Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochemistry (Mosc) ; 88(3): 337-352, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37076281

RESUMEN

Lipids comprise an extremely heterogeneous group of compounds that perform a wide variety of biological functions. Traditional view of lipids as important structural components of the cell and compounds playing a trophic role is currently being supplemented by information on the possible participation of lipids in signaling, not only intracellular, but also intercellular. The review article discusses current data on the role of lipids and their metabolites formed in glial cells (astrocytes, oligodendrocytes, microglia) in communication of these cells with neurons. In addition to metabolic transformations of lipids in each type of glial cells, special attention is paid to the lipid signal molecules (phosphatidic acid, arachidonic acid and its metabolites, cholesterol, etc.) and the possibility of their participation in realization of synaptic plasticity, as well as in other possible mechanisms associated with neuroplasticity. All these new data can significantly expand our knowledge about the regulatory functions of lipids in neuroglial relationships.


Asunto(s)
Comunicación Celular , Lípidos , Neuroglía , Neuronas , Ácido Araquidónico/metabolismo , Astrocitos/citología , Astrocitos/metabolismo , Colesterol/metabolismo , Microglía/citología , Microglía/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Plasticidad Neuronal , Neuronas/citología , Neuronas/metabolismo , Oligodendroglía/citología , Oligodendroglía/metabolismo , Ácidos Fosfatidicos/metabolismo , Transducción de Señal , Humanos , Animales
2.
Dev Cell ; 56(9): 1326-1345.e6, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33887203

RESUMEN

The interplay between hypothalamic neurons and microglia as they integrate stressors to regulate homeostasis is of growing interest. We asked if microglia in the embryonic hypothalamus were likewise stress responsive and, if so, whether their precocious activation perturbs nearby neural stem cell (NSC) programs. We performed single-cell transcriptomics to define embryonic hypothalamic microglia heterogeneity and identified four microglial subsets, including a subpopulation adjacent to NSCs that was responsive to gestational cold stress. Stress exposure elevated CCL3 and CCL4 secretion, but only in male brains, and ex vivo CCL4 treatment of hypothalamic NSCs altered proliferation and differentiation. Concomitantly, gestational stress decreased PVN oxytocin neurons only in male embryos, which was reversed by microglia depletion. Adult offspring exposed to gestational stress displayed altered social behaviors, which was likewise microglia dependent, but only in males. Collectively, immature hypothalamic microglia play an unappreciated role in translating maternal stressors to sexually dimorphic perturbation of neurodevelopmental programs.


Asunto(s)
Embrión de Mamíferos/citología , Microglía/citología , Células-Madre Neurales/citología , Estrés Fisiológico , Animales , Conducta Animal , Recuento de Células , Diferenciación Celular/genética , Proliferación Celular/genética , Frío , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Hipotálamo/citología , Masculino , Ratones , Microglía/metabolismo , Células-Madre Neurales/metabolismo , Neuronas/citología , Oligodendroglía/citología , Núcleo Hipotalámico Paraventricular/citología , Embarazo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Caracteres Sexuales , Análisis de la Célula Individual , Conducta Social , Esferoides Celulares/citología
3.
Brain Res ; 1763: 147459, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33794147

RESUMEN

Demyelination is the hallmark of multiple sclerosis (MS). Promoting remyelination is an important strategy to treat MS. Our previous study showed that Astragalus polysaccharides (APS), the main bioactive component of Astragalus membranaceus, could prevent demyelination in experimental autoimmune encephalomyelitis mice. To investigate the effects of APS on remyelination and the underlying mechanisms, in this study we set up a cuprizone-induced demyelination model in mice and treated them with APS. It was found that APS relieved the neurobehavioral dysfunctions caused by demyelination, and efficaciously facilitated remyelination in vivo. In order to determine whether the mechanism of enhancing remyelination was associated with the differentiation of neural stem cells (NSCs), biomarkers of NSCs, astrocytes, oligodendrocytes and neurons were measured in the corpus callosum tissues of mice through Real-time PCR, Western blot and immunohistochemistry assays. Data revealed that APS suppressed the stemness of NSCs, reduced the differentiation of NSCs into astrocytes, and promoted the differentiation into oligodendrocytes and neurons. This phenomenon was confirmed in the differentiation model of C17.2 NSCs cultured in vitro. Since Sonic hedgehog signaling pathway has been proven to be crucial to the differentiation of NSCs into oligodendrocytes, we examined expression levels of the key molecules in this pathway in vivo and in vitro, and eventually found APS activated this signaling pathway. Together, our results demonstrated that APS probably activated Sonic hedgehog signaling pathway first, then induced NSCs to differentiate into oligodendrocytes and promoted remyelination, which suggested that APS might be a potential candidate in treating MS.


Asunto(s)
Planta del Astrágalo/química , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Células-Madre Neurales/efectos de los fármacos , Oligodendroglía/citología , Polisacáridos/uso terapéutico , Remielinización/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Quelantes/farmacología , Cuprizona/farmacología , Encefalomielitis Autoinmune Experimental/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/citología , Polisacáridos/farmacología
4.
PLoS One ; 15(5): e0233859, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32470040

RESUMEN

Mechanisms implicated in disease progression in multiple sclerosis include continued oligodendrocyte (OL)/myelin injury and failure of myelin repair. Underlying causes include metabolic stress with resultant energy deficiency. Biotin is a cofactor for carboxylases involved in ATP production that impact myelin production by promoting fatty acid synthesis. Here, we investigate the effects of high dose Biotin (MD1003) on the functional properties of post-natal rat derived oligodendrocyte progenitor cells (OPCs). A2B5 positive OPCs were assessed using an in vitro injury assay, culturing cells in either DFM (DMEM/F12+N1) or "stress media" (no glucose (NG)-DMEM), with Biotin added over a range from 2.5 to 250 µg/ml, and cell viability determined after 24 hrs. Biotin reduced the increase in OPC cell death in the NG condition. In nanofiber myelination assays, biotin increased the percentage of ensheathing cells, the number of ensheathed segments per cell, and length of ensheathed segments. In dispersed cell culture, Biotin also significantly increased ATP production, assessed using a Seahorse bio-analyzer. For most assays, the positive effects of Biotin were observed at the higher end of the dose-response analysis. We conclude that Biotin, in vitro, protects OL lineage cells from metabolic injury, enhances myelin-like ensheathment, and is associated with increased ATP production.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Biotina/farmacología , Linaje de la Célula/efectos de los fármacos , Oligodendroglía/citología , Adulto , Animales , Animales Recién Nacidos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Células Precursoras de Oligodendrocitos/citología , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Ratas Sprague-Dawley
5.
J Neuroinflammation ; 17(1): 146, 2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32375817

RESUMEN

BACKGROUND: Although historically microglia were thought to be immature in the fetal brain, evidence of purposeful interactions between these immune cells and nearby neural progenitors is becoming established. Here, we examined the influence of embryonic microglia on gliogenesis within the developing tuberal hypothalamus, a region later important for energy balance, reproduction, and thermoregulation. METHODS: We used immunohistochemistry to quantify the location and numbers of glial cells in the embryonic brain (E13.5-E17.5), as well as a pharmacological approach (i.e., PLX5622) to knock down fetal microglia. We also conducted cytokine and chemokine analyses on embryonic brains in the presence or absence of microglia, and a neurosphere assay to test the effects of the altered cytokines on hypothalamic progenitor behaviors. RESULTS: We identified a subpopulation of activated microglia that congregated adjacent to the third ventricle alongside embryonic Olig2+ neural progenitor cells (NPCs) that are destined to give rise to oligodendrocyte and astrocyte populations. In the absence of microglia, we observed an increase in Olig2+ glial progenitor cells that remained at the ventricle by E17.5 and a concomitant decrease of these Olig2+ cells in the mantle zone, indicative of a delay in migration of these precursor cells. A further examination of maturing oligodendrocytes in the hypothalamic grey and white matter area in the absence of microglia revealed migrating oligodendrocyte progenitor cells (OPCs) within the grey matter at E17.5, a time point when OPCs begin to slow their migration. Finally, quantification of cytokine and chemokine signaling in ex vivo E15.5 hypothalamic cultures +/- microglia revealed decreases in the protein levels of several cytokines in the absence of microglia. We assayed the influence of two downregulated cytokines (CCL2 and CXCL10) on neurosphere-forming capacity and lineage commitment of hypothalamic NPCs in culture and showed an increase in NPC proliferation as well as neuronal and oligodendrocyte differentiation. CONCLUSION: These data demonstrate that microglia influence gliogenesis in the developing tuberal hypothalamus.


Asunto(s)
Astrocitos/citología , Hipotálamo/citología , Hipotálamo/embriología , Microglía/citología , Oligodendroglía/citología , Animales , Diferenciación Celular/fisiología , Ratones , Células-Madre Neurales/citología
6.
J Chem Neuroanat ; 106: 101790, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32278022

RESUMEN

The differentiation of cultured Bone marrow stromal cells (BMSC) on silk scaffold into mature oligodendrocyte was done in the presence of cerebrospinal fluid (CSF). BMSC were isolated from Sprague-Dawley rats and were seeded on silk scaffold. The seeded cells were cultured in DMEM/F12 medium supplemented with CFS, basic fibroblast growth factor (bFGF), Retinoic acid (RA) and Epidermal growth factor (EGF). The glial differentiation was investigated using Real time-PCR and immunofluorescence techniques for specific glial markers: Oligo 2, NG2, PLP and MBP. Our dates showed that the differentiated cells expressed specific glial markers: Oligo 2, NG2, PLP and MBP. The specific mature oligodendrocyte genes were up regulated in cultured cells on silk scaffold in the presence of CSF. It is concluded that CSF leads to improve glial differentiation of seeded BMSC on silk scaffold using preparation of appropriate niche. This culture condition may be served as an efficient differentiation induction protocol for glial phenotype, with the perspective of therapeutic application in neuroregenerative medicine.


Asunto(s)
Técnicas de Cultivo de Célula , Diferenciación Celular/fisiología , Líquido Cefalorraquídeo , Células Madre Mesenquimatosas/citología , Oligodendroglía/citología , Animales , Medios de Cultivo , Ratas , Ratas Sprague-Dawley , Seda
7.
Int J Mol Sci ; 21(2)2020 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-31963714

RESUMEN

In the case of neurodegenerative pathologies, the therapeutic arsenal available is often directed towards the consequences of the disease. The purpose of this study is, therefore, to evaluate the ability of docosahexaenoic acid (DHA), a molecule present in certain foods and considered to have health benefits, to inhibit the cytotoxic effects of very long-chain fatty acids (C24:0, C26:0), which can contribute to the development of some neurodegenerative diseases. The effect of DHA (50 µM) on very long-chain fatty acid-induced toxicity was studied by several complementary methods: phase contrast microscopy to evaluate cell viability and morphology, the MTT test to monitor the impact on mitochondrial function, propidium iodide staining to study plasma membrane integrity, and DHE staining to measure oxidative stress. A Western blot assay was used to assess autophagy through modification of LC3 protein. The various experiments were carried out on the cellular model of 158N murine oligodendrocytes. In 158N cells, our data establish that DHA is able to inhibit all tested cytotoxic effects induced by very long-chain fatty acids.


Asunto(s)
Ácidos Docosahexaenoicos/farmacología , Ácidos Grasos/análisis , Mitocondrias/efectos de los fármacos , Oligodendroglía/citología , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Mitocondrias/metabolismo , Modelos Animales , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
8.
Eur Arch Psychiatry Clin Neurosci ; 270(4): 413-424, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31552495

RESUMEN

In schizophrenia, decreased hippocampal volume, reduced oligodendrocyte numbers in hippocampal cornu ammonis (CA) subregions and reduced neuron number in the dentate gyrus have been reported; reduced oligodendrocyte numbers were significantly related to cognitive deficits. The hippocampus is involved in cognitive functions and connected to the hypothalamus, anterior thalamus, and cingulate cortex, forming the Papez circuit, and to the mediodorsal thalamus. The relationship between the volume of these interconnected regions and oligodendrocyte and neuron numbers in schizophrenia is unknown. Therefore, we used stepwise logistic regression with subsequent multivariate stepwise linear regression and bivariate correlation to analyze oligodendrocyte and neuron numbers in the posterior hippocampal subregions CA1, CA2/3, CA4, dentate gyrus, and subiculum and volumes of the hippocampal CA region, cingulum, anterior and mediodorsal thalamus and hypothalamus in postmortem brains of 10 schizophrenia patients and 11 age- and gender-matched healthy controls. Stepwise logistic regression identified the following predictors for diagnosis, in order of inclusion: (1) oligodendrocyte number in CA4, (2) hypothalamus volume, (3) oligodendrocyte number in CA2/3, and (4) mediodorsal thalamus volume. Subsequent stepwise linear regression analyses identified the following predictors: (1) for oligodendrocyte number in CA4: (a) oligodendrocyte number in CA2/3, (b) diagnostic group, (c) hypothalamus volume, and (d) neurons in posterior subiculum; (2) for hypothalamus volume: (a) mediodorsal thalamus volume; (3) for oligodendrocyte number in CA2/3: oligodendrocyte number (a) in posterior CA4 and (b) in posterior subiculum; (4) for mediodorsal thalamus volume: volumes of (a) anterior thalamus and (b) hippocampal CA. In conclusion, we found a positive relationship between hippocampal oligodendrocyte number and the volume of the hypothalamus, a brain region connected to the hippocampus, which is important for cognition.


Asunto(s)
Hipocampo/patología , Hipotálamo/patología , Red Nerviosa/patología , Oligodendroglía/citología , Esquizofrenia/patología , Tálamo/patología , Adulto , Autopsia , Femenino , Hipocampo/citología , Humanos , Hipotálamo/citología , Masculino , Persona de Mediana Edad , Esquizofrenia/diagnóstico
9.
Food Funct ; 11(1): 992-1005, 2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-31808502

RESUMEN

Natural compounds are a rich source of effective candidate drugs for the treatment of neurological disorders. Glycyrrhizic acid (GA), the major water-soluble ingredient isolated from Glycyrrhiza glabra, is reported to show anti-inflammatory and immunomodulatory activities. However, its effect on CNS demyelinating disease is unclear. In this study, we showed that GA ameliorated the clinical disease severity of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), especially at the chronic stage of clinical EAE. Histological evaluation demonstrated that, in the prophylactic treatment regimen, GA significantly inhibited inflammatory demyelination in the CNS. During the chronic stage when myelin and axon damage has already occurred, GA induced oligodendrocyte progenitor cell (OPC) differentiation into mature oligodendrocytes, thus effectively accelerating remyelination. Evidence from the cuprizone-induced mouse model of de- and remyelination, ex vivo organotypic slice cultures, and in vitro OPC maturation experiments indicated that the observed efficacy of this compound resulted directly from enhanced remyelination rather than immune suppression. Furthermore, we found that GA promoted oligodendrocyte maturation through modulating GSK-3ß signaling pathways. Our data led to the conclusion that GA could be used as a potential therapeutic candidate for the treatment of demyelinating diseases such as MS, which remains refractory to available treatments.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Ácido Glicirrínico/uso terapéutico , Remielinización/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/citología , Oligodendroglía/citología , Técnicas de Cultivo de Órganos
10.
Cells ; 8(10)2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31652490

RESUMEN

Microglia originate from yolk sac-primitive macrophages and auto-proliferate into adulthood without replacement by bone marrow-derived circulating cells. In inflammation, stroke, aging, or infection, microglia have been shown to contribute to brain pathology in both deleterious and beneficial ways, which have been studied extensively. However, less is known about their role in the healthy adult brain. Astrocytes and oligodendrocytes are widely accepted to strongly contribute to the maintenance of brain homeostasis and to modulate neuronal function. On the other hand, contribution of microglia to cognition and behavior is only beginning to be understood. The ability to probe their function has become possible using microglial depletion assays and conditional mutants. Studies have shown that the absence of microglia results in cognitive and learning deficits in rodents during development, but this effect is less pronounced in adults. However, evidence suggests that microglia play a role in cognition and learning in adulthood and, at a cellular level, may modulate adult neurogenesis. This review presents the case for repositioning microglia as key contributors to the maintenance of homeostasis and cognitive processes in the healthy adult brain, in addition to their classical role as sentinels coordinating the neuroinflammatory response to tissue damage and disease.


Asunto(s)
Encéfalo/fisiología , Cognición/fisiología , Aprendizaje/fisiología , Microglía/fisiología , Adulto , Animales , Astrocitos/citología , Astrocitos/fisiología , Encéfalo/citología , Humanos , Microglía/citología , Oligodendroglía/citología , Oligodendroglía/fisiología
11.
Curr Protoc Cell Biol ; 79(1): e49, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29924487

RESUMEN

Multiple sclerosis (MS) is an autoimmune disease that involves an immune-mediated inflammatory response in the central nervous system and optic nerve resulting in demyelination and neural degeneration, the cause of which is unknown. The adult central nervous system has the capacity to remyelinate axons by generating new oligodendrocytes (OLs). To identify clinical candidate compounds that may promote remyelination, we have developed a high-throughput screening (HTS) assay to identify compounds that promote the differentiation of oligodendrocyte precursor cells (OPCs) into OLs. Using acutely dissociated and purified rat OPCs coupled with immunofluorescent image quantification, we have developed an OL differentiation assay. Building on OPC culturing techniques developed over the past 30 years, we have scaled up the isolation and purification process to generate sufficient quantities for HTS. We then describe the use of these acutely derived OPCs in an assay designed to identify compounds that promote differentiation into OLs. We have validated this assay with a known promoter of differentiation, thyroid hormone, and subsequently used the assay to screen the NIH clinical collection library (Lariosa-Willingham, et al., 2016). © 2018 by John Wiley & Sons, Inc.


Asunto(s)
Diferenciación Celular , Separación Celular/métodos , Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Células Precursoras de Oligodendrocitos/citología , Oligodendroglía/citología , Animales , Disección , Proteína Básica de Mielina/metabolismo , Oxígeno/farmacología , Perfusión , Ratas Sprague-Dawley , Tripsina/metabolismo
12.
Glia ; 66(7): 1302-1316, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29423921

RESUMEN

Oligodendrocyte-formed myelin sheaths play important roles in the neuronal functions in the central nervous system. In demyelinating diseases, such as Multiple Sclerosis, the myelin sheaths are damaged and the remyelinating process is somehow hindered. Restoration of the myelin sheaths requires the differentiation of the oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes (OLs). To discover small molecule compounds that might promote the OPC to OL differentiation, a high-throughput screening system is established and L-ascorbyl-2-phosphate (As-2P), a stable form of Vitamin C (Vc), is found to greatly enhance the OPC to OL differentiation. As-2P promotes gradual expression of OL lineage markers, including O4, CNPase and MBP, in a dose- and time-dependent manner. It also facilitates the formation of myelin sheaths in OPC-neuron co-culture. As-2P also promotes the repair of the myelin sheaths in vivo and provides significant therapeutic effect in a cuprizone-mediated demyelination animal model. Interestingly, As-2P's function in promoting OPC differentiation is not related to its antioxidant activity. And an intracellular rather than an extracellular mechanism might be involved. Considering the safe use of Vc as a dietary supplement for many years, it might also be used as an alternative medicine for CNS demyelinating diseases.


Asunto(s)
Ácido Ascórbico/análogos & derivados , Diferenciación Celular/efectos de los fármacos , Enfermedades Desmielinizantes/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Oligodendroglía/efectos de los fármacos , Remielinización/efectos de los fármacos , Animales , Antioxidantes/farmacología , Ácido Ascórbico/farmacología , Encéfalo/citología , Encéfalo/efectos de los fármacos , Encéfalo/patología , Encéfalo/fisiología , Diferenciación Celular/fisiología , Técnicas de Cocultivo , Cuprizona , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/fisiopatología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/fisiología , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Oligodendroglía/citología , Oligodendroglía/fisiología , Remielinización/fisiología , Factores de Tiempo
13.
Mol Med Rep ; 17(3): 4515-4523, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29344669

RESUMEN

Oligodendrocytes (OLs) are myelin-forming cells that are present within the central nervous system. Impaired oligodendrocyte precursor cell (OPC) differentiation into mature OLs is a major cause of demyelination diseases. Therefore, identifying the underlying molecular mechanisms of OPC differentiation is crucial to understand the processes of myelination and demyelination. It has been acknowledged that various extrinsic and intrinsic factors are involved in the control of OPC differentiation; however, the function of ion channels, particularly the voltage­gated chloride channel (CLC), in OPC differentiation and myelination are not fully understood. The present study demonstrated that CLC­2 may be a positive modulator of OPC differentiation and myelination. Western blotting results revealed that CLC­2 was expressed in both OPCs and OLs. Furthermore, CLC­2 currents (ICLC­2) were recorded in both types of cells. The inhibition of ICLC­2 by GaTx2, a blocker of CLC­2, was demonstrated to be higher in OPCs compared with OLs, indicating that CLC­2 may serve a role in OL differentiation. The results of western blotting and immunofluorescence staining also demonstrated that the expression levels of myelin basic protein were reduced following GaTx2 treatment, indicating that the differentiation of OPCs into OLs was inhibited following CLC­2 inhibition. In addition, following western blot analysis, it was also demonstrated that the protein expression of the myelin proteins yin yang 1, myelin regulatory factor, Smad­interacting protein 1 and sex­determining region Y­box 10 were regulated by CLC­2 inhibition. Taken together, the results of the present study indicate that CLC­2 may be a positive regulator of OPC differentiation and able to contribute to myelin formation and repair in myelin­associated diseases by controlling the number and open state of CLC-2 channels.


Asunto(s)
Diferenciación Celular , Vaina de Mielina/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Canales de Cloruro CLC-2 , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Canales de Cloruro/antagonistas & inhibidores , Canales de Cloruro/metabolismo , Antígeno Ki-67/metabolismo , Células Precursoras de Oligodendrocitos/citología , Células Precursoras de Oligodendrocitos/metabolismo , Oligodendroglía/citología , Oligodendroglía/metabolismo , Ratas , Venenos de Escorpión/farmacología , Factores de Transcripción/metabolismo
14.
Sci Rep ; 7(1): 16872, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29203794

RESUMEN

We have identified SHATI/NAT8L in the brain of mice treated with methamphetamine. Recently, it has been reported that SHATI is N-acetyltransferase 8-like protein (NAT8L) that produces N-acetylaspatate (NAA) from aspartate and acetyl-CoA. We have generated SHATI/NAT8L knockout (Shati -/-) mouse which demonstrates behavioral deficits that are not rescued by single NAA supplementation, although the reason for which is still not clarified. It is possible that the developmental impairment results from deletion of SHATI/NAT8L in the mouse brain, because NAA is involved in myelination through lipid synthesis in oligodendrocytes. However, it remains unclear whether SHATI/NAT8L is involved in brain development. In this study, we found that the expression of Shati/Nat8l mRNA was increased with brain development in mice, while there was a reduction in the myelin basic protein (MBP) level in the prefrontal cortex of juvenile, but not adult, Shati -/- mice. Next, we found that deletion of SHATI/NAT8L induces several behavioral deficits in mice, and that glyceryltriacetate (GTA) treatment ameliorates the behavioral impairments and normalizes the reduced protein level of MBP in juvenile Shati -/- mice. These findings suggest that SHATI/NAT8L is involved in myelination in the juvenile mouse brain via supplementation of acetate derived from NAA. Thus, reduction of SHATI/NAT8L induces developmental neuronal dysfunction.


Asunto(s)
Encéfalo/metabolismo , Proteína Básica de Mielina/metabolismo , Acetiltransferasas/deficiencia , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Animales , Ácido Aspártico/análogos & derivados , Ácido Aspártico/análisis , Ácido Aspártico/farmacología , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Cromatografía Líquida de Alta Presión , Regulación hacia Abajo/efectos de los fármacos , Locomoción/efectos de los fármacos , Espectrometría de Masas , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Noqueados , Proteína Básica de Mielina/genética , Oligodendroglía/citología , Oligodendroglía/metabolismo , Corteza Prefrontal/metabolismo , ARN Mensajero/metabolismo , Conducta Social
15.
Cell Rep ; 18(13): 3227-3241, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28355573

RESUMEN

The hypothalamus is one of the most complex brain structures involved in homeostatic regulation. Defining cell composition and identifying cell-type-specific transcriptional features of the hypothalamus is essential for understanding its functions and related disorders. Here, we report single-cell RNA sequencing results of adult mouse hypothalamus, which defines 11 non-neuronal and 34 neuronal cell clusters with distinct transcriptional signatures. Analyses of cell-type-specific transcriptomes reveal gene expression dynamics underlying oligodendrocyte differentiation and tanycyte subtypes. Additionally, data analysis provides a comprehensive view of neuropeptide expression across hypothalamic neuronal subtypes and uncover Crabp1+ and Pax6+ neuronal populations in specific hypothalamic sub-regions. Furthermore, we found food deprivation exhibited differential transcriptional effects among the different neuronal subtypes, suggesting functional specification of various neuronal subtypes. Thus, the work provides a comprehensive transcriptional perspective of adult hypothalamus, which serves as a valuable resource for dissecting cell-type-specific functions of this complex brain region.


Asunto(s)
Hipotálamo/citología , Hipotálamo/metabolismo , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Envejecimiento/genética , Animales , Diferenciación Celular/genética , Células Ependimogliales/citología , Células Ependimogliales/metabolismo , Femenino , Privación de Alimentos , Regulación de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/metabolismo , Neuropéptidos/metabolismo , Oligodendroglía/citología , Transcripción Genética , Transcriptoma/genética
16.
Genome Res ; 27(6): 959-972, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28356321

RESUMEN

Agonistic encounters are powerful effectors of future behavior, and the ability to learn from this type of social challenge is an essential adaptive trait. We recently identified a conserved transcriptional program defining the response to social challenge across animal species, highly enriched in transcription factor (TF), energy metabolism, and developmental signaling genes. To understand the trajectory of this program and to uncover the most important regulatory influences controlling this response, we integrated gene expression data with the chromatin landscape in the hypothalamus, frontal cortex, and amygdala of socially challenged mice over time. The expression data revealed a complex spatiotemporal patterning of events starting with neural signaling molecules in the frontal cortex and ending in the modulation of developmental factors in the amygdala and hypothalamus, underpinned by a systems-wide shift in expression of energy metabolism-related genes. The transcriptional signals were correlated with significant shifts in chromatin accessibility and a network of challenge-associated TFs. Among these, the conserved metabolic and developmental regulator ESRRA was highlighted for an especially early and important regulatory role. Cell-type deconvolution analysis attributed the differential metabolic and developmental signals in this social context primarily to oligodendrocytes and neurons, respectively, and we show that ESRRA is expressed in both cell types. Localizing ESRRA binding sites in cortical chromatin, we show that this nuclear receptor binds both differentially expressed energy-related and neurodevelopmental TF genes. These data link metabolic and neurodevelopmental signaling to social challenge, and identify key regulatory drivers of this process with unprecedented tissue and temporal resolution.


Asunto(s)
Cromatina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neuronas/metabolismo , Receptores de Estrógenos/genética , Estrés Psicológico/genética , Factores de Transcripción/genética , Conducta Agonística , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/fisiopatología , Animales , Cromatina/ultraestructura , Metabolismo Energético/genética , Lóbulo Frontal/metabolismo , Lóbulo Frontal/fisiopatología , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Hipotálamo/metabolismo , Hipotálamo/fisiopatología , Masculino , Ratones , Neuronas/citología , Oligodendroglía/citología , Oligodendroglía/metabolismo , Unión Proteica , Receptores de Estrógenos/metabolismo , Transducción de Señal , Estrés Psicológico/metabolismo , Estrés Psicológico/fisiopatología , Factores de Transcripción/metabolismo , Transcripción Genética , Receptor Relacionado con Estrógeno ERRalfa
17.
Nat Commun ; 8: 14241, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28117328

RESUMEN

Multiple Sclerosis (MS) is an inflammatory demyelinating disorder in which remyelination failure contributes to persistent disability. Cholesterol is rate-limiting for myelin biogenesis in the developing CNS; however, whether cholesterol insufficiency contributes to remyelination failure in MS, is unclear. Here, we show the relationship between cholesterol, myelination and neurological parameters in mouse models of demyelination and remyelination. In the cuprizone model, acute disease reduces serum cholesterol levels that can be restored by dietary cholesterol. Concomitant with blood-brain barrier impairment, supplemented cholesterol directly supports oligodendrocyte precursor proliferation and differentiation, and restores the balance of growth factors, creating a permissive environment for repair. This leads to attenuated axon damage, enhanced remyelination and improved motor learning. Remarkably, in experimental autoimmune encephalomyelitis, cholesterol supplementation does not exacerbate disease expression. These findings emphasize the safety of dietary cholesterol in inflammatory diseases and point to a previously unrecognized role of cholesterol in promoting repair after demyelinating episodes.


Asunto(s)
Colesterol en la Dieta/administración & dosificación , Colesterol/sangre , Esclerosis Múltiple/terapia , Proteínas de la Mielina/biosíntesis , Animales , Axones/patología , Biomarcadores/sangre , Encéfalo/citología , Encéfalo/patología , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Colesterol/metabolismo , Colesterol en la Dieta/efectos adversos , Cuprizona/toxicidad , Suplementos Dietéticos , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/sangre , Encefalomielitis Autoinmune Experimental/etiología , Encefalomielitis Autoinmune Experimental/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/sangre , Esclerosis Múltiple/inducido químicamente , Oligodendroglía/citología , Oligodendroglía/patología , Oligodendroglía/fisiología , Cultivo Primario de Células , Células Madre/fisiología
18.
Acupunct Med ; 35(2): 122-132, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27841975

RESUMEN

OBJECTIVES: In spinal cord demyelination, some oligodendrocyte precursor cells (OPCs) remain in the demyelinated region but have a reduced capacity to differentiate into oligodendrocytes. This study investigated whether 'Governor Vessel' (GV) electroacupuncture (EA) would promote the differentiation of endogenous OPCs into oligodendrocytes by activating the retinoid X receptor γ (RXR-γ)-mediated signalling pathway. METHODS: Adult rats were microinjected with ethidium bromide (EB) into the T10 spinal cord to establish a model of spinal cord demyelination. EB-injected rats remained untreated (EB group, n=26) or received EA treatment (EB+EA group, n=26). A control group (n=26) was also included that underwent dural exposure without EB injection. After euthanasia at 7 days (n=5 per group), 15 days (n=8 per group) or 30 days (n=13 per group), protein expression of RXR-γ in the demyelinated spinal cord was evaluated by immunohistochemistry and Western blotting. In addition, OPCs derived from rat embryonic spinal cord were cultured in vitro, and exogenous 9-cis-RA (retinoic acid) and RXR-γ antagonist HX531 were administered to determine whether RA could activate RXR-γ and promote OPC differentiation. RESULTS: EA was found to increase the numbers of both OPCs and oligodendrocytes expressing RXR-γ and RALDH2, and promote remyelination in the remyelinated spinal cord. Exogenous 9-cis-RA enhanced the differentiation of OPCs into mature oligodendrocytes by activating RXR-γ. CONCLUSIONS: The results suggest that EA may activate RXR signalling to promote the differentiation of OPCs into oligodendrocytes in spinal cord demyelination.


Asunto(s)
Diferenciación Celular , Enfermedades Desmielinizantes/terapia , Electroacupuntura , Oligodendroglía/citología , Receptores X Retinoide/metabolismo , Animales , Enfermedades Desmielinizantes/metabolismo , Femenino , Humanos , Oligodendroglía/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Médula Espinal/metabolismo
19.
BMC Res Notes ; 9(1): 444, 2016 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-27629829

RESUMEN

BACKGROUND: Newly proliferated oligodendrocyte precursor cells (OPCs) migrate and surround lesions of patients with multiple sclerosis (MS) and other demyelinating diseases, but fail to differentiate into oligodendrocytes (OLs) and remyelinate remaining viable axons. The abundance of secreted inflammatory factors within and surrounding these lesions likely plays a major inhibitory role, promoting cell death and preventing OL differentiation and axon remyelination. To identify clinical candidate compounds that may protect existing and differentiating OLs in patients, we have developed a high throughput screening (HTS) assay that utilizes purified rat OPCs. RESULTS: Using a fluorescent indicator of cell viability coupled with image quantification, we developed an assay to allow the identification of compounds that promote OL viability and differentiation in the presence of the synergistic inflammatory cytokines, tumor necrosis factor α and interferon-γ. We have utilized this assay to screen the NIH clinical collection library and identify compounds that protect OLs and promote OL differentiation in the presence of these inflammatory cytokines. CONCLUSION: This primary OL-based cytokine protection assay is adaptable for HTS and may be easily modified for profiling of compounds in the presence of other potentially inhibitory molecules found in MS lesions. This assay should be of use to those interested in identifying drugs for the treatment of MS and other demyelinating diseases.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Oligodendroglía/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Inflamación , Interferón gamma/metabolismo , Masculino , Esclerosis Múltiple/patología , Oligodendroglía/citología , Oligodendroglía/metabolismo , Ratas , Factor de Necrosis Tumoral alfa/metabolismo
20.
BMC Res Notes ; 9(1): 419, 2016 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-27592856

RESUMEN

BACKGROUND: Multiple sclerosis is caused by an autoimmune response resulting in demyelination and neural degeneration. The adult central nervous system has the capacity to remyelinate axons in part through the generation of new oligodendrocytes (OLs). To identify clinical candidate compounds that may promote remyelination, we have developed a high throughput screening (HTS) assay to identify compounds that promote the differentiation of oligodendrocyte precursor cells (OPCs) into OLs. RESULTS: Using acutely dissociated and purified rat OPCs coupled with immunofluorescent image quantification, we have developed an OL differentiation assay. We have validated this assay with a known promoter of differentiation, thyroid hormone, and subsequently used the assay to screen the NIH clinical collection library. We have identified twenty-seven hit compounds which were validated by dose response analysis and the generation of half maximal effective concentration (EC50) values allowed for the ranking of efficacy. The assay identified novel promoters of OL differentiation which we attribute to (1) the incorporation of an OL toxicity pre-screen to allow lowering the concentrations of toxic compounds and (2) the utilization of freshly purified, non-passaged OPCs. These features set our assay apart from other OL differentiation assays used for drug discovery efforts. CONCLUSIONS: This acute primary OL-based differentiation assay should be of use to those interested in screening large compound libraries for the identification of drugs for the treatment of MS and other demyelinating diseases.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Oligodendroglía/citología , Oligodendroglía/efectos de los fármacos , Células Madre/efectos de los fármacos , Animales , Técnicas In Vitro , Esclerosis Múltiple/tratamiento farmacológico , Ratas , Células Madre/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA