Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Cell ; 80(6): 1078-1091.e6, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33290746

RESUMEN

We report that the SARS-CoV-2 nucleocapsid protein (N-protein) undergoes liquid-liquid phase separation (LLPS) with viral RNA. N-protein condenses with specific RNA genomic elements under physiological buffer conditions and condensation is enhanced at human body temperatures (33°C and 37°C) and reduced at room temperature (22°C). RNA sequence and structure in specific genomic regions regulate N-protein condensation while other genomic regions promote condensate dissolution, potentially preventing aggregation of the large genome. At low concentrations, N-protein preferentially crosslinks to specific regions characterized by single-stranded RNA flanked by structured elements and these features specify the location, number, and strength of N-protein binding sites (valency). Liquid-like N-protein condensates form in mammalian cells in a concentration-dependent manner and can be altered by small molecules. Condensation of N-protein is RNA sequence and structure specific, sensitive to human body temperature, and manipulatable with small molecules, and therefore presents a screenable process for identifying antiviral compounds effective against SARS-CoV-2.


Asunto(s)
COVID-19/metabolismo , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Genoma Viral , Nucleocápside/metabolismo , ARN Viral/metabolismo , SARS-CoV-2/metabolismo , Animales , Antivirales/farmacología , COVID-19/genética , Chlorocebus aethiops , Proteínas de la Nucleocápside de Coronavirus/genética , Evaluación Preclínica de Medicamentos , Células HEK293 , Humanos , Nucleocápside/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , SARS-CoV-2/genética , Células Vero , Tratamiento Farmacológico de COVID-19
2.
Virol J ; 16(1): 159, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31856881

RESUMEN

BACKGROUND: Live-cell imaging is a powerful tool for visualization of the spatio-temporal dynamics of moving signals in living cells. Although this technique can be utilized to visualize nucleocapsid transport in Marburg virus (MARV)- or Ebola virus-infected cells, the experiments require biosafety level-4 (BSL-4) laboratories, which are restricted to trained and authorized individuals. METHODS: To overcome this limitation, we developed a live-cell imaging system to visualize MARV nucleocapsid-like structures using fluorescence-conjugated viral proteins, which can be conducted outside BSL-4 laboratories. RESULTS: Our experiments revealed that nucleocapsid-like structures have similar transport characteristics to those of nucleocapsids observed in MARV-infected cells, both of which are mediated by actin polymerization. CONCLUSIONS: We developed a non-infectious live cell imaging system to visualize intracellular transport of MARV nucleocapsid-like structures. This system provides a safe platform to evaluate antiviral drugs that inhibit MARV nucleocapsid transport.


Asunto(s)
Transporte Biológico , Microscopía Intravital/métodos , Marburgvirus/crecimiento & desarrollo , Microscopía Fluorescente/métodos , Nucleocápside/metabolismo , Línea Celular , Evaluación Preclínica de Medicamentos/métodos , Hepatocitos/virología , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Coloración y Etiquetado/métodos , Proteínas Virales/análisis
3.
J Med Chem ; 59(5): 1914-24, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26797100

RESUMEN

2,6-Dipeptidyl-anthraquinones are a promising class of nucleic acid-binding compounds that act as NC inhibitors in vitro. We designed, synthesized, and tested new series of 2,6-disubstituted-anthraquinones, which are able to bind viral nucleic acid substrates of NC. We demonstrate here that these novel derivatives interact preferentially with noncanonical structures of TAR and cTAR, stabilize their dynamics, and interfere with NC chaperone activity.


Asunto(s)
Alanina/análogos & derivados , Antraquinonas/farmacología , Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Glicina/análogos & derivados , VIH-1/efectos de los fármacos , Nucleocápside/antagonistas & inhibidores , Alanina/síntesis química , Alanina/química , Alanina/farmacología , Antraquinonas/síntesis química , Antraquinonas/química , Fármacos Anti-VIH/síntesis química , Sitios de Unión/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Glicina/síntesis química , Glicina/química , Glicina/farmacología , VIH-1/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Nucleocápside/metabolismo , Elementos de Respuesta/efectos de los fármacos , Relación Estructura-Actividad
4.
Virus Genes ; 29(1): 109-16, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15215689

RESUMEN

Transgenic plants expressing foreign genes are suitable systems for the production of relevant immunogens in high amounts that can be used to develop a new generation of vaccines against a variety of infectious diseases. Transgenic tobacco and potato plants expressing the nucleocapsid protein of Hantavirus serotype Puumala were generated and established. Puumala virus is a human pathogen causing hemorrhagic fever with renal syndrome. To investigate oral immunogenicity of the nucleocapsid protein expressed in plants, mice were fed with tubers of transgenic potato and tobacco leaf powder. The resulting antibodies were compared among groups. No significant difference could be found between the control group and the groups of animals, which had been fed with the recombinant plants expressing Puumala nucleocapsid protein. Hence, the effect of different enzymes, present in the gastro-intestinal tract, on the plant-derived antigen was investigated. It was found that the recombinant viral protein was completely degraded by trypsin and/or pepsin. In conclusion, the enzymes present in the intestine can degrade major antigenic domains of antigens, expressed in transgenic plants, thus preventing the induction of antibodies against the ingested viral antigen.


Asunto(s)
Anticuerpos Antivirales/sangre , Nicotiana/inmunología , Nucleocápside/inmunología , Nucleocápside/metabolismo , Plantas Modificadas Genéticamente/inmunología , Solanum tuberosum/inmunología , Vacunas Comestibles/administración & dosificación , Administración Oral , Animales , Humanos , Ratones , Ratones Endogámicos BALB C , Nucleocápside/genética , Proteínas de la Nucleocápside , Pepsina A/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Tripsina/metabolismo , Vacunas Comestibles/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología
5.
J Virol ; 76(7): 3240-7, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11884548

RESUMEN

The Ty5 retrotransposon of Saccharomyces paradoxus transposes in Saccharomyces cerevisiae at frequencies 1,000-fold lower than do the native Ty1 elements. The low transposition activity of Ty5 could be due to differences in cellular environments between these yeast species or to naturally occurring mutations in Ty5. By screening of a Ty5 mutant library, two single mutants (D252N and Y68C) were each found to increase transposition approximately sixfold. When combined, transposition increased 36-fold, implying that the two mutations act independently. Neither mutation affected Ty5 protein synthesis, processing, cDNA recombination, or target site choice. However, cDNA levels in both single mutants and the double mutant were significantly higher than in the wild type. The D252N mutation resides in the zinc finger of nucleocapsid and increases the potential for hydrogen bonding with nucleic acids. We generated other mutations that increase the hydrogen bonding potential (i.e., D252R and D252K) and found that they similarly increased transposition. This suggests that hydrogen bonding within the zinc finger motif is important for cDNA production and builds upon previous studies implicating basic amino acids flanking the zinc finger as important for zinc finger function. Although NCp zinc fingers differ from the zinc finger motifs of cellular enzymes, the requirement for efficient hydrogen bonding is likely universal.


Asunto(s)
Enlace de Hidrógeno , Nucleocápside/química , Retroelementos/genética , Dedos de Zinc/genética , Secuencia de Aminoácidos , ADN Complementario/metabolismo , Proteínas Fúngicas/metabolismo , Datos de Secuencia Molecular , Mutación , Nucleocápside/metabolismo , Saccharomyces/genética , Alineación de Secuencia
6.
J Mol Biol ; 312(5): 985-97, 2001 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-11580244

RESUMEN

Retroviral reverse transcriptases use host cellular tRNAs as primers to initiate reverse transcription. In the case of human immunodeficiency virus type 1 (HIV-1), the 3' 18 nucleotides of human tRNA(Lys,3) are annealed to a complementary sequence on the RNA genome known as the primer binding site (PBS). The HIV-1 nucleocapsid protein (NC) facilitates this annealing. To understand the structural changes that are induced upon NC binding to the tRNA alone, we employed a chemical probing method using the lanthanide metal terbium. At low concentrations of NC, the strong terbium cleavage observed in the core region of the tRNA is significantly attenuated. Thus, NC binding first results in disruption of the tRNA's metal binding pockets, including those that stabilize the D-TPsiC tertiary interaction. When NC concentrations approach the amount needed for complete primer/template annealing, NC further destabilizes the tRNA acceptor-TPsiC stem minihelix, as evidenced by increased terbium cleavage in this domain. A mutant form of NC (SSHS NC), which lacks the zinc finger structures, is able to anneal tRNA(Lys,3) efficiently to the PBS, and to destabilize the tRNA tertiary core, albeit less effectively than wild-type NC. This mutant form of NC does not affect cleavage significantly in the helical regions, even when bound at high concentrations. These results, as well as experiments conducted in the presence of polyLys, suggest that in the absence of the zinc finger structures, NC acts as a polycation, neutralizing the highly negative phosphodiester backbone. The presence of an effective multivalent cationic peptide is sufficient for efficient tRNA primer annealing to the PBS.


Asunto(s)
VIH-1 , Conformación de Ácido Nucleico , Nucleocápside/química , Nucleocápside/metabolismo , ARN de Transferencia de Lisina/metabolismo , ARN/metabolismo , Dedos de Zinc/fisiología , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Humanos , Lisina-ARNt Ligasa/metabolismo , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Hibridación de Ácido Nucleico , Nucleocápside/genética , Polilisina/genética , Polilisina/metabolismo , Unión Proteica , ARN/química , ARN/genética , ARN de Transferencia de Lisina/química , ARN de Transferencia de Lisina/genética , Moldes Genéticos , Terbio/metabolismo , Dedos de Zinc/genética
7.
Proc Natl Acad Sci U S A ; 98(11): 6121-6, 2001 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-11344257

RESUMEN

The nucleocapsid protein (NC) of HIV type 1 is a nucleic acid chaperone that facilitates the rearrangement of nucleic acids into conformations containing the maximum number of complementary base pairs. We use an optical tweezers instrument to stretch single DNA molecules from the helix to coil state at room temperature in the presence of NC and a mutant form (SSHS NC) that lacks the two zinc finger structures present in NC. Although both NC and SSHS NC facilitate annealing of complementary strands through electrostatic attraction, only NC destabilizes the helical form of DNA and reduces the cooperativity of the helix-coil transition. In particular, we find that the helix-coil transition free energy at room temperature is significantly reduced in the presence of NC. Thus, upon NC binding, it is likely that thermodynamic fluctuations cause continuous melting and reannealing of base pairs so that DNA strands are able to rapidly sample configurations to find the lowest energy state. The reduced cooperativity allows these fluctuations to occur in the middle of complex double-stranded structures. The reduced stability and cooperativity, coupled with the electrostatic attraction generated by the high charge density of NC, is responsible for the nucleic acid chaperone activity of this protein.


Asunto(s)
ADN Viral/metabolismo , VIH-1 , Chaperonas Moleculares/metabolismo , Nucleocápside/metabolismo , Dedos de Zinc/fisiología , Humanos
8.
Virus Genes ; 22(1): 73-83, 2001 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11210942

RESUMEN

Transgenic plants, expressing recombinant proteins, are suitable alternatives for the production of relevant immunogens. In the present study, the expression of Puumala virus nucleocapsid protein in tobacco and potato plants (Nicotiana tabacum and Solanum tuberosum) and its immunogenicity was investigated. After infection of leaf discs of SR1 tobacco and tuber discs of potato cv. "Desiree" with the Agrobacterium strain LBA4404 (pAL4404, pBinAR-PUU-S) containing the 1302 bp cDNA sequence of S-RNA segment of a Puumala virus, transgenic tobacco and potato plants expressed the Puumala virus nucleocapsid protein under control of the cauliflower 35S promoter. The recombinant proteins were found to be identical to the authentic Puumala virus nucleocapsid protein as analyzed by immunoblotting. Expression of the nucleocapsid protein was investigated over four plant generations (P to F4) and found to be stable (1 ng/3 microg dried leaf tissue). Transgenic tobacco plants were smaller compared to controls. The transformed potato plants were morphologically similar to control plants and produced tubers as the control potatoes. The S-antigen was expressed at a level of 1 ng protein/5 microg and 1 ng protein/4 microg dried leaf and root tissues, respectively, and remained stable in the first generation of vegetatively propagated potato plants. The immunogenicity of the Puumala virus nucleocapsid protein expressed in Nicotiana tabacum and Solanum tuberosum was investigated in New Zealand white rabbits. They were immunized with leaf extracts from transgenic tobacco and potato plants, and the serum recognized Puumala virus nucleocapsid protein. Transgenic plants expressing hantaviral proteins can thus be used for the development of cost-effective diagnostic systems and for alternative vaccination strategies.


Asunto(s)
Nicotiana/metabolismo , Nucleocápside/inmunología , Nucleocápside/metabolismo , Orthohantavirus/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Tóxicas , Solanum tuberosum/metabolismo , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Vectores Genéticos , Orthohantavirus/metabolismo , Immunoblotting , Nucleocápside/genética , Proteínas de la Nucleocápside , Conejos , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Solanum tuberosum/genética , Nicotiana/genética , Transgenes
10.
Nucleic Acids Res ; 24(18): 3568-75, 1996 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-8836184

RESUMEN

In the initiation of reverse transcription in retroviruses, nucleocapsid (NC) protein accelerates the rate of annealing of transfer RNA replication primer to a complementary sequence on the genomic RNA. In this report, we have probed the conformational changes induced by HIV-1 NC protein and domain deletion mutants in a structurally well-characterized transfer RNA, yeast tRNAPhe, as a model for the natural primer. One molar equivalent of recombinant 71 amino acid HIV-1 nucleocapsid protein (NC 1-71) is sufficient to completely inhibit the Pb2(+)-ribozyme activity of tRNAPhe at 25 degrees C, pH 7.0 and 15 mM MgCl2, Zn2 HIV-1 NC proteins which lack one or both flexible terminal domains also inhibit the ribozyme activity. 1H NMR spectra acquired for Mg(2+)-tRNAPhe suggest that NC 1-71 and NC 12-55 (lacking residues 1-11 and 56-71) inhibit the lead-ribozyme activity by only modestly altering the active site region rather than inducing large-scale unfolding of the molecule. In the absence of Mg2+, the extent of destabilization of tRNAPhe is greater but appears to be confined to internal regions of the acceptor and T psi C helices, as evidenced by the selectively enhanced exchange rates for imino protons associated with these base pairs. These findings show that NC destabilizes the folded form of tRNAPhe and by extension, other complex RNAs, in tertiary and secondary structural regions most susceptible to thermally-induced denaturation.


Asunto(s)
Proteínas de la Cápside , VIH-1/metabolismo , Nucleocápside/metabolismo , ARN Catalítico/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Proteínas Virales , Cápside/metabolismo , Cristalografía por Rayos X , Productos del Gen gag/metabolismo , Cinética , Plomo/química , Plomo/metabolismo , Magnesio/metabolismo , Espectroscopía de Resonancia Magnética , Conformación de Ácido Nucleico , ARN Catalítico/química , Proteínas de Unión al ARN/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA