Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 482
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38613515

RESUMEN

Angus-crossbred steers (n = 400; 369.7 ±â€…7.6 kg) were used to determine the influence of trace mineral (TM) source and chromium propionate (Cr Prop) supplementation on performance, carcass characteristics, and ruminal and plasma variables in finishing steers. Steers were blocked by body weight (BW) and randomly assigned within block to treatments in a 2 × 2 factorial arrangement, with factors being: 1) TM source (STM or HTM) and 2) Cr supplementation (0 or 0.25 mg Cr/kg DM, -Cr or + Cr, respectively). Treatments consisted of the addition of: 1) sulfate TM (STM; 90, 40, and 18 mg/kg DM of Zn, Mn, and Cu, respectively), 2) STM and 0.25 mg Cr/kg DM from Cr Prop, 3) hydroxychloride TM (HTM; 90, 40, and 18 mg/kg DM of Zn, Mn, and Cu, respectively), and 4) HTM and 0.25 mg Cr/kg DM from Cr Prop. Each treatment consisted of 10 replicate pens with 10 steers per pen. Body weights were obtained on consecutive days at the initiation and termination of the 154-d study. Steers were fed a steam-flaked corn-based finishing diet. Ractopamine hydrochloride was fed for the last 31 d of the study. Ruminal fluid and blood samples were obtained from one steer per pen on days 28 and 84 for ruminal volatile fatty acids (VFA) and plasma TM and glucose analysis. Steers were slaughtered at the end of the study and individual carcass data were collected. No Cr × TM source interactions (P = 0.48) were detected. Steers supplemented with HTM had greater (P = 0.04) hot carcass weight (HCW), dressing percentage (DP), longissimus muscle (LM) area, and USDA yield grade (YG), and tended (P = 0.12) to have greater average daily gain (ADG) than those receiving STM. Average daily gain, gain:feed, dressing percentage, and longissimus muscle area were greater (P = 0.04) for + Cr steers compared to-Cr steers. Hot carcass weight tended (P = 0.06) to be greater for + Cr steers. Ruminal acetate concentrations at 28 d were lesser (P = 0.01) for HTM vs. STM steers, and greater (P = 0.04) for + Cr steers compared to-Cr steers. Plasma concentrations of Zn, Cu, and Mn were not affected by TM source or Cr supplementation. Steers supplemented with Cr had greater (P = 0.05) plasma glucose concentrations than-Cr steers at 28 but not at 84 d. Results of this study indicate replacing STM with HTM improved carcass characteristics in finishing steers, and Cr Prop supplementation improved steer performance and carcass characteristics.


Trace minerals (TM) are supplemented to finishing cattle diets to prevent TM deficiencies. Sources of TM differ in their bioavailability and effect on rumen fermentation. Chromium is a TM required in low concentrations to enhance insulin activity. We tested the effect of TM source (hydroxychloride; HTM vs. sulfate; STM) and supplemental Cr propionate (Cr Prop) on performance and carcass characteristics of finishing steers. Providing 0.25 mg of supplemental Cr/kg DM, from Cr Prop, improved gain, feed efficiency, and carcass characteristics in steers. Steers supplemented with HTM tended to gain faster and had improved carcass characteristics of economic importance compared to those supplemented with STM.


Asunto(s)
Alimentación Animal , Dieta , Suplementos Dietéticos , Propionatos , Oligoelementos , Animales , Bovinos/fisiología , Bovinos/crecimiento & desarrollo , Masculino , Suplementos Dietéticos/análisis , Alimentación Animal/análisis , Dieta/veterinaria , Oligoelementos/farmacología , Oligoelementos/administración & dosificación , Propionatos/farmacología , Propionatos/administración & dosificación , Rumen/efectos de los fármacos , Rumen/metabolismo , Composición Corporal/efectos de los fármacos , Cromo/farmacología , Cromo/administración & dosificación , Fenómenos Fisiológicos Nutricionales de los Animales , Distribución Aleatoria , Carne/análisis
2.
BMC Vet Res ; 20(1): 101, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38481237

RESUMEN

BACKGROUND: Nutrition has a primary role for optimum expression of genetic potential, and most of the farmers have limited resources of green fodder. Hence, a fat-soluble vitamin, especially vitamin A and E and trace elements remained most critical in the animal's ration and affects their productive and reproductive performance adversely. Animals cannot be able to produce these vitamins in their bodies; hence, an exogenous regular supply is needed to fulfil the physiological needs and to maintain high production performance. This study elucidated effects of antioxidant vitamins (A, D, E) and trace elements (Cu, Mn, Se, Zn) administration on gene expression, metabolic, antioxidants and immunological parameters in dromedary camels during transition period. RESULTS: At 0 day, there were no appreciable differences in the expression patterns of the metabolic (IGF-I, ACACA, SCD, FASN, LPL, and BTN1A1) genes between the control and treatment groups, despite lower levels. A substantial variation in the mRNA levels of SOD1, SOD3, PRDX2, PRDX3, PRDX4, PRDX6, and AhpC/TSA was observed between the control and treatment groups, according to the antioxidant markers. In comparison to the control group, the treatment group displayed a significant up-regulation at 0 and 21 days. The treatment and control groups exhibited substantial differences in the mRNA values of IL-1α, IL-1ß, IL-6, and TNFα, as indicated by immunological markers. In comparison to the control group, there was a noticeable down-regulation in the treatment group at 0 and + 21 days. But IL10 produced the opposite pattern. No significant difference was observed in glucose, cholesterol, triglyceride, HDL, total protein, NEFA, BHBA, cortisol and IGF-1 levels between control and treatment group. The activity of serum GPx, SOD and TAC was significantly affected by time and treatment x time in supplemented groups as compared with control group. IL-1, IL-1, IL-6, and TNF were noticeably greater in the control group and lower in the treatment group. Additionally, in all groups, the concentration of all pro-inflammatory cytokines peaked on the day of delivery and its lowest levels showed on day 21 following calving. The IL-10 level was at its peak 21 days prior to calving and was lowest on calving day. CONCLUSION: The results demonstrated a beneficial effect of antioxidant vitamins and trace elements on the metabolic, antioxidant and immunological markers in dromedary camels throughout their transition period.


Asunto(s)
Oligoelementos , Animales , Oligoelementos/farmacología , Antioxidantes/metabolismo , Vitaminas/farmacología , Camelus , Vitamina A/farmacología , Interleucina-6 , Vitamina K , Zinc , ARN Mensajero , Expresión Génica , Interleucina-1
3.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38430558

RESUMEN

To investigate effects of inorganic or complexed trace mineral source (zinc, copper, manganese, and cobalt) on receiving period performance and morbidity, crossbred beef heifer calves (n = 287) arriving on three delivery dates were used in a 42-d receiving trial. Heifers were processed after arrival, stratified by day -1 body weights (BW) and allocated randomly to eight pens (11 to 13 heifers/pen, 24 pens total). Within truckload, pens were assigned randomly to dietary treatment (n = 12 pens/treatment). Heifers were housed on 0.42-ha grass paddocks, provided ad libitum bermudagrass hay and provided dietary treatments in grain supplements fed daily. Treatments consisted of supplemental zinc (360 mg/d), copper (125 mg/d), manganese (200 mg/d), and cobalt (12 mg/d) from complexed (Zinpro Availa 4, Zinpro Corp. Eden Prairie, MN) or inorganic sources (sulfates). Heifers were observed daily for clinical bovine respiratory disease (BRD). If presenting BRD symptoms and rectal temperature ≥ 40 °C, heifers were deemed morbid and treated with antibiotics. Six heifers/pen were bled to determine serum haptoglobin concentrations on days 0, 14, and 28. Liver biopsies were taken on day 5 ±â€…2 and 43 ±â€…1 from three calves selected randomly from each pen for mineral status comparisons. Statistical analyses were performed using the MIXED, GLIMMIX, and repeated measures procedures of SAS 9.4 with truckload as a random effect and pen within truckload specified as subject. There tended to be a treatment by day interaction for BW (P = 0.07). Heifer BW did not differ on day 0 (P = 0.82) and day 14 (P = 0.36), but heifers fed complexed trace minerals had greater BW on day 28 (P = 0.04) and day 42 (P = 0.05). Overall average daily gains were greater for heifers fed complexed trace minerals (P = 0.05; 0.78 vs. 0.70 kg, SE = 0.03). Heifers supplemented with inorganic trace minerals had greater BRD incidence (P = 0.03; 58 vs. 46%, SE = 3.6). Haptoglobin concentrations decreased throughout the trial (P < 0.001), and heifers fed complexed trace minerals tended to have a decrease in haptoglobin concentrations (P = 0.07). The source of trace mineral supplementation had no effect (P ≥ 0.20) on liver mineral concentrations and there were no treatment × day interactions (P ≥ 0.35). In conclusion, supplementing diets for the first 42 d after arrival with complexed trace mineral sources improved heifer performance as compared to heifers supplemented with inorganic trace minerals.


Issues associated with health and management of newly received cattle continue to pose significant animal welfare and economic challenges for the beef industry. Diagnosis of bovine respiratory disease, accompanied with poor growth performance, can be addressed by nutritional intervention in receiving cattle. Trace mineral inclusion in receiving rations is vital to calf performance. There are numerous sources of trace mineral supplements that exist commercially for cattle and their effects on immune function, growth, and performance measures were evaluated. Organic trace mineral supplements are being used in replacement of inorganic salts due to potentially greater bioavailability and functionality. An organic source that is commonly used are amino acid complexes. Replacing inorganic sources with complexed sources of trace minerals (zinc, copper, manganese, and cobalt) improved growth performance and decreased sickness during the 42-d receiving study.


Asunto(s)
Oligoelementos , Bovinos , Animales , Femenino , Oligoelementos/farmacología , Manganeso/farmacología , Cobre/farmacología , Haptoglobinas/análisis , Suplementos Dietéticos , Minerales/farmacología , Zinc/farmacología , Cobalto/farmacología , Dieta/veterinaria , Peso Corporal , Alimentación Animal/análisis
4.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38456567

RESUMEN

Angus-cross steers (n = 144; 359 kg ±â€…13.4) were used to assess the effect of dietary Mn and steroidal implants on performance, trace minerals (TM) status, hepatic enzyme activity, hepatic gene expression, and serum metabolites. Steers (n = 6/pen) were stratified by BW in a 3 × 2 factorial. GrowSafe bunks recorded individual feed intake (experimental unit = steer; n = 24/treatment). Dietary treatments included (MANG; 8 pens/treatment; Mn as MnSO4): (1) no supplemental Mn (analyzed 14 mg Mn/kg DM; Mn0); (2) 20 mg supplemental Mn/kg DM (Mn20); (3) 50 mg supplemental Mn/kg DM (Mn50). Within MANG, steers received a steroidal implant treatment (IMP) on day 0: (1) no implant; NO; or (2) combination implant (Revalor-200; REV). Liver biopsies for TM analysis and qPCR, and blood for serum glucose, insulin, non-esterified fatty acids, and urea-N (SUN) analysis were collected on days 0, 20, 40, and 77. Data were analyzed as a randomized complete block with a factorial arrangement of treatments including fixed effects of Mn treatment (MANG) and implant (IMP) using PROC MIXED of SAS 9.4 using initial BW as a covariate. Liver TM, serum metabolite, enzyme activity, and gene expression data were analyzed as repeated measures. No MANG × IMP effects were noted (P ≥ 0.12) for growth performance or carcass characteristic measures. Dietary Mn did not influence final body weight, overall ADG, or overall G:F (P ≥ 0.14). Liver Mn concentration increased with supplemental Mn concentration (MANG; P = 0.01). An IMP × DAY effect was noted for liver Mn (P = 0.01) where NO and REV were similar on day 0 but NO cattle increased liver Mn from days 0 to 20 while REV liver Mn decreased. Relative expression of MnSOD in the liver was greater in REV (P = 0.02) compared to NO and within a MANG × IMP effect (P = 0.01) REV increased liver MnSOD activity. These data indicate current NASEM Mn recommendations are adequate to meet the demands of finishing beef cattle given a steroidal implant. Despite the roles of Mn in metabolic pathways and antioxidant defense, a basal diet containing 14 mg Mn/kg DM was sufficient for the normal growth of finishing steers. This study also provided novel insight into how implants and supplemental Mn influence genes related to arginine metabolism, urea synthesis, antioxidant capacity, and TM homeostasis as well as arginase and MnSOD activity in hepatic tissue of beef steers.


Steroidal implants improve cattle growth and efficiency partially through increased net protein synthesis resulting in increased skeletal muscle hypertrophy. Necessary to support this increased growth are trace minerals (TM). Manganese (Mn) is essential, serving as a cofactor and activator of various enzymes. Manganese plays a crucial role in ruminant animals by supporting nitrogen recycling while also being essential for mitochondrial antioxidant defense. Consulting nutritionists routinely supplement Mn, amongst other TM, at concentrations greater than current recommendations. However, there is limited research on the impact of supplemental Mn in implanted finishing cattle. Our prior work suggests steroidal implants decrease liver Mn concentration. This is of interest as liver Mn concentration is tightly regulated. Therefore, this study evaluated the effects of steroidal implants and manganese sulfate supplementation on cattle growth performance, trace mineral status, expression of relevant hepatic genes, hepatic enzyme activity, and circulating metabolites in feedlot steers. In this study, supplementing Mn at the recommended concentration did not influence the growth of both implanted and non-implanted cattle.


Asunto(s)
Compuestos de Manganeso , Sulfatos , Oligoelementos , Bovinos , Animales , Oligoelementos/farmacología , Oligoelementos/metabolismo , Suplementos Dietéticos , Antioxidantes/metabolismo , Alimentación Animal/análisis , Dieta/veterinaria , Hígado/metabolismo , Esteroides/farmacología , Urea/metabolismo , Expresión Génica
5.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38300904

RESUMEN

In the Northern Great Plains, cattle may be exposed to water with an elevated sulfate concentration resulting in ruminal hydrogen sulfide (H2S) production and risk of copper deficiency. There are currently few strategies available to help mitigate effects arising from high-sulfate water (HS). The objective of this study was to evaluate the effects of feeding a moderate-forage diet with or without bismuth subsalicylate (BSS; 0.0% vs. 0.4% DM basis) when provided water with a low- (LS; 346 ±â€…13) or HS (4,778 ±â€…263 mg/L) concentration on feed and water intake, ruminal H2S concentration, and liver and serum trace-mineral concentrations. Twenty-four Limousin × Simmental cross beef heifers (221 ±â€…41 kg) were stratified based on initial liver Cu into a completely randomized block design with a 2 × 2 factorial treatment arrangement. Feed and water intake (measured weekly), ruminal H2S concentration (measured on days 42 and 91), liver (measured on days -13 and 91), and serum trace-mineral concentrations (measured on days 1, 28, 56, and 91) were evaluated. Initial liver trace-mineral concentrations were used as a covariate in the statistical model. Water intake tended to be reduced with the inclusion of BSS (P = 0.095) but was not affected by water sulfate (P = 0.40). Water sulfate and BSS did not affect dry matter intake (DMI; P ≥ 0.89). Heifers consuming HS had a ruminal H2S concentration that was 1.58 mg/L more (P < 0.001) than LS. The inclusion of BSS reduced (P = 0.035) ruminal H2S concentration by more than 44% (1.35 vs. 0.75 mg/L). Regardless of the water sulfate concentration, heifers fed BSS had lesser liver Cu concentration (average of 4.08 mg/kg) than heifers not provided BSS, and when not provided BSS, HS had lesser Cu than LS (42.2 vs. 58.3; sulfate × BSS, P = 0.019). The serum concentration of Cu did not differ over time for heifers not provided BSS; whereas, heifers provided BSS had lesser serum Cu concentration on day 91 than on days 28 and 55 (BSS × time, P < 0.001). The liver concentration of selenium was reduced (P < 0.001) with BSS inclusion but the selenium concentration in serum was not affected by sulfate, BSS, or time (P ≥ 0.16). BSS reduced ruminal H2S concentration, but depleted liver Cu and Se. Moreover, sulfate concentration in water did not appear to affect DMI, water intake, or growth, but increased ruminal H2S and reduced liver Cu concentration.


Water containing a high concentration of sulfate increases the risk of hydrogen sulfide production in the rumen and consequently of polioencephalomalacia. In addition, water with a high-sulfate concentration may induce copper deficiency indicated by depleted liver copper concentration. Bismuth subsalicylate (BSS) can bind to sulfides and may reduce the risk of hydrogen sulfide production and therefore may mitigate risks associated with high-sulfate water. In this study, the effects of water sulfate concentrations (346 ±â€…13 vs. 4,778 ±â€…263 mg/L) were tested along with 0.0% vs. 0.4% of dietary BSS. Water intake tended to be reduced with the inclusion of BSS but was not affected by water sulfate. Water sulfate concentration and BSS did not affect dry matter intake (DMI). Heifers consuming high-sulfate water (HS) had a ruminal H2S concentration that was 1.58 mg/L more than low-sulfate water (LS). The inclusion of BSS reduced ruminal H2S concentration by 44% (1.35 vs. 0.75 mg/L). Regardless of the water sulfate concentration, heifers fed BSS had lesser liver Cu concentration than heifers not provided BSS, and when not provided BSS, HS had lesser Cu than LS. BSS reduced ruminal hydrogen sulfide concentration but depleted liver Cu. Sulfate concentration in water did not affect DMI, water intake, or growth, but increased ruminal hydrogen sulfide concentration and reduced liver Cu concentration.


Asunto(s)
Bismuto , Sulfuro de Hidrógeno , Compuestos Organometálicos , Salicilatos , Selenio , Oligoelementos , Bovinos , Animales , Femenino , Sulfuro de Hidrógeno/metabolismo , Oligoelementos/farmacología , Cobre/farmacología , Cobre/metabolismo , Sulfatos/metabolismo , Ingestión de Líquidos , Selenio/farmacología , Rumen/metabolismo , Dieta/veterinaria , Alimentación Animal/análisis , Suplementos Dietéticos , Digestión , Fermentación
6.
Biol Trace Elem Res ; 202(4): 1477-1502, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37523058

RESUMEN

Hypertension (HT) is a medical condition arising due to increase in blood pressure (BP) prevalent worldwide. The balanced dietary intakes of macro-elements and micro-elements including Na, K, Ca, Mg, Zn, and Cu have been described to maintain BP in humans by regulating the osmolarity of blood, cells/tissues, prevention of generation of oxidative and nitrosative stress (OANS), and endothelial damage through their functioning as important components of renin-angiotensin-aldosterone system (RAAS), antioxidant enzyme defense system, and maintenance of blood vascular-endothelial and vascular smooth muscle cell (VSMC) functions. However, inadequate/excess dietary intakes of Na/K, Ca/Mg, and Zn/Cu along with higher Pb and As exposures recognized to induce HT through common mechanisms including the followings: endothelial dysfunctions due to impairment of vasodilatation, increased vasoconstriction and arterial stiffness, blood clotting, inflammation, modification of sympathetic activity and higher catecholamine release, increased peripheral vascular resistance, and cardiac output; increased OANS due to reduced and elevated activities of extracellular superoxide dismutase and NAD(P)H oxidase, less nitric oxide bioavailability, decrease in cGMP and guanylate cyclase activity, increase in intracellular Ca2+ ions in VSMCs, and higher pro-inflammatory cytokines; higher parathyroid and calcitriol hormones; activation/suppression of RAAS resulting imbalance in blood Na+, K+, and water regulated by renin, angiotensin II, and aldosterone through affecting natriuresis/kaliuresis/diuresis; elevation in serum cholesterol and LDL cholesterol, decrease in HDL cholesterol due to defect in lipoprotein metabolism. The present study recommends the need to review simple dietary mineral intervention studies/supplementation trials before keeping their individual dietary excess intakes/exposures in consideration because their interactions lead to elevation and fall of their concentrations in body affecting onset of HT.


Asunto(s)
Hipertensión , Oligoelementos , Humanos , Plomo , Oligoelementos/farmacología , Sodio , Iones , Zinc
7.
J Endod ; 49(9): 1169-1175, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37429496

RESUMEN

INTRODUCTION: This study evaluated the effects of diabetes mellitus (DM) on the nanostructure of root canal dentin using high-resolution transmission electron microscopy (HRTEM) and inductively coupled plasma mass spectrometry (ICP-MS). METHODS: Twenty extracted human premolars from diabetic and nondiabetic patients (n = 10 in each group) were decoronated and sectioned horizontally into 40 2-mm-thick dentin discs, with each disc designated for a specific test. ICP-MS was used to determine the different elemental levels of copper, lithium, zinc, selenium, strontium, manganese, and magnesium in diabetic and nondiabetic specimens. HRTEM was used to analyze the shape and quantity of the apatite crystals in diabetic and nondiabetic dentin at the nanostructural level. Statistical analysis was performed using Kolmogorov-Smirnov and Student t test (P < .05). RESULTS: ICP-MS revealed significant differences in trace element concentrations between the diabetic and nondiabetic specimens (P < .05), with lower levels of magnesium, zinc, strontium, lithium, manganese, and selenium (P < .05), and higher levels of copper in diabetic specimens (P < .05). HRTEM revealed that diabetic dentin exhibited a less compact structure with smaller crystallites and significantly more crystals in the 2500 nm2 area (P < .05). CONCLUSION: Diabetic dentin exhibited smaller crystallites and altered elemental levels more than nondiabetic dentin, which could explain the higher root canal treatment failure rate in diabetic patients.


Asunto(s)
Diabetes Mellitus , Selenio , Oligoelementos , Humanos , Magnesio/análisis , Magnesio/farmacología , Cobre/análisis , Cobre/farmacología , Manganeso/análisis , Manganeso/farmacología , Selenio/análisis , Selenio/farmacología , Cavidad Pulpar , Litio/análisis , Litio/farmacología , Oligoelementos/análisis , Oligoelementos/farmacología , Zinc/análisis , Zinc/farmacología , Estroncio/análisis , Estroncio/farmacología , Dentina
8.
Int J Mol Sci ; 24(13)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37445755

RESUMEN

Since silicon can improve nutrient uptake in plants, the effect of foliar silicon (sodium metasilicate) application on micronutrient content in early crop potato tuber was investigated. Silicon was applied at dosages of 23.25 g Si∙ha-1 or 46.50 g Si∙ha-1 (0.25 L∙ha-1 or 0.50 L∙ha-1 of Optysil) once at the leaf development stage (BBCH 14-16), or at the tuber initiation stage (BBCH 40-1), and twice, at the leaf development and tuber initiation stages. Potatoes were harvested 75 days after planting (the end of June). Foliar-applied silicon reduced the Fe concentration and increased Cu and Mn concentrations in early crop potato tubers under water deficit conditions but did not affect the Zn, B, or Si concentrations. The dosage and time of silicon application slightly affected the Fe and Cu concentration in the tubers. Under drought conditions, the highest Mn content in the tuber was observed when 46.50 g Si∙ha-1 was applied at the leaf development stage, whereas under periodic water deficits, it was highest with the application of the same silicon dosage at the tuber initiation stage (BBCH 40-41). The Si content in tubers was negatively correlated with the Fe and B content, and positively correlated with the Cu and Mn content.


Asunto(s)
Solanum tuberosum , Oligoelementos , Silicio/farmacología , Micronutrientes/farmacología , Oligoelementos/farmacología , Tubérculos de la Planta , Agua/farmacología
9.
Int J Mol Sci ; 24(11)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37298655

RESUMEN

(1) In this study we determined the effect of long-term selenomethionine administration on the oxidative stress level and changes in antioxidant protein/enzyme activity; mRNA expression; and the levels of iron, zinc, and copper. (2) Experiments were performed on 4-6-week-old BALB/c mice, which were given selenomethionine (0.4 mg Se/kg b.w.) solution for 8 weeks. The element concentration was determined via inductively coupled plasma mass spectrometry. mRNA expression of SelenoP, Cat, and Sod1 was quantified using real-time quantitative reverse transcription. Malondialdehyde content and catalase activity were determined spectrophotometrically. (3) After long-term SeMet administration, the amount of Se increased by 12-fold in mouse blood, 15-fold in the liver, and 42-fold in the brain, as compared to that in the control. Exposure to SeMet decreased amounts of Fe and Cu in blood, but increased Fe and Zn levels in the liver and increased the levels of all examined elements in the brain. Se increased malondialdehyde content in the blood and brain but decreased it in liver. SeMet administration increased the mRNA expression of selenoprotein P, dismutase, and catalase, but decreased catalase activity in brain and liver. (4) Eight-week-long selenomethionine consumption elevated Se levels in the blood, liver, and especially in the brain and disturbed the homeostasis of Fe, Zn, and Cu. Moreover, Se induced lipid peroxidation in the blood and brain, but not in the liver. In response to SeMet exposure, significant up-regulation of the mRNA expression of catalase, superoxide dismutase 1, and selenoprotein P in the brain, and especially in the liver, was determined.


Asunto(s)
Selenio , Oligoelementos , Ratones , Animales , Oligoelementos/farmacología , Oligoelementos/análisis , Antioxidantes/farmacología , Selenio/farmacología , Catalasa/genética , Catalasa/metabolismo , Cobre/análisis , Peroxidación de Lípido , Selenometionina/farmacología , Selenoproteína P/metabolismo , Superóxido Dismutasa/metabolismo , Malondialdehído/metabolismo , Homeostasis , ARN Mensajero/genética , ARN Mensajero/metabolismo
10.
Biomolecules ; 13(6)2023 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-37371586

RESUMEN

The objective of the present study was to review recent epidemiological and clinical data on the association between selected minerals and trace elements and osteoporosis, as well as to discuss the molecular mechanisms underlying these associations. We have performed a search in the PubMed-Medline and Google Scholar databases using the MeSH terms "osteoporosis", "osteogenesis", "osteoblast", "osteoclast", and "osteocyte" in association with the names of particular trace elements and minerals through 21 March 2023. The data demonstrate that physiological and nutritional levels of trace elements and minerals promote osteogenic differentiation through the up-regulation of BMP-2 and Wnt/ß-catenin signaling, as well as other pathways. miRNA and epigenetic effects were also involved in the regulation of the osteogenic effects of trace minerals. The antiresorptive effect of trace elements and minerals was associated with the inhibition of osteoclastogenesis. At the same time, the effect of trace elements and minerals on bone health appeared to be dose-dependent with low doses promoting an osteogenic effect, whereas high doses exerted opposite effects which promoted bone resorption and impaired bone formation. Concomitant with the results of the laboratory studies, several clinical trials and epidemiological studies demonstrated that supplementation with Zn, Mg, F, and Sr may improve bone quality, thus inducing antiosteoporotic effects.


Asunto(s)
Osteoporosis , Oligoelementos , Humanos , Oligoelementos/farmacología , Osteogénesis , Minerales/metabolismo , Osteoporosis/metabolismo , Huesos/metabolismo
11.
J Trace Elem Med Biol ; 78: 127188, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37163819

RESUMEN

BACKGROUND: Methotrexate (MTX), a folic acid analogue, is used as a first-line treatment for rheumatoid arthritis (RA) since it has more therapeutic mechanisms than any other drug. Being an undeniable drug for the treatment of arthritis, even low-dose MTX provokes intestinal toxicity as a primary adverse effect and does not revive an anti-inflammatory element. Thus, our study aims to elucidate the anti-arthritic and prophylactic activity of supplements L-carnitine (L) and zinc (Z) against MTX-mediated intestinal damage in arthritis rats. METHODS: The rats were assessed for arthritic parameters such as body weight, paw volume, x-ray scan, and serum trace elements level. To analyze the toxic effects of MTX in the rats, intestine pH, mucosal weight, digestive enzymes, myeloperoxidase, histopathological, and immunohistochemical analysis were performed. RESULTS: Our study demonstrated that the arthritic parameters have shown that MTX has an ameliorative effect on arthritic rats. Besides, our findings showed that low-dose MTX (2.5 mg/kg b.w.) given once a week for two weeks during arthritis treatment had toxic effects in the rat's intestine, as evidenced by changes in intestine pH and mucosal weight, decreased digestive enzymes, increased MPO, and degenerative changes in histopathological analysis. Concurrent therapy of LZ with MTX, on the other hand, restored the modifications in these parameters. CONCLUSION: MTX in combination with LZ effectively manages arthritis than monotherapy and significantly prevents MTX-induced intestinal damage in arthritis rats. Thus, LZ could be used as an improved therapeutic and safety for MTX-instigated intestinal damage during arthritis treatments. Therefore, our combination of L-carnitine and zinc with MTX would be promising prophylactic activity for arthritis patients.


Asunto(s)
Artritis Experimental , Oligoelementos , Ratas , Animales , Metotrexato/farmacología , Metotrexato/uso terapéutico , Oligoelementos/farmacología , Enterocitos , Carnitina/farmacología , Carnitina/uso terapéutico , Zinc/uso terapéutico , Zinc/farmacología , Suplementos Dietéticos , Artritis Experimental/inducido químicamente , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Proliferación Celular
12.
J Dairy Sci ; 106(4): 2386-2394, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36870849

RESUMEN

Trace mineral (TM) source can potentially alter nutrient digestibility through effects on microbial populations. A meta-analysis was conducted to determine whether sulfate versus hydroxy (IntelliBond) sources of supplemental Cu, Zn, and Mn had any effect on dry matter intake (DMI), dry matter digestibility, and neutral detergent fiber (NDF) digestibility. All available cattle studies (8 studies, 12 comparisons) were used to estimate the effect size (hydroxy mean - sulfate mean). Factors included in the analysis were method of digestibility analysis (total collection, marker-based, or 24 h in situ), study design (randomized design or Latin square), beef (n = 5) versus dairy (n = 7) cattle, and days on treatment; these factors were retained when P < 0.05. Dry matter digestibility was increased by hydroxy TM in beef (1.64 ± 0.35 units) but not in dairy models (0.16 ± 0.13 units) relative to sulfate TM. The NDF digestibility increased significantly with hydroxy versus sulfate TM, but digestibility assessment method influenced this response. Studies using total collection or undigested NDF as a flow marker showed a significant increase (2.68 ± 0.40 units and 1.08 ± 0.31 units, respectively) in NDF digestibility for hydroxy versus sulfate TM; but studies utilizing 24-h in situ incubation did not detect any change (-0.03 ± 0.23 units). These observations may reveal differences in precision of measurement or may indicate mineral effects beyond the rumen; total collection is considered the gold standard method. Hydroxy TM did not affect DMI per animal or per unit of body weight relative to sulfate TM. In conclusion, feeding hydroxy versus sulfate TM does not appear to affect DMI but, depending on type of cattle and method of measurement, can increase dry matter digestibility and NDF digestibility, which may be explained by differences in solubility of the TM sources in rumen, differentially affecting fermentation.


Asunto(s)
Oligoelementos , Bovinos , Animales , Femenino , Oligoelementos/farmacología , Sulfatos/metabolismo , Sulfatos/farmacología , Dieta/veterinaria , Fibras de la Dieta/metabolismo , Digestión , Nutrientes , Rumen/metabolismo , Fermentación , Alimentación Animal , Lactancia
13.
Pathog Glob Health ; 117(7): 639-654, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36871204

RESUMEN

Toxoplasmosis is an opportunistic infection caused by the coccidian Toxoplasma gondii which represents a food and water contaminant. The available chemotherapeutic agents for toxoplasmosis are limited and the choice is difficult when considering the side effects. Selenium is an essential trace element. It is naturally found in dietary sources, especially seafood, and cereals. Selenium and selenocompounds showed anti-parasitic effects through antioxidant, immunomodulatory, and anti-inflammatory mechanisms. The present study evaluated the potential efficacy of environmentally benign selenium nanoparticles (SeNPs) against acute toxoplasmosis in a mouse model. SeNPs were fabricated by nanobiofactory Streptomyces fulvissimus and characterized by different analytical techniques including, UV-spectrophotometry, transmission electron microscopy, EDX, and XRD. Swiss albino mice were infected with Toxoplasma RH strain in a dose of 3500 tachyzoites in 100 µl saline to induce acute toxoplasmosis. Mice were divided into five groups. Group I: non-infected, non-treated, group II: infected, non-treated, group III: non-infected, treated with SeNPs, group IV: infected, treated with co-trimoxazole (sulfamethoxazole/trimethoprim) and group V: infected, treated with SeNPs. There was a significant increase in survival time in the SeNPs-treated group and minimum parasite count was observed compared to untreated mice in hepatic and splenic impression smears. Scanning electron microscopy showed tachyzoites deformity with multiple depressions and protrusions, while transmission electron microscopy showed excessive vacuolization and lysis of the cytoplasm, especially in the area around the nucleus and the apical complex, together with irregular cell boundary and poorly demarcated cell organelles. The present study demonstrated that the biologically synthesized SeNPs can be a potential natural anti-Toxoplasma agent in vivo.


Asunto(s)
Nanopartículas , Selenio , Toxoplasma , Toxoplasmosis , Oligoelementos , Ratones , Animales , Selenio/farmacología , Selenio/uso terapéutico , Oligoelementos/uso terapéutico , Oligoelementos/farmacología , Toxoplasmosis/tratamiento farmacológico , Toxoplasmosis/parasitología
14.
JPEN J Parenter Enteral Nutr ; 47(5): 595-602, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36919001

RESUMEN

AIMS: This study aimed to assess the effect of zinc supplementation, with or without other antioxidants and trace elements, on clinical outcomes in patients with trauma. METHODS: A systematic review was conducted for adult patients with acute trauma who had been admitted to the hospital. Those who sustained burn injuries were excluded. Studies in PubMed, Web of Science, and Embase from 1990 to 2022 regarding the additional nutrition supplementation of zinc to patients, either in a single-agent or combined regimen, were included. Comparisons were made between the zinc supplement group and those who received a placebo or regular treatment. RESULTS: The primary outcomes of the study were mortality rate, length of hospital stay, and incidence of pneumonia. Seven studies qualified for the meta-analysis. Of the 594 patients eligible for analysis, 290 and 304 were in the zinc supplementation and control groups, respectively. The meta-analysis revealed that zinc supplementation was associated with a lower risk of pneumonia in patients with acute trauma than in the control group (odds ratio [OR], 0.506; 95% CI = 0.292-0.877; P = 0.015; heterogeneity, I2 = 12.7%). Zinc supplementation did not influence the mortality rate (OR, 0.755; 95% CI = 0.492-1.16; P = 0.612; heterogeneity, I2 = 0%) or the length of hospital stay (standard difference in means, -0.24; 95% CI = -0.544 to 0.063; P = 0.121; heterogeneity, I2 = 45.0%). CONCLUSION: Zinc supplementation, with or without other antioxidants and trace elements, in patients with trauma was associated with a lower incidence of pneumonia.


Asunto(s)
Neumonía , Oligoelementos , Adulto , Humanos , Oligoelementos/farmacología , Oligoelementos/uso terapéutico , Antioxidantes/uso terapéutico , Zinc/uso terapéutico , Suplementos Dietéticos , Neumonía/epidemiología , Neumonía/prevención & control
15.
Am J Clin Nutr ; 117(1): 93-110, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36789948

RESUMEN

BACKGROUND: Selenium is an essential trace element with both beneficial and detrimental effects on health depending on dose and chemical form. Currently, there is debate on recommendations for selenium supplementation as a public health measure to improve immune function and reduce infectious disease susceptibility. OBJECTIVES: We performed a systematic review and meta-analysis of experimental studies assessing the effect of selenium supplementation on immunity-related outcomes in healthy people. METHODS: We undertook a search of published and unpublished studies in literature databases such as PubMed/MEDLINE, Embase, and clinicaltrials.gov up to 17 October, 2022, and performed a meta-analysis comparing the effects on immunity-related outcomes between Se-supplemented versus control arms. Whenever possible we assessed the nonlinear relation using a dose-response approach. RESULTS: 9 trials were included, 5 in North America, and 4 in Europe, with a duration between 8 and 48 weeks and supplementation of both inorganic and organic selenium forms. Selenium supplementation did not substantially affect immunoglobulin or white blood cell concentrations, and the dose-response meta-analysis indicated that an increase in plasma selenium concentrations above 100 µg/L did not further increase IgA levels nor T cells. An inverted U-shaped relation emerged for NK cell count, with a lower number of these cells both below and above 120 µg/L. The only beneficial effect of selenium supplementation was the increased activity for NK lysis, but the available data did not permit dose-response analysis. Cytokine levels were substantially unaffected by selenium supplementation. CONCLUSIONS: Although some of the data suggested beneficial effects of selenium supplementation on immune function, the overall picture appears to be inconsistent and heterogeneous due to differences in trial duration and interventions, plus evidence of null and even detrimental effects. Overall, the evidence that we extracted from the literature in this systematic review does not support the need to supplement selenium beyond the recommended dietary intake to obtain beneficial effects on immune function. This trial was registered at PROSPERO (CRD42022312280).


Asunto(s)
Selenio , Oligoelementos , Humanos , Selenio/farmacología , Oligoelementos/farmacología , Suplementos Dietéticos , Inmunidad , Europa (Continente)
16.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36588522

RESUMEN

Low-risk, weaned Angus-crossbred steers (n = 72; 284 ± 25 kg) were used in a 42-d receiving study. Steers were housed in pens (n = 6 steers per pen) equipped with GrowSafe bunks for determination of individual animal feed disappearance. Dietary treatments (n = 24 steers per treatment) included: 1) trace minerals (TM) from an organic source (Availa4; Zinpro Corp., Eden Prairie, MN) at 7 g·steer-1·d-1; for 42 d (ORG); 2) ORG for entire 42-d plus AvailaZn (Zn amino acid complex, Zinpro Corp., Eden Prairie, MN) to provide 1,000 mg Zn·steer-1·d-1 for first 14 d (ORG+Z); 3) inorganic TM sources to supplemented at equivalent concentration as in ORG for 42-d (ING). Cattle were weighed on day -1, 0, 14, 41, and 42. Whole blood was collected (n = 72 steers) on day 0, 14, and 42. Liver biopsies were conducted (n = 36 steers; 3 steers per pen) on day 0, 14, and 42. Flow cytometry measures were conducted using whole blood on day 1, 14, and 42 for determination of circulating frequencies of immune cell populations. There was a tendency for improved overall average daily gain (P = 0.07) where both ORG and ORG+Z were greater than ING. Final body weight did not differ (P = 0.21) and overall dry matter intake was unaffected by dietary treatment (P ≥ 0.18). However, overall gain-to-feed ratio was improved (P = 0.01) in steers supplemented organic TM (ORG and ORG+Z) compared to ING. Plasma Zn concentration did not differ at any time point during the study (P ≥ 0.20). Liver Zn concentration did not differ between treatments on day 0 or 42; however, on day 14 ING tended (P = 0.09) to be greater than ORG+Z with ORG being intermediate. Plasma Cu was unaffected by dietary treatment (P ≥ 0.34) on day 0, 14, and 42. Plasma Fe did not differ on day 0 or 42 but tended to be greater in ORG and ORG+Z compared to ING (P = 0.08) on day 14. Dietary treatment did not alter (P ≥ 0.22) liver Fe or Mn concentration at any time point. Frequency of total circulating natural killer (NK) and CD8 T cells measured on day 0, 14, and 42 did not differ (P ≥ 0.07). However, cell surface markers of activation (CD16, CD44, and CD8) on NK cells measured on day 14 did differ because of treatment (P ≤ 0.05). Results presented herein indicate TM from an organic source supplemented to steers during receiving can positively influence growth rate and feed efficiency. Regardless of source, TM supplementation affected markers of immune function but did not influence the prevalence of circulating NK and CD8 T-cell populations.


The receiving phase of the beef cattle production cycle occurs when calves are initially placed into the feedlot. During this time cattle are often exposed to stressors such as new environments, unfamiliar feedstuffs, and new pathogens. Together these stressors can result in lesser feed consumption. Along with lower total feed consumption, it is during this time that cattle likely require greater amounts of specific trace minerals (TM) to mount an effective immune response and maintain adequate growth. Therefore, this study aimed to evaluate the effects of supplemental Zn concentration and TM source on the immune function and associated biomarkers of immune status in weaned beef calves received into a feedlot. In this study, the more bioavailable, organic TM source supplemented to steers during receiving positively influenced growth rate and feed efficiency. Plasma TM concentration of steers in this study was adequate and was minimally influenced by TM source or concentration. These results also show TM supplementation, regardless of source, can alter markers of activation within immune cell populations.


Asunto(s)
Oligoelementos , Bovinos , Animales , Oligoelementos/farmacología , Suplementos Dietéticos , Dieta/veterinaria , Alimentación Animal/análisis , Zinc/farmacología , Inmunidad
17.
Biol Trace Elem Res ; 201(11): 5389-5400, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36701085

RESUMEN

Trace elements such as Cu, Fe, Mn and Zn are essential minerals in fish diets, especially important at early larval stages. The chemical speciation of these elements directly influences their uptake efficiency and metabolic utilization. In order to optimize the form of trace elements incorporated into larval feed, two experiments were conducted using two commercial fish species, European seabass (Dicentrarchus labrax) and Senegalese sole (Solea senegalensis), and two chemical forms (inorganic and glycinate chelates). Several fish performance parameters were measured, as well as bone status parameters to assess which form of mineral results in optimal fish biological performance. European seabass and Senegalese sole post-larvae were unresponsive (P > 0.05) to dietary treatments in terms of dry weight (DW), standard length (SL), relative growth rate (RGR) or feed conversion rates (FCR) when fed diets supplemented with chelated over inorganic trace minerals. This study suggests that replacing dietary inorganic mineral supplementation by their organic glycinate-chelated forms brings no beneficial effects on somatic growth and bone development in Senegalese sole and European seabass post-larvae fed high-quality commercial microdiets. Additionally, we show that mineral leaching from diets can be significant, but the use of chelated minerals can potentially mitigate this leaching phenomenon. Therefore, the selection of the dietary mineral form should take into account not only their economic value, but also their biological effect and environmental impact. Data generated in this trial provides new knowledge in trace mineral nutrition of early-stage marine fish.


Asunto(s)
Lubina , Oligoelementos , Animales , Alimentación Animal/análisis , Lubina/metabolismo , Dieta , Suplementos Dietéticos , Larva/metabolismo , Minerales/farmacología , Oligoelementos/farmacología , Oligoelementos/metabolismo
18.
Biol Trace Elem Res ; 201(8): 4052-4061, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36402885

RESUMEN

Pathological conditions and harmful drugs cause many gastrointestinal diseases in broiler chicken. The current study was conducted to investigate the effect of trace elements zinc (Zn) and selenium (Se) supplementation on histomorphology, immunological role, and functional activity of goblet cells (GCs) of the small intestine. The Alcian blue-periodic acid-Schiff (AB-PAS) was performed to assess the histomorphological changes in GCs, which revealed the regular dispersion with high electron density of GCs throughout the mucosal surface in the supplemented group. However, irregular dispersion with low electron density of GCs was present in the control group. The immunological functional role of GCs within the small intestine was examined by mucicarmine staining, immunohistochemistry, and immunofluorescence. The results showed a high mucin glycol protein secretion in the supplemented group, whereas limited mucin glycol protein secretion in the control group. Furthermore, the biological significance showed a high and low immunoreactivity of Muc2 and Muc13 in the supplemented and control groups, respectively. Immunofluorescence was used to confirm the immunosignaling of Muc2. Results revealed high immunosignaling of Muc2 at the apical part of the small intestine in the supplementation group, while low immunosignaling of Muc2 in the control group. Results suggest that trace element supplementation had significant effect on morphology and immunological role of GCs, which might be essential for immune function and health status of broiler chicken.


Asunto(s)
Pollos , Oligoelementos , Animales , Pollos/metabolismo , Oligoelementos/farmacología , Oligoelementos/metabolismo , Células Caliciformes/metabolismo , Mucinas/metabolismo , Suplementos Dietéticos , Intestino Delgado/metabolismo
19.
Biol Trace Elem Res ; 201(4): 2036-2057, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35665883

RESUMEN

Selenium (Se) is one of the essential micronutrients for performing vital body functions. This study aims at examining the influence of dietary supplementation of garlic clove-based green-synthesized selenium nanoparticles (GBGS-SeNPs, 48-87 nm) on carcass minerals and trace elements, and growth, biochemical, enzymological, and gene expression analyses in the freshwater prawn, Macrobrachium rosenbergii post larvae (PL). The 96 h LC50 of this GBGS-SeNPs to M. rosenbergii PL was 52.23 mg L-1. Five different artificial diets without supplementation of GBGS-SeNPs (control, 0.0 mg kg-1) and with supplementations of GBGS-SeNPs starting from 100 times lower than the LC50 value (0.5, 1.0, 1.5, and 2.0 mg kg-1) were prepared and fed to M. rosenbergii PL for 90 days. A dose-dependent accumulation of Se was observed in the carcass of experimental prawns. GBGS-SeNPs, up to 1.5 mg kg-1 significantly influenced the absorption of other trace elements (Ca, Cu, and Fe) and mineral salts (K, Mg, Na, and Zn). GBGS-SeNPs-supplemented diets showed efficient food conversion ratio (FCR) of 1.32 g against 2.71 g, and therefore enhanced the survival rate (85.6% against 78.8% in control) and weight gain (WG) of 1.41 g against 0.46 g of control prawn. GBGS-SeNPs significantly elevated the activities of protease, amylase, and lipase, and the contents of total protein, essential amino acids (EAA), total carbohydrate, total lipid, monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), and ash. These indicate the growth promoting potential of GBGS-SeNPs in prawn. The insignificantly altered activities of glutamic oxaloacetate transaminase (GOT), glutamic pyruvate transaminase (GPT), superoxide dismutase (SOD), and catalase, and the content of malondialdehyde (MDA) up to 1.5 mg kg-1 suggest its acceptability in prawn. Moreover, a respective down- and upregulated myostatin (MSTN) and crustacean hyperglycemic hormone (CHH) genes confirmed the influence of GBGS-SeNPs on the growth of prawn. In contrast, 2.0 mg kg-1 GBGS-SeNPs supplementation starts to produce negative effects on prawn (FCR, 1.76 g; survival rate, 82.2%; WG, 0.84 g against respective values of 1.32 g, 85.6%; and 1.41 g observed in 1.5 mg kg-1 of GBGS-SeNPs-supplemented diet fed prawn). This study recommends a maximum of 1.5 mg kg-1 GBGS-SeNPs as dietary supplement to attain sustainable growth of M. rosenbergii. This was confirmed through polynomial and linear regression analyses.


Asunto(s)
Ajo , Nanopartículas , Palaemonidae , Selenio , Syzygium , Oligoelementos , Animales , Antioxidantes/metabolismo , Expresión Génica , Selenio/farmacología , Syzygium/metabolismo , Oligoelementos/farmacología , Transaminasas/farmacología
20.
Anim Biotechnol ; 34(5): 1822-1827, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35400297

RESUMEN

The objective of this study was to evaluate the effects of supplemental levels of compound minerals (CM), which was formulated from a mixture of 300 mg calcium, 150 mg magnesium, 25 mg zinc, 15 mg iron, 4 mg manganese, and 2 mg copper per gram, on the growth performance and feed conversion ratio of Duroc × (Landrace × Yorkshire) fattening pigs. A total of 53 female pigs and 45 male pigs at 35 days of age were individually notched and randomly allocated to three treatments, including0 (basal diet), 0.5 (basal diet with 0.5 mg CM/kg feed), and 1 (basal diet with 1 mg CM/kg feed). There were three replicates for each of the three treatments with 28, 34, and 36 pigs in the first, second, and third treatments, respectively. The experiment was divided into two phases, the growing stage, and the finishing stage. Supplementation of compound minerals in the diet led to an increased average daily weight gain and improved feed conversion ratio and meat quality without effects on the lean meat percentage. An addition of 1 mg of compound minerals per 1 kg of feed is the recommended dose to improve the production performance of fattening pigs. These results suggest that the use of compound minerals could improve the growth traits of fattening pigs under tropical environmental conditions.


Asunto(s)
Oligoelementos , Femenino , Masculino , Porcinos , Animales , Oligoelementos/farmacología , Dieta/veterinaria , Minerales/farmacología , Carne/análisis , Aumento de Peso , Alimentación Animal/análisis , Composición Corporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA