Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 601
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Chem Biodivers ; 21(5): e202400506, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38507138

RESUMEN

Acute lung injury (ALI) is a disease characterized by extensive lung damage and rampant inflammation, with a high mortality rate and no effective treatments available. Morinda officinalis oligosaccharides (MOOs), derived from the root of the traditional Chinese medicinal herb Morinda officinalis, known for its immune-boosting properties, presents a novel therapeutic possibility. To date, the impact of MOOs on ALI has not been explored. Our study aimed to investigate the potential protective effects of MOOs against ALI and to uncover the underlying mechanisms through an integrated approach of network pharmacology, molecular docking, and experimental validation. We discovered that MOOs significantly mitigated the pathological damage and decreased the expression of pro-inflammatory cytokines in LPS-induced ALI in mice. Complementary in vitro studies further demonstrated that MOOs effectively attenuated the M1 polarization induced by LPS. Network pharmacology analysis identified HSP90AA1, HSP90AB1, and NF-κB as key overlapping targets within a protein-protein interaction (PPI) network. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses elucidated the biological processes and signaling pathways implicated in MOOs' therapeutic action on ALI. Subsequently, molecular docking affirmed the binding of MOOs to the active sites of these identified targets. Corroborating these findings, our in vivo and in vitro experiments consistently demonstrated that MOOs significantly inhibited the LPS-induced upregulation of HSP90 and NF-κB. Collectively, these findings suggest that MOOs confer protection against ALI through a multi-target, multi-pathway mechanism, offering a promising new therapeutic strategy to mitigate this severe pulmonary condition.


Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , Simulación del Acoplamiento Molecular , Morinda , Oligosacáridos , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Animales , Morinda/química , Ratones , Oligosacáridos/farmacología , Oligosacáridos/química , Oligosacáridos/aislamiento & purificación , Masculino , Células RAW 264.7 , Ratones Endogámicos C57BL , Citocinas/metabolismo , FN-kappa B/metabolismo
2.
J Ethnopharmacol ; 328: 118124, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38556138

RESUMEN

ETHNOPHAMACOLOGICAL RELEVANCE: Morinda officinalis oligosaccharides (MOs) is a mixture of oligosaccharides extracted from the roots of Morinda officinalis (MO). It is approved by Chinese Food and Drug Administration (CFDA) for depression treatment. MOs could improve the antidepressant efficacy of escitalopram in clinic. AIM OF THE STUDY: We aim to explore the antidepressant activity and potential mechanism of the combination usage of MOs and escitalopram on animal model of depression. MATERIALS AND METHODS: Depressive animal model was induced by chronic mild stress (CMS). Behavioral tests were conducted to evaluate the antidepressant efficacy of MOs and escitalopram. Serum neurotransmitter levels were detected by High-performance liquid chromatography (HPLC). Quantitative real-time PCR and Western blotting were applied to assay the hippocampus neurotrophic factors' mRNA and protein levels. Peripheral cytokines levels were measured through Enzyme-Linked Immunosorbent Assay (ELISA). Micorglia polization phenotype was assayed by immunofluorescence and flow cytometry. RESULTS: MOs and escitalopram obviously attenuated depression-like behaviors of CMS mice. Importantly, MOs plus escitalopram exhibited better antidepressant activity on CMS mice than monotherapy. At the same time, MOs combined escitalopram treatment significantly increased hippocampus neurotransmitters and neurotrophic factor levels, stimulated hippocampus neurogenesis and relieved central nervous system (CNS) microglia over-activation of CMS mice. The combination therapy had greater effect on neuroprotection and inflammation attenuation of CMS mice than monotherapy. CONCLUSION: Our results indicates MOs combined escitalopram might produce antidepressant activity through protecting neuron activity, relieving inflammation and modulating microglia polarization process.


Asunto(s)
Escitalopram , Morinda , Ratones , Animales , Depresión/tratamiento farmacológico , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Oligosacáridos/farmacología , Oligosacáridos/uso terapéutico , Inflamación/tratamiento farmacológico , Estrés Psicológico/tratamiento farmacológico , Modelos Animales de Enfermedad
3.
Wei Sheng Yan Jiu ; 53(1): 81-87, 2024 Jan.
Artículo en Chino | MEDLINE | ID: mdl-38443177

RESUMEN

OBJECTIVE: To explore the protective effect of different ratios of galactose oligosaccharide(GOS) and polydextrose(PDX) on intestinal cell barrier damage model of Caco-2. METHODS: The same batch of Caco-2 cells were cultured to form a cell barrier model and randomly divided into damaged model group without calcium, calcium-containing blank control group(1.8 mmol/L Ca~(2+)), low-ratio/low-dose group(1.8 mmol/L Ca~(2+)+2 mg/mL GOS+2 mg/mL PDX) and low-ratio/medium-dose group(1.8 mmol/L Ca~(2+)+4 mg/mL GOS+4 mg/mL PDX), low-ratio/high-dose group(1.8 mmol/L Ca~(2+)+8 mg/mL GOS+8 mg/mL PDX) and high-ratio/low-dose group(1.8 mmol/L Ca~(2+)+0.8 mg/mL GOS+3.2mg/mL PDX), high-ratio/medium-dose group(1.8 mmol/L Ca~(2+)+1.6 mg/mL GOS+6.4 mg/mL PDX), high-ratio/high-dose group(1.8 mmol/L Ca~(2+)+3.2mg/mL GOS+12.8 mg/mL PDX), a total of 8 groups, three parallel groups were performed in each group. The Trans Epithelial Electrical Resistance value and apparent permeability coefficient value of each group were determined after 4 d culture, and the morphology of tight junction proteins ZO-1, Occludin and Claudin-1 were observed by immunofluorescence method, and the expression levels of inflammatory related factors in each group were determined by protein microarray method. RESULTS: Compared with damaged model group, TEER ratio in calcium-containing blank control group was significantly increased(P<0.05), while Papp value was significantly decreased(P<0.05);Compared with calcium-containing blank control group, TEER ratio in low-ratio/medium-dose group and high-ratio/high-dose group was significantly increased(P<0.05) while Papp value was significantly decreased(P<0.05), and they could significantly down-regulate some inflammatory response related cytokines. The cell barrier was intact in all groups except for the compact junction protein structure in the model group. CONCLUSION: Compared with Ca~(2+) alone, the combination of two prebiotics can enhance the density of Caco-2 cell barrier and reduced the permeability of cell bypass. And it can significantly reduce the expression level of some inflammatory cytokines and effectively protect the intestinal cell barrier.


Asunto(s)
Calcio de la Dieta , Calcio , Glucanos , Humanos , Células CACO-2 , Citocinas , Oligosacáridos/farmacología
4.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38339084

RESUMEN

The gut microbiota of healthy breastfed infants is often dominated by bifidobacteria. In an effort to mimic the microbiota of breastfed infants, modern formulas are fortified with bioactive and bifidogenic ingredients. These ingredients promote the optimal health and development of infants as well as the development of the infant microbiota. Here, we used INFOGEST and an in vitro batch fermentation model to investigate the gut health-promoting effects of a commercial infant formula supplemented with a blend containing docosahexaenoic acid (DHA) (20 mg/100 kcal), polydextrose and galactooligosaccharides (PDX/GOS) (4 g/L, 1:1 ratio), milk fat globule membrane (MFGM) (5 g/L), lactoferrin (0.6 g/L), and Bifidobacterium animalis subsp. lactis, BB-12 (BB-12) (106 CFU/g). Using fecal inoculates from three healthy infants, we assessed microbiota changes, the bifidogenic effect, and the short-chain fatty acid (SCFA) production of the supplemented test formula and compared those with data obtained from an unsupplemented base formula and from the breast milk control. Our results show that even after INFOGEST digestion of the formula, the supplemented formula can still maintain its bioactivity and modulate infants' microbiota composition, promote faster bifidobacterial growth, and stimulate production of SCFAs. Thus, it may be concluded that the test formula containing a bioactive blend promotes infant gut microbiota and SCFA profile to something similar, but not identical to those of breastfed infants.


Asunto(s)
Bifidobacterium animalis , Microbiota , Lactante , Femenino , Humanos , Fórmulas Infantiles , Leche Humana , Suplementos Dietéticos , Lactancia Materna , Bifidobacterium , Heces/microbiología , Oligosacáridos/farmacología
5.
Compr Rev Food Sci Food Saf ; 23(1): e13271, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38284595

RESUMEN

Breastmilk is seen as the gold standard for infant nutrition as it provides nutrients and compounds that stimulate gut barrier, immune, and brain development to the infant. However, there are many instances where it is not possible for an infant to be fed with breastmilk, especially for the full 6 months recommended by the World Health Organization. In such instances, infant formula is seen as the next best approach. However, infant formulas do not contain human milk oligosaccharides (hMOs), which are uniquely present in human milk as the third most abundant solid component. hMOs have been linked to many health benefits, such as the development of the gut microbiome, the immune system, the intestinal barrier, and a healthy brain. This paper reviews the effects of specific hMOs applied in infant formula on the intestinal barrier, including the not-often-recognized intestinal alkaline phosphatase system that prevents inflammation. Additionally, impact on immunity and the current proof for effects in neurocognitive function and the corresponding mechanisms are discussed. Recent studies suggest that hMOs can alter gut microbiota, modulate intestinal immune barrier function, and promote neurocognitive function. The hMOs 2'-fucosyllactose and lacto-N-neotetraose have been found to have positive effects on the development of infants and have been deemed safe for use in formula. However, their use has been limited due to their cost and complexity of synthesis. Thus, although many benefits have been described, complex hMOs and combinations of hMOs with other oligosaccharides are the best approach to stimulate gut barrier, immune, and brain development and for the prevention of disease.


Asunto(s)
Microbioma Gastrointestinal , Leche Humana , Lactante , Humanos , Fórmulas Infantiles , Oligosacáridos/farmacología , Suplementos Dietéticos
6.
Life Sci ; 339: 122420, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38218534

RESUMEN

Human milk is the most valuable source of nutrition for infants. The structure and function of human milk oligosaccharides (HMOs), which are key components of human milk, have long been attracting particular research interest. Several recent studies have found HMOs to be efficacious in the prevention and treatment of necrotizing enterocolitis (NEC). Additionally, they could be developed in the future as non-invasive predictive markers for NEC. Based on previous findings and the well-defined functions of HMOs, we summarize potential protective mechanisms of HMOs against neonatal NEC, which include: modulating signal receptor function, promoting intestinal epithelial cell proliferation, reducing apoptosis, restoring intestinal blood perfusion, regulating microbial prosperity, and alleviating intestinal inflammation. HMOs supplementation has been demonstrated to be protective against NEC in both animal studies and clinical observations. This calls for mass production and use of HMOs in infant formula, necessitating more research into the safety of industrially produced HMOs and the appropriate dosage in infant formula.


Asunto(s)
Enterocolitis Necrotizante , Leche Humana , Lactante , Animales , Recién Nacido , Humanos , Leche Humana/química , Enterocolitis Necrotizante/tratamiento farmacológico , Enterocolitis Necrotizante/prevención & control , Intestinos , Proliferación Celular , Oligosacáridos/farmacología , Oligosacáridos/uso terapéutico , Oligosacáridos/análisis
7.
Int J Biol Macromol ; 256(Pt 2): 128472, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38029906

RESUMEN

Bioactive oligosaccharides with the potential to improve human health, especially in modulating gut microbiota via prebiotic activity, are available from few natural sources. This work uses polysaccharide oxidative cleavage to generate oligosaccharides from beet pulp, an agroindustry by-product. A scalable membrane filtration approach was applied to purify the oligosaccharides for subsequent in vitro functional testing. The combined use of nano-LC/Chip Q-TOF MS and UHPLC/QqQ MS allowed the evaluation of the oligosaccharide profile and their monosaccharide complexity. A final product containing roughly 40 g of oligosaccharide was obtained from 475 g of carbohydrates. Microbiological bioactivity assays indicated that the product obtained herein stimulated desirable commensal gut bacteria. This rapid, reproducible, and scalable method represents a breakthrough in the food industry for generating potential prebiotic ingredients from common plant by-products at scale. INDUSTRIAL RELEVANCE: This work proposes an innovative technology based on polysaccharide oxidative cleavage and multi-stage membrane purification to produce potential prebiotic oligosaccharides from renewable sources. It also provides critical information to evidence the prebiotic potential of the newly generated oligosaccharides on the growth promotion ability of representative probiotic strains of bifidobacteria and lactobacilli.


Asunto(s)
Beta vulgaris , Microbioma Gastrointestinal , Humanos , Oligosacáridos/farmacología , Polisacáridos/farmacología , Carbohidratos , Prebióticos
8.
Br Poult Sci ; 65(1): 79-86, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37955138

RESUMEN

1. Xylo-oligosaccharides (XOS) stimulate proliferation of beneficial bacteria in the gastrointestinal tract of broiler chickens. This results in enhanced utilisation of dietary non-starch polysaccharides and increased production of valuable short-chain fatty acids. However, these positive effects do not always translate into improved bird productive performance, with inconsistent performance responses observed between bird trials.2. A holo-analysis was conducted to determine the effects of supplementing XOS into broiler diets on bird feed intake, body weight gain, feed conversion and mortality. This was done by comparing the XOS supplemented treatment to the control treatment. A total of 53 studies which met the criteria for inclusion were used in the analysis.3. The results showed that XOS had a notable positive impact on bird mortality; XOS reduced mortality by 0.69% for every 1% increment in the control group. XOS supplementation induced a positive effect on the feed conversion ratio (FCR). However, the efficacy of XOS at improving FCR was dependent on the efficiency of the control group (performance of the flock), and the concentration of total arabinoxylan, protein and phytase in the diet. There were insufficient data points to predict the effect of XOS on body weight and feed intake.4. In conclusion, the holo-analysis revealed that supplementing XOS to broiler chicken diets reduces bird mortality. XOS can also improve FCR, but the scale of response is dependent on the diet composition and control flock performance. Additional studies are required to confirm the effects of XOS on body weight and feed intake.


Asunto(s)
Pollos , Oligosacáridos , Animales , Oligosacáridos/farmacología , Suplementos Dietéticos , Ingestión de Alimentos , Peso Corporal
9.
Phytochemistry ; 217: 113922, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37972675

RESUMEN

The jalap roots, Operculina hamiltonii D.F. Austin & Staples (Convolvulaceae), are extensively commercialized as a depurative and laxative remedy in traditional medicine of the north and northeast regions of Brazil. The purification by recycling HPLC and structure elucidation of three new acyl sugars or resin glycosides are described here from a commercial product made of powdered roots. Three macrocyclic structures of a tetrasaccharide of (11S)-hydroxyhexadecanoic acid, operculinic acid C (1), the undescribed hamiltonins II and III (3 and 4), in addition to the known batatinoside III (5), presented a diastereoisomeric relationship as one residue of n-dodecanoic acid esterified the oligosaccharide core on a different position in each compound. Furthermore, hamiltonin IV (6) was characterized as an ester-type homodimer of acylated operculinic acid C with the same substitution pattern identified in hamiltonins II (3) and III (4) for each of the dimer subunits. All the isolated resin glycosides did not display any intrinsic cytotoxicity (IC50 > 25 µM). However, a combination of the individual isolated compounds 3-6 (1-50 µM) demonstrated an enhancement of cytotoxic effects with sublethal doses of vinblastine and podophyllotoxin (0.003 µM) in multidrug-resistant breast carcinoma epithelial cells (MCF-7/Vin).


Asunto(s)
Convolvulaceae , Neoplasias , Humanos , Células MCF-7 , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Convolvulaceae/química , Glicósidos/farmacología , Glicósidos/química , Resinas de Plantas/química , Oligosacáridos/química , Oligosacáridos/farmacología
10.
Fish Shellfish Immunol ; 145: 109288, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38104697

RESUMEN

This study aimed to evaluate the potential benefits of chitosan oligosaccharide (COS) on red claw crayfish (Cherax quadricarinatus) and explore its underlying mechanisms. The crayfish were randomly divided into six groups, and the diets were supplemented with COS at levels of 0 (C0), 0.2 (C1), 0.4 (C2), 0.6 (C3), 0.8 (C4), and 1 (C5) g kg-1. Treatment with COS significantly improved the growth performance of the crayfish with a higher weight gain rate (WGR) and specific growth rate (SGR) in the C2 group compared to the C0 group. Additionally, the content of crude protein in the crayfish muscles in the C1 group was significantly higher than that of the C0 group. Regarding non-specific immunity, the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and alkaline phosphatase (AKP), and the levels of expression of the genes related to immunity (SOD; anti-lipopolysaccharide factor [ALF]; thioredoxin1 [Trx1]; C-type lysozyme, [C-LZM]; and GSH-Px) in the hepatopancreas and hemolymph increased significantly (P < 0.05) after supplementation with 0.4 g kg-1 of COS, while the content of malondialdehyde (MDA) decreased (P < 0.05). The survival rate of C. quadricarinatus increased (P < 0.05) in the C2, C3, C4, and C5 groups after the challenge with Aeromonas hydrophila. This study found that COS has the potential to modulate the composition of the intestinal microbiota and significantly reduce the abundance of species of the phylum Proteobacteria and the genera Aeromonas and Vibrio in the gut of C. quadricarinatus, while the abundance of bacteria in the phylum Firmicutes and the genus Candidatus_Hepatoplasma improved significantly. This study suggests that the inclusion of COS in the diet of C. quadricarinatus can enhance growth, boost immunity, and increase resistance to infection with A. hydrophila, especially when supplemented at 0.4-0.8 g kg-1.


Asunto(s)
Quitosano , Microbioma Gastrointestinal , Animales , Astacoidea , Quitosano/farmacología , Dieta , Suplementos Dietéticos/análisis , Superóxido Dismutasa/metabolismo , Oligosacáridos/farmacología , Inmunidad Innata , Alimentación Animal/análisis
11.
Poult Sci ; 103(2): 103381, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38157786

RESUMEN

This study was conducted to investigate the effects of chitosan oligosaccharide (COS) supplementation on intestinal development and functions, inflammatory response, antioxidant capacity and the related signaling pathways in broilers aged d 1 to 14. A total of 240 one-day old male Arbor Acres broilers (40.47 ± 0.30 g) were randomly allotted to 4 groups, and each group consisted of 6 replicate pens with 10 broilers per replicate. Broilers fed a basal diet supplementation with COS at 0 (CON group), 200 (COS200 group), 400 (COS400 group), and 800 mg/kg (COS800 group) for 14 d, respectively. Broilers in the COS supplementation groups had no significant effects on growth performance. Compared to the CON group, dietary COS supplementation increased (P < 0.05) the relative weight of duodenum, jejunal lipase activity, duodenal and ileal villus surface area, and lower (P < 0.05) ileal amylase and alkaline phosphatase activity, and crypt depth. The expression level of duodenal glucose transporter 1 (GLUT1), Na+-glucose cotransporter 1 (SGLT1), peptide transporter 1 (PepT1), occludin, zonula occludens-1 (ZO-1), toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and interleukin-10 (IL-10), jejunal SGLT1, PepT1, occludin, tumor necrosis factor-α (TNF-α), and ileal SGLT1, PepT1, and fatty acid binding protein 1 (FABP1) was upregulated by COS. However, the expression level of duodenal FABP1 and TNF-α, jejunal GLUT1, ZO-1, TLR4, MyD88, nuclear factor kappa-B p65 (NF-κB p65), and IL-1ß, and ileal GLUT1, NF-κB p65, and IL-1ß was downregulated by COS. Furthermore, dietary COS supplementation increased duodenal catalase (CAT), glutathione peroxidase (GSH-Px), and total superoxide dismutase (T-SOD) activity, jejunal CAT and T-SOD activity, upregulated the expression level of duodenal nuclear factor-erythroid 2-related factor 2 (Nrf2), CAT, glutathione peroxidase 1 (GPX1), and copper and zinc superoxide dismutase (Cu/Zn SOD), jejunal CAT, and ileal Nrf2, CAT, and GPX1. These results suggested that COS could promote intestinal development and functions in broilers aged d 1 to 14, which might be mediated by alleviating intestinal inflammatory response and enhancing antioxidant capacity.


Asunto(s)
Antioxidantes , Quitosano , Masculino , Animales , Antioxidantes/metabolismo , Quitosano/farmacología , Quitosano/metabolismo , Pollos/fisiología , Receptor Toll-Like 4/metabolismo , Suplementos Dietéticos , Ocludina/metabolismo , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa , Transportador de Glucosa de Tipo 1 , Factor 88 de Diferenciación Mieloide , Factor 2 Relacionado con NF-E2/metabolismo , Dieta , Oligosacáridos/farmacología , Superóxido Dismutasa/metabolismo , Alimentación Animal/análisis
12.
PLoS One ; 18(12): e0295324, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38060482

RESUMEN

Xiasangju (XSJ) is a traditional Chinese herbal formula consisted of Prunella spica, Mulberry leaf and Chrysanthemi indici flos, which can be used to treat fever, headache and ulcer. To explore the effects of oligosaccharides from XSJ (OX) on colitis, we used dextran sulfate sodium (DSS) to establish colitis mouse models. After administration of OX with different doses on the control and colitis mice, we measured their body weights, disease activity indexes (DAI), lengths and histopathologic changes of colons, spleen indexes. The inflammatory cytokines and oxidative stress-related factors in serum, and the intestinal microbial community in feces were also detected. We found that colitis mice with oral administration of OX showed higher body weights and lower levels of DAI and spleen index. Tissue damages induced by DSS were also alleviated by OX treatment. The colitis mice with OX treatment exhibited lower levels of AST, ALT, BUN, CR, MDA and a down-regulated expression of IL-6 and IL-1ß, while the activity of SOD was up-regulated. Furthermore, OX improved the relative abundance of gut microbiota and restored the proportions of Bacteroidetes and Muribaculaceae. We found that oligosaccharides from XSJ alleviated the symptoms of colitis mice through its inhibitory effects on inflammation and oxidative stress, and also regulated the composition of intestinal flora, which indicates a beneficial role for patients with colitis.


Asunto(s)
Colitis Ulcerosa , Colitis , Humanos , Animales , Ratones , Sulfato de Dextran/toxicidad , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Inflamación/patología , Colon/patología , Oligosacáridos/farmacología , Oligosacáridos/uso terapéutico , Oligosacáridos/metabolismo , Peso Corporal , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Colitis Ulcerosa/tratamiento farmacológico
13.
Front Immunol ; 14: 1266997, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022669

RESUMEN

Chito-oligosaccharides (COS) and ß-glucan are gradually being applied in aquaculture as antioxidants and immunomodulators. However, this study examined the effects of dietary supplementation of COS and ß-glucan on the water quality, gut microbiota, intestinal morphology, non-specific immunity, and meat quality of Chinese soft-shell turtle. To investigate the possible mechanisms, 3-year-old turtles were fed basal diet (CK group) and 0.1%, 0.5%, and 1% COS or ß-glucan supplemented diet for 4 weeks. Colon, liver, blood and muscle tissues, colon contents, water and sediment of paddy field samples were collected and analyzed after feeding 2 and 4 weeks. The results indicated that COS and ß-glucan altered microbial community composition and diversity in Chinese soft-shell turtles. The relative abundance of Cellulosilyticum, Helicobacter and Solibacillus were increased after feeding COS, while Romboutsia, Akkermansia and Paraclostridium were increased after feeding ß-glucan, whereas Cetobacterium, Vibrio and Edwardsiella were enriched in the control group. Furthermore, colon morphology analysis revealed that COS and ß-glucan improved the length and number of intestinal villi, and the effect of 0.5% ß-glucan was more obvious. Both ß-glucan and COS significantly improved liver and serum lysozyme activity and antibacterial capacity. COS significantly increased the total antioxidant capacity in the liver. Further, 0.1% ß-glucan significantly increased the activity of hepatic alkaline phosphatase, which closely related to the bacteria involved in lipid metabolism. Moreover, dietary supplementation with 1% COS and 1% ß-glucan significantly enhanced the content of total amino acids, especially umami amino acids, in muscle tissue, with ß-glucan exerting a stronger effect than COS. Additionally, these two prebiotics promoted the quality of culture water in paddy fields and reshaped the bacterial community composition of aquaculture environment. All these phenotypic changes were closely associated with the gut microbes regulated by these two prebiotics. In summary, the findings suggest that dietary supplementation with COS and ß-glucan in Pelodiscus sinensis could modulate the gut microbiota, improve intestinal morphology, enhance non-specific immunity and antioxidant capacity of liver and serum, increase meat quality, and improve the culture water environment. This study provides new insights and a comprehensive understanding of the positive effects of COS and ß-glucan on Pelodiscus sinensis.


Asunto(s)
Microbioma Gastrointestinal , Oligosacáridos , Tortugas , beta-Glucanos , Animales , Aminoácidos/metabolismo , Antioxidantes/farmacología , beta-Glucanos/farmacología , Dieta/veterinaria , Inmunidad , Oligosacáridos/farmacología , Calidad del Agua
14.
Food Funct ; 14(21): 9892-9906, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37853813

RESUMEN

Accumulating evidence has shown that gut microbiota and its metabolites have important significance in the etiology of obesity and related disorders. Prebiotics prevent and alleviate obesity by modulating the gut microbiota. However, how pectin oligosaccharides (POS) derived from pectin degradation affect gut microbiota and obesity remains unclear. To investigate the potential anti-obesity effects of POS, mice were fed a high-fat diet (HFD) for 12 weeks and a POS supplement with drinking water during the last 8 weeks. The outcomes demonstrated that POS supplementation in HFD-fed mice decreased body weight (P < 0.01), improved glucose tolerance (P < 0.001), reduced fat accumulation (P < 0.0001) and hepatic steatosis, protected intestinal barrier, and reduced pro-inflammatory cytokine levels. After fecal metagenomic sequencing, the POS corrected the gut microbiota dysbiosis caused by the HFD, as shown by the increased populations of Bifidobacterium, Lactobacillus taiwanensis, and Bifidobacterium animalis, and decreased populations of Alistipes and Erysipelatoclostridium, which were previously considered harmful bacteria. Notably, the changed gut microbiota was associated with the obesity prevention of POS. These findings demonstrate that POS regulates particular gut microbiota, which is essential owing to its ability to prevent disorders associated with obesity.


Asunto(s)
Hígado Graso , Microbioma Gastrointestinal , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Pectinas/farmacología , Obesidad/prevención & control , Hígado Graso/tratamiento farmacológico , Hígado Graso/etiología , Hígado Graso/prevención & control , Oligosacáridos/farmacología , Ratones Endogámicos C57BL
15.
Int J Mol Sci ; 24(18)2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37762181

RESUMEN

Polygalae radix (PR) is a well-known traditional Chinese medicine that is used to treat depression, and polygalae radix oligosaccharide esters (PROEs) are the main active ingredient. Although gut microbiota are now believed to play key role in depression, the effects of PROEs on depression via modulation of gut microbiota remain unknown. In this article, we investigate the effect of PROEs on the gut microbiota of a depression rat and the possible mechanism responsible. The depression rat model was induced by solitary rearing combined with chronic unpredictable mild stress (CUMS). The depression-like behavior, the influence on the hypothalamic-pituitary-adrenal (HPA) axis, the contents of monoamine neurotransmitter in the hippocampus, and the quantity of short-chain fatty acids (SCFAs) in the feces were each assessed, and the serum levels of lipopolysaccharide (LPS) and interleukin-6 (IL-6) were measured by ELISA. Additionally, ultrastructural changes of the duodenal and colonic epithelium were observed under transmission electron microscope, and the gut microbiota were profiled by using 16S rRNA sequencing. The results show that PROEs alleviated the depression-like behavior of the depression model rats, increased the level of monoamine neurotransmitters in the brain, and reduced the hyperfunction of the HPA axis. Furthermore, PROEs regulated the imbalance of the gut microbiota in the rats, relieving intestinal mucosal damage by increasing the relative abundance of gut microbiota with intestinal barrier protective functions, and adjusting the level of SCFAs in the feces, as well as the serum levels of LPS and IL-6. Thus, we find that PROEs had an antidepressant effect through the restructuring of gut microbiota that restored the function of the intestinal barrier, reduced the release of intestinal endotoxin, and constrained the inflammatory response.


Asunto(s)
Depresión , Microbioma Gastrointestinal , Ratas , Animales , Depresión/tratamiento farmacológico , Depresión/etiología , Sistema Hipotálamo-Hipofisario , Interleucina-6/farmacología , ARN Ribosómico 16S , Lipopolisacáridos/farmacología , Sistema Hipófiso-Suprarrenal , Oligosacáridos/farmacología , Oligosacáridos/uso terapéutico , Estrés Psicológico/tratamiento farmacológico
16.
Fish Shellfish Immunol ; 141: 109011, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37604263

RESUMEN

The intestine is a host-pathogen interaction site and improved intestinal barrier function help to prevent disease in shrimp. Alginate oligosaccharides (AOS) are derived from resourceful brown algae. The intestine protection properties of AOS were widely recognized, and their benefits in fish have been reported. Nevertheless, there are no reports on AOS in shrimp and other crustaceans. In the present work, we measured the effects of AOS on growth performance and disease resistance in the white shrimp Litopenaeus vannamei and investigated their effects on intestinal health. Shrimps with an initial weight of about 2 g were fed with diets supplemented with 0 (control), 0.07%, 0.2%, 0.6%, or 1.2% of AOS for 56 days and were sampled and challenged with Vibrio parahaemolyticus. Dietary AOS did not significantly influence weight gain or feed utilization (P > 0.05). However, AOS considerably decreased the seven-day cumulative mortality after the challenge at any dose (P < 0.05). Dietary AOS improved the intestinal structure, significantly boosted the intestinal villus height at 0.6% and 1.2% levels, and increased intestinal wall thickness by 0.2%, 0.6%, and 1.2%. The alkaline phosphatase and maltase activities were also increased, suggesting that AOS improved the intestinal condition. Redox homeostasis in intestinal was improved by AOS, as expressed by the enhanced total antioxidant capacity and decreased malonaldehyde content, partly due to the increased superoxide dismutase and catalase activities. Compared with the antioxidant system, AOS's stimulating effects on immunity were more significant. At any level, AOS significantly activated lysozyme activity, the expression of propo and two antimicrobial peptide genes (pen-3 and crusin). However, the lowest concentration of AOS did not stimulate the gene expression of all three assayed pattern recognition receptors (LGBP, Toll, and IMD), and only the highest concentration of AOS increased the expression of imd. These findings suggest that AOS are highly efficient immunostimulants, and various immune pathways in shrimp are differentially sensitive to AOS. Finally, our findings suggest that AOS significantly alter the gut microbiota and their relative abundance at the phylum, family, and genus levels. In conclusion, AOS significantly enhances disease resistance in L. vannamei, possibly attributed to improved intestinal development, increased intestinal immunity and altered microbiota. These findings could provide a basis for future studies on the practical use of AOS and its mechanisms of action.


Asunto(s)
Enfermedades Intestinales , Penaeidae , Vibrio parahaemolyticus , Animales , Resistencia a la Enfermedad , Antioxidantes/farmacología , Alginatos/farmacología , Inmunidad Innata , Dieta/veterinaria , Intestinos , Oligosacáridos/farmacología , Alimentación Animal/análisis
17.
Matrix Biol ; 121: 194-216, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37402431

RESUMEN

Fibrolamellar carcinomas (FLCs), lethal tumors occurring in children to young adults, have genetic signatures implicating derivation from biliary tree stem cell (BTSC) subpopulations, co-hepato/pancreatic stem cells, involved in hepatic and pancreatic regeneration. FLCs and BTSCs express pluripotency genes, endodermal transcription factors, and stem cell surface, cytoplasmic and proliferation biomarkers. The FLC-PDX model, FLC-TD-2010, is driven ex vivo to express pancreatic acinar traits, hypothesized responsible for this model's propensity for enzymatic degradation of cultures. A stable ex vivo model of FLC-TD-2010 was achieved using organoids in serum-free Kubota's Medium (KM) supplemented with 0.1% hyaluronans (KM/HA). Heparins (10 ng/ml) caused slow expansion of organoids with doubling times of ∼7-9 days. Spheroids, organoids depleted of mesenchymal cells, survived indefinitely in KM/HA in a state of growth arrest for more than 2 months. Expansion was restored with FLCs co-cultured with mesenchymal cell precursors in a ratio of 3:7, implicating paracrine signaling. Signals identified included FGFs, VEGFs, EGFs, Wnts, and others, produced by associated stellate and endothelial cell precursors. Fifty-three, unique heparan sulfate (HS) oligosaccharides were synthesized, assessed for formation of high affinity complexes with paracrine signals, and each complex screened for biological activity(ies) on organoids. Ten distinct HS-oligosaccharides, all 10-12 mers or larger, and in specific paracrine signal complexes elicited particular biological responses. Of note, complexes of paracrine signals and 3-O sulfated HS-oligosaccharides elicited slowed growth, and with Wnt3a, elicited growth arrest of organoids for months. If future efforts are used to prepare HS-oligosaccharides resistant to breakdown in vivo, then [paracrine signal-HS-oligosaccharide] complexes are potential therapeutic agents for clinical treatments of FLCs, an exciting prospect for a deadly disease.


Asunto(s)
Carcinoma , Sulfatos , Niño , Humanos , Comunicación Paracrina , Heparitina Sulfato/metabolismo , Oligosacáridos/farmacología , Oligosacáridos/metabolismo
18.
Nutrients ; 15(13)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37447249

RESUMEN

This study evaluated the cholesterol-alleviating effect and underlying mechanisms of chitosan-oligosaccharide (COS) in hypercholesterolemic hamsters. Male hamsters (n = 24) were divided into three groups in a random fashion, and each group was fed one particular diet, namely a non-cholesterol diet (NCD), a high-cholesterol diet (HCD), and an HCD diet substituting 5% of the COS diet for six weeks. Subsequently, alterations in fecal bile acids (BAs), short-chain fatty acids (SCFAs), and gut microflora (GM) were investigated. COS intervention significantly reduced and increased the plasma total cholesterol (TC) and high-density lipoprotein-cholesterol (HDL-C) levels in hypercholesteremic hamsters. Furthermore, Non-HDL-C and total triacylglycerols (TG) levels were also reduced by COS supplementation. Additionally, COS could reduce and increase food intake and fecal SCFAs (acetate), respectively. Moreover, COS had beneficial effects on levels of BAs and GM related to cholesterol metabolism. This study provides novel evidence for the cholesterol-lowering activity of COS.


Asunto(s)
Quitosano , Microbioma Gastrointestinal , Hipercolesterolemia , Animales , Cricetinae , Masculino , Ácidos y Sales Biliares , Quitosano/farmacología , Colesterol , Ácidos Grasos Volátiles , Hígado/metabolismo , Mesocricetus , Oligosacáridos/farmacología
19.
Poult Sci ; 102(9): 102834, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37390556

RESUMEN

This experiment aimed to examine the effect of chitosan-oligosaccharides (COS) supplementation in laying hens' diets affected their immune response, hematological characteristics, blood biochemical parameters, and histological status. At the age of 34 wk, 200 laying hens and 20 cocks of the Mandarah chicken strain were allotted into four groups, each consisting of 50 hens and five cocks. The first group acted as a control group, fed on a basal diet. The second, third, and fourth experimental groups each received 0.1, 0.2, and 0.5 g/kg of COS in addition to a base diet. Birds received COS at various dosages had significantly (P ˂ 0.05) increased serum concentration of immunoglobulins, avian influenza, and Newcastle disease antibodies compared with the control birds. Moreover, adding COS at level 0.2 g/kg diet insignificantly enhanced immune response than the rest of the treatment groups. Also, treated birds with COS at different levels had insignificantly improved hematological parameters such as red blood cells, white blood cells, hemoglobin and hematocrit compared to the control group. Birds fed COS at all levels had significantly decreased serum cholesterol, triglycerides, Ca++ and alanine aminotransferase concentrations compared with control birds. In addition, compared to the control group, chitosan-treated birds showed enhanced histological examination of the small intestine, isthmus, and testis, notably in birds given COS at 0.1 g/kg diet compared to other treated birds. Cocks fed COS at all levels improved testicular tissues and increased the number and diameter of seminiferous tubules compared with control birds Morphological examination of the ileum showed increased villi number, height, and crypt depth. It is possible to conclude that laying hens' physiological performance and general health can be effectively improved by using chitosan at 0.1 or 2 g/kg diet levels enhanced immune response.


Asunto(s)
Quitosano , Suplementos Dietéticos , Animales , Femenino , Pollos/fisiología , Dieta/veterinaria , Inmunidad , Oligosacáridos/farmacología , Alimentación Animal/análisis
20.
Poult Sci ; 102(8): 102789, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37354614

RESUMEN

A total of 392 Cobb 500 off-sex male broiler chicks were used in a 21-day experiment to study the effect of protease, xylanase, and xylo-oligosaccharides (XOS) on improving growth performance, nutrient utilization (ileal digestibility and total tract retention), gene expression of nutrient transporters, cecal short-chain fatty acids (SCFAs), and microbiota profile of broilers challenged with Eimeria spp. Chicks at 0-day old were allocated to 8 treatments in a 4 × 2 factorial arrangement: 1) corn-soybean meal diet with no enzyme (Con); 2) Con plus 0.2 g/kg protease alone (PRO); 3) Con plus 0.2 g/kg protease combined with 0.1 g/kg xylanase (PRO + XYL); or 4) Con plus 0.5 g/kg xylo-oligosaccharides (XOS); with or without Eimeria challenge. The 4 diets were formulated to be marginally low in crude protein (183 g/kg). Challenged groups were inoculated with a solution containing E. maxima, E. acervulina, and E. tenella oocysts on d 15. Eimeria depressed (P < 0.01) growth performance and nutrient utilization. Supplemental protease improved (P < 0.05) body weight gain and feed intake in the prechallenge phase (d 0-15) but had no effect during the infection period (d 15-21). There was no interaction between infection and feed supplementation for nutrient utilization. The supplementations of either PRO or XOS alone increased (P < 0.01) total tract retention of Ca and tended (P < 0.1) to improve total tract retention of N, P, AME, and AMEn. Eimeria decreased (P < 0.05) expressions of GLUT2, GLUT5, PepT1, ATP2B1, CaSR, Calbidin D28K, NPT2, and ZnT1 but increased (P < 0.01) expression of GLUT1. XOS supplementation increased (P < 0.05) ATP2B1 expression. Protease decreased (P < 0.05) isobutyrate concentration in unchallenged treatments but not in challenged treatments. Eimeria decreased (P < 0.01) cecal saccharolytic SCFAs acetate and propionate but increased (P < 0.01) branched-chain fatty acid isovalerate. The supplementation of PRO + XYL or XOS increased (P < 0.05) cecal butyrate or decreased cecal isobutyrate concentrations, respectively. PRO + XYL and XOS decreased cecal protein levels in unchallenged birds but not challenged ones. Eimeria challenge significantly (P < 0.05) decreased the microbial richness (Observed features) and diversity (Shannon index and phylogenetic diversity) and changed the microbial composition by reducing the abundance of certain bacteria, such as Ruminococcus torques, and increasing the abundance of others, such as Anaerostipes. In contrast, none of the additives had any significant effect on the cecal microbial composition. In conclusion, PRO or XOS supplementation individually improved nutrient utilization. All the additives decreased the cecal content of branched-chain fatty acids, consistent with decreased cecal N concentration, although the effects were more pronounced in unchallenged birds. In addition, none of the feed additives impacted the Eimeria-induced microbial perturbation.


Asunto(s)
Coccidiosis , Eimeria , Microbiota , Animales , Masculino , Suplementos Dietéticos/análisis , Pollos , Dieta con Restricción de Proteínas/veterinaria , Péptido Hidrolasas/metabolismo , Isobutiratos/metabolismo , Filogenia , Dieta/veterinaria , Endopeptidasas/metabolismo , Ácidos Grasos Volátiles/metabolismo , Oligosacáridos/farmacología , Oligosacáridos/metabolismo , Nutrientes , Alimentación Animal/análisis , Coccidiosis/veterinaria , Coccidiosis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA