoceptor in the LC, OFC and VTA. Furthermore, systemically, chronic guanfacine administration did not affect intrathalamic GABAergic transmission, but it phasically enhanced thalamocortical glutamatergic transmission. The present study demonstrated the dual actions of guanfacine on catecholaminergic transmission-acute attenuation of noradrenergic transmission and chronic enhancement of noradrenergic transmission and thalamocortical glutamatergic transmission. These dual actions of guanfacine probably contribute to the clinical effects of guanfacine against ADHD.


Asunto(s)
Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Guanfacina/farmacología , Corteza Prefrontal/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Tálamo/efectos de los fármacos , Agonistas de Receptores Adrenérgicos alfa 2/administración & dosificación , Agonistas de Receptores Adrenérgicos alfa 2/uso terapéutico , Animales , Dopamina/metabolismo , Ácido Glutámico/metabolismo , Guanfacina/administración & dosificación , Guanfacina/uso terapéutico , Masculino , Norepinefrina/metabolismo , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiopatología , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos alfa 2/genética , Receptores Adrenérgicos alfa 2/metabolismo , Tálamo/metabolismo , Tálamo/fisiopatología , Ácido gamma-Aminobutírico/metabolismo
12.
Alcohol Clin Exp Res ; 45(5): 996-1012, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33704774

RESUMEN

BACKGROUND: Altered monoamine (i.e., serotonin, dopamine, and norepinephrine) activity following episodes of alcohol abuse plays key roles not only in the motivation to ingest ethanol, but also physiological dysfunction related to its misuse. Although monoamine activity is essential for physiological processes that require coordinated communication across the gut-brain axis (GBA), relatively little is known about how alcohol misuse may affect monoamine levels across the GBA. Therefore, we evaluated monoamine activity across the mouse gut and brain following episodes of binge-patterned ethanol drinking. METHODS: Monoamine and select metabolite neurochemical concentrations were analyzed by ultra-high-performance liquid chromatography in gut and brain regions of female and male C57BL/6J mice following "Drinking in the Dark" (DID), a binge-patterned ethanol ingestion paradigm. RESULTS: First, we found that alcohol access had an overall small effect on gut monoamine-related neurochemical concentrations, primarily influencing dopamine activity. Second, neurochemical patterns between the small intestine and the striatum were correlated, adding to recent evidence of modulatory activity between these areas. Third, although alcohol access robustly influenced activity in brain areas in the mesolimbic dopamine system, binge exposure also influenced monoaminergic activity in the hypothalamic region. Finally, sex differences were observed in the concentrations of neurochemicals within the gut, which was particularly pronounced in the small intestine. CONCLUSION: Together, these data provide insights into the influence of alcohol abuse and biological sex on monoamine-related neurochemical changes across the GBA, which could have important implications for GBA function and dysfunction.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas/metabolismo , Eje Cerebro-Intestino/efectos de los fármacos , Encéfalo/efectos de los fármacos , Depresores del Sistema Nervioso Central/farmacología , Dopamina/metabolismo , Etanol/farmacología , Intestino Delgado/efectos de los fármacos , Norepinefrina/metabolismo , Serotonina/metabolismo , Animales , Encéfalo/metabolismo , Ciego/efectos de los fármacos , Ciego/metabolismo , Cromatografía Líquida de Alta Presión , Femenino , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Intestino Delgado/metabolismo , Sistema Límbico/efectos de los fármacos , Sistema Límbico/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Neostriado/efectos de los fármacos , Neostriado/metabolismo , Factores Sexuales
13.
J Tradit Chin Med ; 41(1): 140-149, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33522207

RESUMEN

OBJECTIVE: To investigate the relationship between the cardiotonic activity of Fuzi (Radix Aconiti Lateralis Preparata, RALP) and its fingerprint determined by liquid chromatography-mass spectrometry (LC-MS). METHODS: First, the fingerprints of six processed products of RALP were established by high performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS) followed by analysis of the principal component of the relative peak area of its common peaks. Next, the scores of the first five principal components were used as input for an artificial neural network (ANN). Additionally, the therapeutic effect of RALP was assessed by measuring the hemodynamic indexes of heart failure model rats. Subsequently, fluorescence semi-quantitative polymerase chain reaction and an enzyme-linked immunosorbent assay kit were used to determine the effects of RALP-processed products on the serum levels of noradrenaline (NA), angiotensin-Ⅰ (Ang-Ⅰ), and the expression of ß-norepinephrine receptor mRNA (ß-NRm) in the rat cardiac tissues. P < 0.05 was used as the output of the ANN. Finally, a network was constructed to display the relationship between the LC-MS fingerprints and the cardiotonic activity of the RALP-processed products. RESULTS: Several types of RALPs can improve diastolic function, systolic function and heart rate. On the basis of the findings from the principal component analysis (PCA) of 16 common peaks of fingerprints of six RALP-processed products, it was revealed that the first five principal components may include 100% of the information of the original data. As observed from the multilayer perceptron neural network analysis, principal component 4 presented with the strongest effects on serum levels of NA and Ang-Ⅰ in rats, while principal component 1 exerted the greatest effect on ß-NRm expression in cardiac tissue. CONCLUSION: The key findings obtained from this study indicated that the network constructed by the PCA-ANN may predict pharmacodynamic effects of the main ingredients of Traditional Chinese Medicine (TCM). This method may serve as a new approach to identify the relationship between LC-MS fingerprints and the pharmacodynamic effects of TCM ingredients.


Asunto(s)
Aconitum/química , Cardiotónicos/química , Medicamentos Herbarios Chinos/química , Insuficiencia Cardíaca/tratamiento farmacológico , Angiotensinógeno/genética , Angiotensinógeno/metabolismo , Animales , Cardiotónicos/administración & dosificación , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/administración & dosificación , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Humanos , Masculino , Espectrometría de Masas , Norepinefrina/genética , Norepinefrina/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos/genética , Receptores Adrenérgicos/metabolismo
14.
Mol Cell Endocrinol ; 524: 111147, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33388353

RESUMEN

This work evaluated the effects of neonatal overfeeding, induced by litter size reduction, on fertility and the noradrenaline-kisspeptin-gonadotrophin releasing hormone (GnRH) pathway in adult female rats. The litter size was adjusted to 3 pups with each mother in the small litters (SL) and 10 pups with each mother in the normal litters (NL). SL females exhibited metabolic changes associated with reproductive dysfunctions, shown by earlier vaginal opening and first estrus, later regular cyclicity onset, and lower and higher occurrences of estrus and diestrus phases, respectively, as well as reduced fertility, estradiol plasma levels, and mRNA expressions of tyrosine hydroxylase in the locus coeruleus, kisspeptin, and GnRH in the preoptic area in adult females in the afternoon of proestrus. These results suggest that neonatal overfeeding in female rats promotes reproductive dysfunctions in adulthood, such as lower estradiol plasma levels associated with impairments in fertility and noradrenaline-kisspeptin-GnRH pathway during positive feedback.


Asunto(s)
Envejecimiento/fisiología , Estradiol/sangre , Fertilidad/fisiología , Hormona Liberadora de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Norepinefrina/metabolismo , Hipernutrición/sangre , Hipernutrición/metabolismo , Animales , Animales Recién Nacidos , Glucemia/metabolismo , Tronco Encefálico/patología , Ciclo Estral , Femenino , Hormona Liberadora de Gonadotropina/genética , Gónadas/patología , Hipotálamo/patología , Lípidos/sangre , Tamaño de la Camada , Masculino , Hipófisis/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Wistar , Maduración Sexual , Aumento de Peso
15.
Neurosci Lett ; 744: 135594, 2021 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-33388355

RESUMEN

Cannabidiol (CBD) is a non-psychotomimetic compound derived from Cannabis sativa. Preclinical and clinical studies have shown therapeutic potential of CBD in a variety of disorders. Despite several research efforts on CBD, its antidepressant activity has been poorly investigated and the exact mechanism of action remains unclear. Thus, this study aimed to further explore the mechanism of CBD after chronic administration (7 days). First, the dose level of CBD that is enough to produce antidepressant effects after chronic administration was explored. Second, the changes in key proteins and neurotransmitters through such methods as real-time polymerase chain reaction (RT-PCR), western blotting, and high-performance liquid chromatography-electrochemical detection (HPLC-ECD) were critically studied. Furthermore, correlation between behavioral phenotypes with protein and neurotransmitters was established and the possible mechanism was herein postulated. The results showed that only the high dose CBD 100 mg/kg chronic administration induced antidepressant-like effects in mice subjected to forced swim test. Chronic CBD 100 mg/kg administration resulted in significant increases in serotonin (5-HT) and noradrenaline (NA) levels in the hippocampus (HPC). Similarly, the chronic administration of CBD 30 mg/kg and CBD 100 mg/kg significantly decreased nuclear factor kappa B (NF-κB) expression in the HPC. Moreover, none of the treatments were observed to induce locomotor effects. Thus, we concluded that chronic administration of CBD (100 mg/kg) induced antidepressant-like effects by increasing 5-HT and NA levels in the HPC. These results shed new light on further discovery of the antidepressant effect of CBD.


Asunto(s)
Antidepresivos/uso terapéutico , Cannabidiol/uso terapéutico , Depresión/tratamiento farmacológico , Hipocampo/metabolismo , Norepinefrina/metabolismo , Serotonina/metabolismo , Animales , Antidepresivos/farmacología , Cannabidiol/farmacología , Depresión/psicología , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Hipocampo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Natación/psicología
16.
Curr Mol Pharmacol ; 14(2): 200-209, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32329705

RESUMEN

Attention deficit hyperactivity disorder (ADHD) is a psychiatric disorder commonly found in children, which is recognized by hyperactivity and aggressive behavior. It is known that the pathophysiology of ADHD is associated with neurobiological dysfunction. Although psychostimulants are recognized as the therapeutic drugs of choice for ADHD patients, the side effects might be of great concern. Ginkgo biloba is a promising herbal, complementary supplement that may modulate the neuronal system in an ADHD-like condition. The beneficial effect of Ginkgo biloba on ADHD-like symptoms may be related to the modulation of the system by novel molecular mechanisms. Ginkgo biloba is known to modulate dopamine, serotonin, and norepinephrine signaling. Flavonoid glycosides and terpene trilactones are the two major phytochemical components present in the Ginkgo biloba preparations, which can exhibit antioxidant and neuroprotective activities. The pharmacological mechanisms of the phytochemical components may also contribute to the neuroprotective activity of Ginkgo biloba. In this review, we have summarized recent findings on the potential of various Ginkgo biloba preparations to treat ADHD-like symptoms. In addition, we have discussed the pharmacological mechanisms mediated by Ginkgo biloba against an ADHD-like condition.


Asunto(s)
Antioxidantes/química , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Ginkgo biloba/química , Fármacos Neuroprotectores/química , Extractos Vegetales/farmacología , Animales , Antioxidantes/farmacología , Dopamina/metabolismo , Descubrimiento de Drogas , Flavonoides/química , Glicósidos/química , Humanos , Fármacos Neuroprotectores/farmacología , Norepinefrina/metabolismo , Serotonina/metabolismo , Transducción de Señal , Terpenos/química
17.
Bioorg Chem ; 107: 104529, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33339665

RESUMEN

In our screening program for new biologically active secondary metabolites, nine new polycyclic polyprenyled acylphloroglucinols, hyperscabins D-L, together with three known compounds, were obtained from the aerial parts of Hypericum scabrum. The chemical structures of 1-9 were characterized by extensive spectroscopic analyses, nuclear magnetic resonance calculation with DP4+ probability analysis, and the electronic circular dichroism spectra were calculated. Compound 1 was an unusual prenylated acylphloroglucinol decorated with a 5-oxaspiro [4,5] deca-1,9-dione skeleton. Compound 2 was a newly identified spirocyclic polyprenylated acylphloroglucinol possessing a rare 5,5-spiroketal segment. Compounds 3, 8, and 10 (10 µM) exhibited pronounced hepatoprotective activity against d-galactosamine-induced WB-F344 cell damage in vitro assays. All test compounds (1, 3, and 7-12) demonstrated potential inhibitory effects at 10 µM against noradrenalinet ([3H]-NE) reuptake in rat brain synaptosome.


Asunto(s)
Antidepresivos/farmacología , Hemiterpenos/farmacología , Hypericum/química , Floroglucinol/análogos & derivados , Floroglucinol/farmacología , Sustancias Protectoras/farmacología , Animales , Antidepresivos/síntesis química , Antidepresivos/aislamiento & purificación , Línea Celular , Hemiterpenos/síntesis química , Hemiterpenos/aislamiento & purificación , Inhibidores de la Captación de Neurotransmisores/síntesis química , Inhibidores de la Captación de Neurotransmisores/aislamiento & purificación , Inhibidores de la Captación de Neurotransmisores/farmacología , Norepinefrina/metabolismo , Floroglucinol/aislamiento & purificación , Componentes Aéreos de las Plantas/química , Sustancias Protectoras/síntesis química , Sustancias Protectoras/aislamiento & purificación , Ratas , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo
18.
Behav Brain Res ; 399: 112985, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33144177

RESUMEN

The present study aimed to evaluate xanthotoxin's influence on male and female Swiss mice's depression-like behaviors and investigate the potential mechanism of this effect. Naturally derived furanocoumarin (the Apiaceae family), xanthotoxin, administered acutely (12.5 mg/kg), diminished the immobility level in the forced swim test only in males. The immobility level was lower in females than males, which may be associated with a higher serotonin level in the female prefrontal cortex. A dose-dependent increase of serotonin and noradrenaline was reported in the reverse-phase ion-pair liquid chromatography in the female prefrontal cortex but not in the hippocampus. We suggest that xanthotoxin may exert antidepressant properties and affect males and females differently. The increasing level of serotonin in the male and female prefrontal cortex may underlie this effect.


Asunto(s)
Antidepresivos/farmacología , Conducta Animal/efectos de los fármacos , Depresión/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Metoxaleno/farmacología , Norepinefrina/metabolismo , Corteza Prefrontal/efectos de los fármacos , Serotonina/metabolismo , Animales , Antidepresivos/administración & dosificación , Femenino , Hipocampo/metabolismo , Masculino , Metoxaleno/administración & dosificación , Ratones , Preparaciones de Plantas , Corteza Prefrontal/metabolismo , Caracteres Sexuales , Factores Sexuales
19.
Sci Rep ; 10(1): 19299, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-33168891

RESUMEN

Caloric restriction (CR) can attenuate the general loss of health observed during aging, being one of the mechanisms involved the reduction of hormonal alteration, such as insulin and leptin. This change could also prevent age-specific fluctuations in brain monoamines, although few studies have addressed the effects of CR on peripheral hormones and central neurotransmitters exhaustively. Therefore, the variations in brain monoamine levels and some peripheral hormones were assessed here in adult 4-month old and 24-month old male Wistar rats fed ad libitum (AL) or maintained on a 30% CR diet from four months of age. Noradrenaline (NA), dopamine (DA), serotonin (5-HT) and its metabolites were measured by high-performance liquid chromatography with electrochemical detection (HPLC-ED) in nine brain regions: cerebellum, pons, midbrain, hypothalamus, thalamus, hippocampus, striatum, frontal cortex, and occipital cortex. In addition, the blood plasma levels of hormones like corticosterone, insulin and leptin were also evaluated, as were insulin-like growth factor 1 and other basal metabolic parameters using enzyme-linked immunosorbent assays (ELISAs): cholesterol, glucose, triglycerides, albumin, low-density lipoprotein, calcium and high-density lipoprotein (HDLc). CR was seen to increase the NA levels that are altered by aging in specific brain regions like the striatum, thalamus, cerebellum and hypothalamus, and the DA levels in the striatum, as well as modifying the 5-HT levels in the striatum, hypothalamus, pons and hippocampus. Moreover, the insulin, leptin, calcium and HDLc levels in the blood were restored in old animals maintained on a CR diet. These results suggest that a dietary intervention like CR may have beneficial health effects, recovering some negative effects on peripheral hormones, metabolic parameters and brain monoamine concentrations.


Asunto(s)
Aminas/metabolismo , Encéfalo/metabolismo , Restricción Calórica , Dopamina/metabolismo , Neurotransmisores/metabolismo , Norepinefrina/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Cuerpo Estriado/metabolismo , Corticosterona/metabolismo , Lóbulo Frontal/metabolismo , Hipocampo/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Masculino , Neostriado/metabolismo , Corteza Prefrontal/metabolismo , Ratas , Serotonina/metabolismo
20.
Neurosci Lett ; 738: 135344, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32889006

RESUMEN

Prolonged exposure to manganese (Mn) may lead to toxic effects on the central nervous system (CNS). The mechanisms underlying neuronal death from exposure to Mn are not well understood but undoubtedly involve inflammatory processes. The aim of this study was to explore the effects of long-lasting intranasal Mn exposure in rats focusing on inflammatory processes and catecholamine (dopamine, norepinephrine) levels in the striatum and hippocampus. It was found that intranasal administration by instillation of MnCl2 solution once a day for 90 days leads to impaired movement and gait. We also observed that Mn concentration increased in the hippocampus (by 30 %) and in the striatum (by 220 %), dopamine (24 %) and DOPAC (35 %) were reduced in the striatum, and dopamine (190 %) and DOPAC (220 %) levels increased with simultaneously norepinephrine reduction (30 %) in the hippocampus. Observation of cytokine mRNA revealed increased expression of both assayed cytokines (IL-1ß and TNF-α) in the hippocampus. There was a 3-fold increase in the expression of IBA-1 mRNA, 2-fold increase in NFκB mRNA, and dramatic reduction in IkB mRNA in the striatum. Taken together, intranasal exposure to a high dose of MnCl2 induces neuroinflammation and neurotransmission disturbance, but the effects are specific for each studied brain region.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Dopamina/metabolismo , Hipocampo/efectos de los fármacos , Inflamación/metabolismo , Manganeso/administración & dosificación , Administración Intranasal , Animales , Cuerpo Estriado/metabolismo , Hipocampo/metabolismo , Interleucina-1beta/metabolismo , Masculino , Actividad Motora/efectos de los fármacos , Norepinefrina/metabolismo , Ratas , Ratas Wistar , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA