Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anim Biotechnol ; 34(9): 4736-4745, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36905146

RESUMEN

This study was done to investigate the effects of thymol, fumagillin, oxalic acid (Api-Bioxal) and hops extract (Nose-Go) on Nosema sp. spore load, the expression of vitellogenin (vg) and superoxide-dismutase-1 (sod-1) genes and mortality of bees infected with N. ceranae. Five healthy colonies were assigned as the negative control, and 25 Nosema sp. infected colonies were assigned to five treatment groups including: the positive control: no additive to sirup; fumagillin 26.4 mg/L, thymol 0.1 g/L, Api-Bioxal 0.64 g/L and Nose-Go 5.0 g/L sirup. The reduction in the number of Nosema sp. spores in fumagillin, thymol, Api-Bioxal and Nose-Go compared to the positive control was 54, 25, 30 and 58%, respectively. Nosema sp. infection in all infected groups increased (p < .05) Escherichia coli population compared to the negative control. Nose-Go had a negative effect on lactobacillus population compared to other substances. Nosema sp. infection decreased vg and sod-1 genes expression in all infected groups compared to the negative control. Fumagillin and Nose-Go increased the expression of vg gene, and Nose-Go and thymol increased the expression of sod-1 gene than the positive control. Nose-Go has the potential to treat nosemosis if the necessary lactobacillus population is provided in the gut.


Asunto(s)
Ciclohexanos , Ácidos Grasos Insaturados , Humulus , Nosema , Abejas , Animales , Vitelogeninas/metabolismo , Vitelogeninas/farmacología , Timol/farmacología , Nosema/genética , Nosema/metabolismo , Ácido Oxálico/farmacología , Humulus/metabolismo , Esporas Fúngicas/metabolismo , Superóxido Dismutasa-1/farmacología , Lactobacillus/metabolismo , Extractos Vegetales/farmacología , Sesquiterpenos
2.
J Parasitol ; 105(6): 878-881, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31730392

RESUMEN

The microsporidium Nosema sp. SE is a pathogen that infects the beet armyworm Spodoptera exigua. The complete sequence of its 4,302-base pair (bp) ribosomal ribonucleic acid (rRNA) gene region was obtained by polymerase chain reaction amplification and sequencing. The rRNA organization of Nosema sp. SE was 5'-large subunit (LSU) rRNA-internal transcribed spacer-small subunit (SSU) rRNA-intergenic spacer-5S-3', which corresponded to the pattern of Nosema bombycis. Phylogenetic analysis based on LSU rRNA and SSU rRNA both indicated that the parasite had a close relationship with other true Nosema species, confirming that Nosema sp. SE belongs to true Nosema group of the genus Nosema.


Asunto(s)
Beta vulgaris/parasitología , Nosema/genética , Spodoptera/microbiología , Animales , ADN de Hongos/aislamiento & purificación , ADN Ribosómico/química , ADN Ribosómico/genética , Estadios del Ciclo de Vida , Nosema/clasificación , Nosema/crecimiento & desarrollo , Nosema/ultraestructura , Filogenia , ARN Ribosómico/química , Alineación de Secuencia
3.
J Eukaryot Microbiol ; 65(1): 93-103, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28691191

RESUMEN

Manganese superoxide dismutase (MnSOD) is a key enzyme in the protection of cells from oxidative stress. A tandem duplication of the MnSOD gene (NbMnSOD1 and NbMnSOD2) in the genome of Nosema bombycis, a parasite of the silkworm Bombyx mori, was previously identified. Here, we compare the protein structures of NbMnSOD1 and NbMnSOD2 and characterize these two proteins in terms of cellular localization, timing of transcription, protein structure, and enzyme activity. Despite a similarity in the primary sequence of NbMnSOD1 and NbMnSOD2, the latter shows a remarkable degree of amino acid sequence difference on the protein's surface and in the active site, where there is a substitution of a phenylalanine for a histidine in NbMnSOD2. Immuno-electron microscopy demonstrates that NbMnSOD1 is present in the cytosol of mature spores, whereas NbMnSOD2 is localized on the polar tube and the spore wall. Immunofluorescence confirms the localization of NbMnSOD2 on the polar tube of the germinated spore. Quantitative measurement of gene expression (qRT-PCR) demonstrates production of both alleles during the first day of infection followed by a dramatic decrease during the second to fourth day of infection. From the fifth day onward, the two alleles show a complementary pattern of expression. The qRT-PCR of the host manganese superoxide dismutase (BmMnSOD) shows a notable increase in transcription upon infection, leading to a three-fold spike by the first day of infection, followed by a decrease in transcription. Measurement of overall MnSOD activity shows a similar peak at day 1 followed by a decrease to a constant rate of enzyme activity. The differences in cellular localization and pattern of gene expression of NbMnSOD2 compared to NbMnSOD1, as well as the differences in protein structure seen for NbMnSOD2 compared to other microsporidial MnSODs, strongly suggest a unique, recently evolved role for NbMnSOD2.


Asunto(s)
Evolución Molecular , Proteínas Fúngicas/genética , Duplicación de Gen , Nosema/genética , Estrés Oxidativo , Superóxido Dismutasa/genética , Proteínas Fúngicas/metabolismo , Nosema/enzimología , Filogenia , Análisis de Secuencia de ADN , Homología de Secuencia , Superóxido Dismutasa/metabolismo
4.
BMC Res Notes ; 7: 649, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25223634

RESUMEN

BACKGROUND: Here we present a holistic screening of collapsing colonies from three professional apiaries in Spain. Colonies with typical honey bee depopulation symptoms were selected for multiple possible factors to reveal the causes of collapse. RESULTS: Omnipresent were Nosema ceranae and Lake Sinai Virus. Moderate prevalences were found for Black Queen Cell Virus and trypanosomatids, whereas Deformed Wing Virus, Aphid Lethal Paralysis Virus strain Brookings and neogregarines were rarely detected. Other viruses, Nosema apis, Acarapis woodi and Varroa destructor were not detected. Palinologic study of pollen demonstrated that all colonies were foraging on wild vegetation. Consequently, the pesticide residue analysis was negative for neonicotinoids. The genetic analysis of trypanosomatids GAPDH gene, showed that there is a large genetic distance between Crithidia mellificae ATCC30254, an authenticated cell strain since 1974, and the rest of the presumed C. mellificae sequences obtained in our study or published. This means that the latter group corresponds to a highly differentiated taxon that should be renamed accordingly. CONCLUSION: The results of this study demonstrate that the drivers of colony collapse may differ between geographic regions with different environmental conditions, or with different beekeeping and agricultural practices. The role of other pathogens in colony collapse has to bee studied in future, especially trypanosomatids and neogregarines. Beside their pathological effect on honey bees, classification and taxonomy of these protozoan parasites should also be clarified.


Asunto(s)
Apicultura/métodos , Abejas , Colapso de Colonias , Virus de Insectos/patogenicidad , Nosema/patogenicidad , Trypanosomatina/patogenicidad , Animales , Abejas/microbiología , Abejas/parasitología , Abejas/virología , Colapso de Colonias/microbiología , Colapso de Colonias/parasitología , Colapso de Colonias/virología , Ecosistema , Conducta Alimentaria , Interacciones Huésped-Parásitos , Interacciones Huésped-Patógeno , Virus de Insectos/genética , Virus de Insectos/aislamiento & purificación , Nosema/genética , Nosema/aislamiento & purificación , Filogenia , Polen , Dinámica Poblacional , Ribotipificación , España , Trypanosomatina/genética , Trypanosomatina/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA