Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS One ; 19(3): e0298258, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38446823

RESUMEN

Clonal integration of defense or stress signal induced systemic resistance in leaf of interconnected ramets. However, similar effects of stress signal in root are poorly understood within clonal network. Clonal fragments of Centella asiaticas with first-young, second-mature, third-old and fourth-oldest ramets were used to investigate transportation or sharing of stress signal among interconnected ramets suffering from low water availability. Compared with control, oxidative stress in root of the first-young, second-mature and third-old ramets was significantly alleviated by exogenous ABA application to the fourth-oldest ramets as well as enhancement of antioxidant enzyme (SOD, POD, CAT and APX) activities and osmoregulation ability. Surface area and volume in root of the first-young ramets were significantly increased and total length in root of the third-old ramets was significantly decreased. POD activity in root of the fourth-oldest and third-old ramets was significantly enhanced by exogenous ABA application to the first-young ramets. Meanwhile, total length and surface area in root of the fourth-oldest and third-old ramets were significantly decreased. Ratio of belowground to aboveground biomass in the whole clonal fragments was significantly increased by exogenous ABA application to the fourth-oldest or first-young ramets. It is suggested that transportation or sharing of stress signal may induce systemic resistance in root of interconnected ramets. Specially, transportation or sharing of stress signal against phloem flow was observed in the experiment. Possible explanation is that rapid recovery of foliar photosynthesis in first-young ramets subjected to exogenous ABA application can partially reverse phloem flow within clonal network. Thus, our experiment provides insight into ecological implication on clonal integration of stress signal.


Asunto(s)
Antioxidantes , Centella , Ansiedad , Biomasa , Osmorregulación
2.
Genes (Basel) ; 14(12)2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38137057

RESUMEN

Tea is an important cash crop worldwide, and its nutritional value has led to its high economic benefits. Tea anthracnose is a common disease of tea plants that seriously affects food safety and yield and has a far-reaching impact on the sustainable development of the tea industry. In this study, phenotypic analysis and pathogenicity analysis were performed on knockout and complement strains of HTF2-the transcriptional regulator of tea anthracnose homeobox-and the pathogenic mechanism of these strains was explored via RNA-seq. The MoHox1 gene sequence of the rice blast fungus was indexed, and the anthracnose genome was searched for CfHTF2. Evolutionary analysis recently reported the affinity of HTF2 for C. fructicola and C. higginsianum. The loss of CfHTF2 slowed the vegetative growth and spore-producing capacity of C. fructicola and weakened its resistance and pathogenesis to adverse conditions. The transcriptome sequencing of wild-type N425 and CfHTF2 deletion mutants was performed, and a total of 3144 differentially expressed genes (DEGs) were obtained, 1594 of which were upregulated and 1550 of which were downregulated. GO and KEGG enrichment analyses of DEGs mainly focused on signaling pathways such as the biosynthesis of secondary metabolites. In conclusion, this study lays a foundation for further study of the pathogenic mechanism of tea anthracnose and provides a molecular basis for the analysis of the pathogenic molecular mechanism of CfHTF2.


Asunto(s)
Camellia sinensis , Osmorregulación , Esporas Fúngicas , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Camellia sinensis/genética , Camellia sinensis/metabolismo , Té/genética
3.
Nutrients ; 15(9)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37432155

RESUMEN

One of the most common cyclitols found in eukaryotic cells-Myo-inositol (MI) and its derivatives play a key role in many cellular processes such as ion channel physiology, signal transduction, phosphate storage, cell wall formation, membrane biogenesis and osmoregulation. The aim of this paper is to characterize the possibility of neurodegenerative disorders treatment using MI and the research of other therapeutic methods linked to MI's derivatives. Based on the reviewed literature the researchers focus on the most common neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Spinocerebellar ataxias, but there are also works describing other seldom encountered diseases. The use of MI, d-pinitol and other methods altering MI's metabolism, although research on this topic has been conducted for years, still needs much closer examination. The dietary supplementation of MI shows a promising effect on the treatment of neurodegenerative disorders and can be of great help in alleviating the accompanying depressive symptoms.


Asunto(s)
Enfermedad de Alzheimer , Ciclitoles , Enfermedad de Huntington , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Células Eucariotas , Osmorregulación
4.
J Fish Dis ; 46(9): 943-956, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37269206

RESUMEN

Nephrocalcinosis is a widespread challenge in intensive production of salmon smolt. There is however no consensus on its aetiology, which makes it problematic to implement proper measures to limit its development. We performed a survey of nephrocalcinosis prevalence and environmental factors in 11 different hatcheries in Mid-Norway as well as a 6-month monitoring in one of the hatcheries. A multivariate analysis indicated that the most influencing factor for the prevalence of nephrocalcinosis was the supplementation of sea water during smolt production. In the 6-month monitoring, the hatchery introduced salinity in the production water prior to the change in day length. Mismatch in those environmental signals may increase the risk for developing nephrocalcinosis. Salinity fluctuations prior to smoltification can cause osmotic stress and result in unbalanced levels of ions in fish blood. This was clearly illustrated in our study, as the fish experienced chronic hypercalcaemia and hypermagnesaemia. Both magnesium and calcium are excreted over the kidneys and it is possible that their prolonged, elevated levels in plasma resulted in an oversaturation of the urine when finally excreted. This again could have led to the aggregation of calcium deposits within the kidney. This study indicates a relationship between osmotic stress induced by salinity changes in juvenile Atlantic salmon and the development of nephrocalcinosis. Other factors that may affect the severity of nephrocalcinosis are currently subjects for discussion.


Asunto(s)
Enfermedades de los Peces , Nefrocalcinosis , Salmo salar , Animales , Nefrocalcinosis/epidemiología , Nefrocalcinosis/etiología , Nefrocalcinosis/veterinaria , Calcio , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/etiología , Osmorregulación
5.
Sci Rep ; 12(1): 14285, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35995810

RESUMEN

Maximizing food production through integrated management of vegetative and root growth is a major challenge to food security and sustainability in the face of population growth, salinity stress conditions and climatic changes specially in arid and semi-arid regions. This study was conducted to evaluate the effect of foliar application with proline (Pro) at 5 mM, calcium (Ca) at 1.5% or control supplemented with soil application of humic acid (Hc) at 0, 15 g/tree on the nutrition status, osmoregulatory mechanisms and productivity of 'Wonderful' pomegranate trees growing under salt stress conditions. Soil and foliar treatments were applied three times: at flowering stage (April), 2 months after fruit set (June) and at fruit maturity (August). Individual application of either Hc or Pro or Ca alleviated the adverse effects of salt stress. Moreover, supplemented soil application of Hc with Pro or Ca as foliar application increased significantly leaf Pro, total carbohydrates, N, P, Ca and K contents, as well as K/Na and Ca/Na ratio. While it significantly decreased leaf Na and Cl concentration. Furthermore, supplemented application of Hc resulted in the highest decrease in leaf Na and Cl concentrations by 94.59%, 44.79% when combined with Pro and by 51.35%, 31.28%, when combined with Ca. In addition, Hc treatment led to the highest mean fruit yield by 139.56% and 90.73%, respectively as mean of both seasons for Pro and Ca treatments, respectively. The results suggest that, exogenous Pro and Ca supplemented with Hc can mitigate salt stress in 'Wonderful' pomegranate through enhancing osmoprotectants accumulaton.


Asunto(s)
Frutas , Granada (Fruta) , Calcio/metabolismo , Frutas/metabolismo , Sustancias Húmicas , Estado Nutricional , Osmorregulación , Prolina/metabolismo , Sodio , Suelo
6.
Artículo en Inglés | MEDLINE | ID: mdl-35811062

RESUMEN

Crude oil is known to induce developmental defects in teleost fish exposed during early-life stages (ELSs). A recent study has demonstrated that zebrafish (Danio rerio) larvae acutely exposed to Deepwater Horizon (DHW) crude oil showed transcriptional changes in key genes involved in early kidney (pronephros) development and function, which were coupled with pronephric morphological defects. Given the osmoregulatory importance of the kidney, it is unknown whether ELS effects arising from short-term crude exposures result in long-term osmoregulatory defects, particularly within estuarine fishes likely exposed to DWH oil following the spill. To address this knowledge gap, an acute 72 h exposure to red drum (Sciaenops ocellatus) larvae was performed using high-energy water-accommodated fractions (HEWAFs) of DWH weathered oil to analyze transcriptional changes in genes involved in pronephros development and function by quantitative PCR. To test the latent effects of oil exposure on osmoregulation ability, red drum larvae were first exposed to HEWAF for 24 h. Larvae were then reared in clean seawater for two weeks and a 96 h acute osmotic challenge test was performed by exposing the fish to waters with varying salinities. Latent effects of ELS crude oil exposure on osmoregulation were assessed by quantifying survival during the acute osmotic challenge test and analyzing transcriptional changes at 14 dpf. Results demonstrated that ELS crude oil exposure reduced survival of red drum larvae when challenged in hypoosmotic waters and that latent transcriptional changes in some target pronephric genes were evident, indicating that an affected kidney likely contributed to the increased mortality.


Asunto(s)
Perciformes , Contaminación por Petróleo , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , Larva , Osmorregulación , Perciformes/fisiología , Petróleo/toxicidad , Contaminación por Petróleo/efectos adversos , Contaminantes Químicos del Agua/toxicidad , Pez Cebra
7.
Mol Biol Rep ; 49(5): 3849-3861, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35235155

RESUMEN

BACKGROUND: Dromedary or one-humped camel (Camelus dromedarius) is distinctively acclimatized to survive the arid conditions of the desert environment. It has an excellent ability to compete dehydration with substantial tolerance for rapid dehydration. Therefore, it offers an excellent model for studying osmoregulation. Molecular characterization of Na+/K+ ATPase as a central regulator of electrolyte normohemostasis affords a better understanding of this mechanism in camel. Here is the first to resolve the full-length of alpha-1 subunit of sodium pump (ATP1A1) gene with its differential expression in dromedary tissues. RESULTS: The nucleotide sequence for the recovered full cDNA of ATP1A1was submitted to the GenBank (NCBI GenBank accession #MW628635) and bioinformatically analyzed. The cDNA sequence was of 3760 bp length with an open reading frame (ORF) of 3066 bp encoding a putative 1021 amino acids polypeptide with a molecular mass of 112696 Da. Blast search analysis revealed the shared high similarity of dromedary ATP1A1gene with other known ATP1A1genes in different species. The comparative analysis of its protein sequence confirmed the high identity with other mammalian ATP1A1 proteins. Further transcriptomic investigation for different organs was performed by real-time PCR to compare its level of expression among different organs. The results confirm a direct function between the ATP1A1 gene expression and the order of vital performance of these organs. The expression of ATP1A1 mRNA in the adrenal gland and brain was significantly higher than that in the other organs. The noticed down expression in camel kidney concomitant with overexpression in the adrenal cortex might interpret how dromedary expels access sodium without water loss with relative high ability to restrain mineralocorticoid-induced sodium retention on drinking salty water. CONCLUSION: The results reflect the importance of sodium pump in these organs. Na+/K+ ATPase in the adrenal gland and brain than other organs.


Asunto(s)
Camelus , ATPasa Intercambiadora de Sodio-Potasio , Animales , Camelus/genética , Camelus/metabolismo , Clonación Molecular , ADN Complementario/genética , Deshidratación , Osmorregulación/genética , Alineación de Secuencia , Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Agua/metabolismo
8.
Biomed Pharmacother ; 141: 111898, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34246188

RESUMEN

Taurine, a sulfur-containing amino acid derivative, exists at a high concentration in the skin and is considered to play an important role in maintaining moisture homeostasis. This study investigated the effects of oral taurine supplementation on epidermal moisture content and wrinkle formation, as well as skin taurine content, using ultraviolet B (UVB)-irradiated hairless mice. Wrinkles were induced by exposing hairless mice to UVB radiation (70-100 mJ/cm2). Taurine was dissolved in drinking water at a concentration of 0.3 or 3% (w/v) and given to the mice ad libitum for 2-10 weeks. Taurine was then extracted from the dorsal skin, and the skin taurine content was determined using high-performance liquid chromatography (HPLC). The wrinkles were evaluated using a wrinkle score and the quantitative wrinkle area ratio. The exposure of the mice to UVB radiation for 4 weeks resulted in a decreased moisture content and increased transepidermal water loss (TEWL) in the skin, while taurine supplementation suppressed these changes. Oral supplementation with taurine for 8 weeks ameliorated the development of UVB-induced wrinkle formation. Furthermore, oral taurine supplementation for 4 weeks decreased pre-stablished wrinkles in a dose-dependent manner. Although the UVB radiation reduced the epidermal taurine content, oral taurine supplementation partly restored the taurine content in the epidermis. The present study showed that oral taurine supplementation is able to suppress UVB-induced wrinkle formation, which may be associated with the regulation of moisture content in the epidermis. The beneficial effects of taurine on skin aging may be attributed to its osmoregulatory role.


Asunto(s)
Protectores contra Radiación/uso terapéutico , Envejecimiento de la Piel/efectos de los fármacos , Envejecimiento de la Piel/efectos de la radiación , Taurina/uso terapéutico , Rayos Ultravioleta , Animales , Suplementos Dietéticos , Epidermis/efectos de los fármacos , Epidermis/efectos de la radiación , Masculino , Ratones , Ratones Pelados , Osmorregulación/efectos de los fármacos , Taurina/metabolismo , Pérdida Insensible de Agua/efectos de los fármacos , Pérdida Insensible de Agua/efectos de la radiación
9.
Molecules ; 26(6)2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33803724

RESUMEN

Drought poses a serious threat to oilseed crops by lowering yield and crop failures under prolonged spells. A multi-year field investigation was conducted to enhance the drought tolerance in four genotypes of Camelina and canola by selenium (Se) application. The principal aim of the research was to optimize the crop yield by eliciting the physio-biochemical attributes by alleviating the adverse effects of drought stress. Both crops were cultivated under control (normal irrigation) and drought stress (skipping irrigation at stages i.e., vegetative and reproductive) conditions. Four different treatments of Se viz., seed priming with Se (75 µM), foliar application of Se (7.06 µM), foliar application of Se + Seed priming with Se (7.06 µM and 75 µM, respectively) and control (without Se), were implemented at the vegetative and reproductive stages of both crops. Sodium selenite (Na2SeO3), an inorganic compound was used as Se sources for both seed priming and foliar application. Data regarding physiochemical, antioxidants, and yield components were recorded as response variables at crop maturity. Results indicated that WP, OP, TP, proline, TSS, TFAA, TPr, TS, total chlorophyll contents, osmoprotectant (GB, anthocyanin, TPC, and flavonoids), antioxidants (APX, SOD, POD, and CAT), and yield components (number of branches per plant, thousand seed weight, seed, and biological yields were significantly improved by foliar Se + priming Se in both crops under drought stress. Moreover, this treatment was also helpful in boosting yield attributes under irrigated (non-stress) conditions. Camelina genotypes responded better to Se application as seed priming and foliar spray than canola for both years. It has concluded that Se application (either foliar or priming) can potentially alleviate adverse effects of drought stress in camelina and canola by eliciting various physio-biochemicals attributes under drought stress. Furthermore, Se application was also helpful for crop health under irrigated condition.


Asunto(s)
Brassica napus/efectos de los fármacos , Brassica napus/crecimiento & desarrollo , Brassicaceae/efectos de los fármacos , Brassicaceae/crecimiento & desarrollo , Sequías , Selenio/administración & dosificación , Antioxidantes/análisis , Brassica napus/fisiología , Brassicaceae/fisiología , Productos Agrícolas/efectos de los fármacos , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/fisiología , Osmorregulación , Pakistán , Aceites de Plantas/aislamiento & purificación , Proteínas de Plantas/análisis , Aceite de Brassica napus/aislamiento & purificación
10.
Sci Rep ; 11(1): 2335, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33504846

RESUMEN

Long-standing clinical findings report a dramatic surge of vasopressin in umbilical cord blood of the human neonate, but the neural underpinnings and function(s) of this phenomenon remain obscure. We studied neural activation in perinatal mice and rats, and found that birth triggers activation of the suprachiasmatic, supraoptic, and paraventricular nuclei of the hypothalamus. This was seen whether mice were born vaginally or via Cesarean section (C-section), and when birth timing was experimentally manipulated. Neuronal phenotyping showed that the activated neurons were predominantly vasopressinergic, and vasopressin mRNA increased fivefold in the hypothalamus during the 2-3 days before birth. Copeptin, a surrogate marker of vasopressin, was elevated 30-to 50-fold in plasma of perinatal mice, with higher levels after a vaginal than a C-section birth. We also found an acute decrease in plasma osmolality after a vaginal, but not C-section birth, suggesting that the difference in vasopressin release between birth modes is functionally meaningful. When vasopressin was administered centrally to newborns, we found an ~ 50% reduction in neuronal cell death in specific brain areas. Collectively, our results identify a conserved neuroendocrine response to birth that is sensitive to birth mode, and influences peripheral physiology and neurodevelopment.


Asunto(s)
Hipotálamo/metabolismo , Sistemas Neurosecretores/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Vasopresinas/metabolismo , Animales , Biomarcadores/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Osmorregulación/genética , Osmorregulación/fisiología , Vasopresinas/genética
11.
Physiol Rep ; 8(17): e14558, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32914562

RESUMEN

We generated a transgenic rat line that expresses oxytocin (OXT)-monomeric red fluorescent protein 1 (mRFP1) fusion gene to visualize the dynamics of OXT. In this transgenic rat line, hypothalamic OXT can be assessed under diverse physiological and pathophysiological conditions by semiquantitative fluorometry of mRFP1 fluorescence intensity as a surrogate marker for endogenous OXT. Using this transgenic rat line, we identified the changes in hypothalamic OXT synthesis under various physiological conditions. However, few reports have directly examined hypothalamic OXT synthesis under hyperosmolality or hypovolemia. In this study, hypothalamic OXT synthesis was investigated using the transgenic rat line after acute osmotic challenge and acute hypovolemia induced by intraperitoneal (i.p.) administration of 3% hypertonic saline (HTN) and polyethylene glycol (PEG), respectively. The mRFP1 fluorescence intensity in the paraventricular (PVN) and supraoptic nuclei (SON) was significantly increased after i.p. administration of HTN and PEG, along with robust Fos-like immunoreactivity (co-expression). Fos expression showed neuronal activation in the brain regions that are associated with the hypothalamus and/or are involved in maintaining water and electrolyte homeostasis in HTN- and PEG-treated rats. OXT and mRFP1 gene expressions were dramatically increased after HTN and PEG administration. The plasma OXT level was extremely increased after HTN and PEG administration. Acute osmotic challenge and acute hypovolemia induced upregulation of hypothalamic OXT in the PVN and SON. These results suggest that not only endogenous arginine vasopressin (AVP) but also endogenous OXT has a key role in maintaining body fluid homeostasis to cope with hyperosmolality and hypovolemia.


Asunto(s)
Hipotálamo/metabolismo , Hipovolemia/metabolismo , Presión Osmótica , Oxitocina/genética , Animales , Hipovolemia/fisiopatología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Osmorregulación , Oxitocina/metabolismo , Ratas , Transgenes , Regulación hacia Arriba , Proteína Fluorescente Roja
12.
Gen Comp Endocrinol ; 296: 113546, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32653428

RESUMEN

KCNK3 is a two-pore-domain (K2P) potassium channel involved in maintaining ion homeostasis, mediating thermogenesis, controlling breath and modulating electrical membrane potential. Although the functions of this channel have been widely described in mammals, its roles in fishes are still rarely known. Here, we identified two kcnk3 genes from the euryhaline rabbitfish (Siganus canaliculatus), and their roles related to fatty acids metabolism and osmoregulation were investigated. The open reading frames of kcnk3a and kcnk3b were 1203 and 1176 bp in length, encoding 400 and 391 amino acids respectively. Multiple sequences alignment and phylogenetic analysis revealed that the two isotypes of kcnk3 were extensively presented in fishes. Quantitative real-time PCRs indicated that both genes were widely distributed in examined tissues but showed different patterns. kcnk3a primary distributed in adipose, eye, heart, and spleen tissues, while kcnk3b was mainly detectable in heart, kidney, muscle and spleen tissues. In vivo experiments showed that fish fed diets with fish oil as dietary lipid (rich in long chain polyunsaturated fatty acids, LC-PUFA) induced higher mRNA expression levels of kcnk3 genes in comparison with fish fed with plant oil diet at two different salinity environments (32 and 15‰). Meanwhile, the expression levels of kcnk3 genes were higher in seawater (32‰) than that in brackish water (15‰) when fishes were fed with both types of feeds. In vitro experiments with rabbitfish hepatocytes showed that LC-PUFA significantly improved hepatic kcnk3a expression level compared with treatment of linolenic acid. These results suggest that two kcnk3 genes are widely existed and they might be functionally related to fatty acids metabolism and osmoregulation in the rabbitfish.


Asunto(s)
Ácidos Grasos/metabolismo , Peces/genética , Osmorregulación , Canales de Potasio/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular , Clonación Molecular , ADN Complementario/genética , Peces/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Hepatocitos/metabolismo , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Filogenia , Canales de Potasio/química , Canales de Potasio/metabolismo , Salinidad , Distribución Tisular
13.
Am J Physiol Cell Physiol ; 318(6): C1305-C1315, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32348177

RESUMEN

Dry eye is a common sight-impairing, painful disorder characterized by disruption of the preocular tear film, whose integrity is required for ~70% of the eye's refractive power. A universal feature of clinical dry eye is hyperosmolarity of the tears resulting from their accelerated evaporation due to dysfunction of tear- and oil-producing ocular glands. A key adaptive response to dryness/hyperosmolarity is release of tear-stabilizing mucin by conjunctival goblet cells. Yet the mechanisms mediating this response to hyperosmolarity remain poorly understood. In this study of freshly excised rat conjunctiva, perforated-patch recordings revealed that during sustained hyperosmolarity, the development of a nonspecific cation (NSC) conductance depolarizes the goblet cells to a near-optimal voltage for the tonic activation of their voltage-gated calcium channels (VGCCs). In turn, as demonstrated by high-resolution membrane capacitance measurements, VGCC activation boosts the exocytotic response of conjunctival goblet cells to neural input. However, over time, VGCC activation also increases the vulnerability of these cells to the lethality of hyperosmolarity. Viability assays further revealed that hyperosmotic-induced goblet cell death is critically dependent on P2X7 receptor channels. Similar to the yin-yang impact of VGCCs on goblet cell physiology and pathobiology, P2X7 activation not only compromises goblet cell viability but also enhances exocytotic activity. Thus, the NSC/VGCC and P2X7 purinoceptor pathways are components of a previously unappreciated high-gain/high-risk adaptive strategy to combat ocular dryness. These pathways boost release of tear-stabilizing mucin at the risk of jeopardizing the viability of the conjunctival goblet cells, whose loss is a histopathological hallmark of irreversible mucin-deficient dry eye.


Asunto(s)
Canales de Calcio/metabolismo , Conjuntiva/metabolismo , Síndromes de Ojo Seco/metabolismo , Células Caliciformes/metabolismo , Activación del Canal Iónico , Receptores Purinérgicos P2X7/metabolismo , Lágrimas/metabolismo , Adaptación Fisiológica , Animales , Conjuntiva/patología , Síndromes de Ojo Seco/patología , Femenino , Células Caliciformes/patología , Masculino , Potenciales de la Membrana , Concentración Osmolar , Osmorregulación , Ratas Long-Evans , Ratas Sprague-Dawley , Transducción de Señal
14.
Toxicol Appl Pharmacol ; 391: 114914, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-32032643

RESUMEN

Polybrominated diphenyl ethers (PBDEs) are persistent environmental pollutants considered as neurotoxicants and endocrine disruptors with important biological effects ranging from alterations in growth, reproduction, and effects on the hypothalamus-pituitary-adrenal axis. The vasopressinergic (AVPergic) system is a known target for pentaBDEs mixture (DE-71) and the structurally similar chemicals, polychlorinated biphenyls. However, the potential adverse effects of mixtures containing octaBDE compounds, like DE-79, on the AVPergic system are still unknown. The present study aims to examine the effects of perinatal DE-79 exposure on the AVPergic system. Dams were dosed from gestational day 6 to postnatal day 21 at doses of 0 (control), 1.7 (low) or 10.2 (high) mg/kg/day, and male offspring from all doses at 3-months-old were subjected to normosmotic and hyperosmotic challenge. Male offspring where later assessed for alterations in osmoregulation (i.e. serum osmolality and systemic vasopressin release), and both vasopressin immunoreactivity (AVP-IR) and gene expression in the hypothalamic paraventricular and supraoptic nuclei. Additionally, to elucidate a possible mechanism for the effects of DE-79 on the AVPergic system, both neuronal nitric oxide synthase immunoreactivity (nNOS-IR) and mRNA expression were investigated in the same hypothalamic nuclei. The results showed that perinatal DE-79 exposure AVP-IR, mRNA expression and systemic release in adulthood under normosmotic conditions and more evidently under hyperosmotic stimulation. nNOS-IR and mRNA expression were also affected in the same nuclei. Since NO is an AVP regulator, we propose that disturbances in NO could be a mechanism underlying the AVPergic system disruption following perinatal DE-79 exposure leading to osmoregulation deficits.


Asunto(s)
Contaminantes Ambientales/toxicidad , Éteres Difenilos Halogenados/toxicidad , Vasopresinas/efectos de los fármacos , Animales , Animales Recién Nacidos , Femenino , Hipotálamo/metabolismo , Hipotálamo Anterior/metabolismo , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo I , Osmorregulación/efectos de los fármacos , Presión Osmótica/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Embarazo , Ratas , Ratas Wistar
15.
Aquat Toxicol ; 212: 98-109, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31082703

RESUMEN

The present study assesses the response of vasotocinergic system in the gilthead sea bream (Sparus aurata) after administering two doses of the polychlorinated biphenyl Aroclor 1254 (15 or 50 µg g-1 fresh body mass). Seven days post-administration, eight fish of each experimental group were sampled, and the remaining animals were challenged with a hyperosmotic stress by being transferred from seawater (36 ppt) to high salinity water (55 ppt) and being sampled 3 days post-transfer. Aroclor 1254 affected gene expression of avt, together with Avt concentrations in pituitary and plasma, inhibiting the stimulation observed in vasotocinergic system after hyperosmotic challenge. This was noted by the accumulation of Avt at hypophyseal level as well as by its undetectable values in plasma. Hyperosmotic transfer significantly changed branchial avtrv1a, avtrv2, atp1a and cftr mRNA expression levels in control fish, while in Aroclor 1254-treated fish they remained mostly unchanged. This desensitization also occurred for avtrs in hypothalamus, caudal kidney and liver. In addition, an enhancement in plasma cortisol concentration, together with the orchestration of several players of the Hypothalamic-Pituitary-Interrenal axis (crh, crhbp, trh, star), was also observed mostly at the highest dose used (50 µg g-1 body mass), affecting plasma and hepatic metabolites. Our results demonstrated that Aroclor 1254 compromises the hypoosmoregulatory function of vasotocinergic system in S. aurata, also inducing a concomitant stress response. In summary, this study demonstrates that Aroclor 1254 can be considered an important endocrine disruptor in relation with the correct arrangement of vasotocinergic, metabolic and stress pathways after their stimulation by transfer to hyperosmotic environments.


Asunto(s)
/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Osmorregulación/efectos de los fármacos , Dorada/fisiología , Estrés Fisiológico/efectos de los fármacos , Animales , Proteínas de Peces/genética , Hidrocortisona/sangre , Hipotálamo/efectos de los fármacos , Hígado/efectos de los fármacos , Hipófisis/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad
16.
Artículo en Inglés | MEDLINE | ID: mdl-30905843

RESUMEN

Following the Deepwater Horizon oil spill, approximately 7 million liters of the dispersant Corexit 9500A were released to promote oil biodegradation by breaking up surface oil slick formation. This process is accomplished via amphipathic anionic surfactants within dispersants that facilitate the mixing of aqueous and lipid phases. However, the amphipathicity of Corexit may also cause it to interact with biological membranes like the gill, impairing gill function and ultimately disrupting physiological processes mediated by it, such as osmoregulation. The goal of this study was to investigate the osmoregulatory effects and toxicity of Corexit in Gulf killifish. Killifish at the embryonic, larval, juvenile, and adult life stages were exposed to Corexit in water of different salinities to assess the interactive effects of ontogeny and salinity on Corexit toxicity. Corexit was not toxic to embryos except when exposed in hyperosmotic water where it had negligible effects; however, its toxicity to killifish increased dramatically following hatch, showing its greatest deleterious effects in adults. Corexit tended to increase sodium and chloride burdens in killifish when exposed in hyperosmotic waters and reduced whole-body and plasma ion concentrations in fish exposed to hypoosmotic waters. However, Corexit exposure at hyperosmotic salinities resulted in an increased differential accumulation of sodium over chloride as killifish matured. These findings suggest that Corexit may impair gill structure or alter specific components of osmoregulatory function, thus impacting osmoregulation in hypersosmotic and hypoosmotic waters, potentially impairing survival during osmotic challenges. Furthermore, the magnitude of these impacts continues to increase concomitant with gill ontogeny.


Asunto(s)
Fundulidae/fisiología , Lípidos/toxicidad , Cloruro de Sodio/efectos adversos , Agua/química , Envejecimiento , Animales , Larva/efectos de los fármacos , Osmorregulación/efectos de los fármacos , Petróleo/toxicidad , Contaminación por Petróleo , Salinidad , Cloruro de Sodio/química , Tensoactivos/toxicidad , Contaminantes Químicos del Agua/toxicidad
17.
Acta Histochem ; 121(3): 268-276, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30642627

RESUMEN

Dp71 is the major form of dystrophins (Dp) in the supraoptic nucleus (SON) and in the neural lobe of hypophysis (NL/HP). Dp71-null mice exhibit a hypo-osmolar status attributed to an altered osmosensitivity of the SON and to a perturbed vasopressinergic axis. Because oxytocin (OT) is implicated in osmoregulation via natriuresis, this study explored the oxytocinergic axis in Dp71-null mice after salt-loading (SL). Under normosmolar conditions, OT-mRNA expression was higher in the Dp71-null SON compared to wild-type (wt) and the OT peptide level has not changed. Dp-immunostaining was localized in astrocytes end-feet surrounding vessels in wt SON. This distribution changed in Dp71-null SON, Dp being detected in OT-soma of MCNs. nNOS and NADPH-diaphorase levels increased in the OT area of the Dp71-null SON compared to wt. In the NL/HP, OT level reduced in Dp71-null mice and Dp localization changed from pituicytes end-feet in wt SON to OT terminals in Dp71-null SON. Salt-Loading resulted in an increase of OT-mRNA and peptide levels in wt SON but had no effect in Dp71-null SON. In the NL/HP, OT content was reduced after SL. For Dp71-null mice, OT level, already low in control, was not modified by SL. Dp level was not affected by SL in the SON nor in the NL/HP. Our data confirmed the importance of Dp71 for the SON functionality in osmoregulation. The localization of Dp71 at the glial-vascular interface could be associated with SON osmosensitivity, leading to an adequate OT synthesis in the SON and release from the NL/HP upon plasmatic hyperosmolality.


Asunto(s)
Distrofina/deficiencia , Hipotálamo/metabolismo , Osmorregulación/fisiología , Oxitocina/metabolismo , Animales , Distrofina/metabolismo , Ratones Noqueados , NADPH Deshidrogenasa/metabolismo , Neuronas/metabolismo , Oxitocina/genética , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Supraóptico/metabolismo
18.
Protoplasma ; 256(2): 471-490, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30244382

RESUMEN

Melatonin (MT), derived from tryptophan, is an amazing signaling molecule with multiple functions in plants. Heat stress (HS) induced by high temperature is a major stress factor that limits metabolism, growth, development, and productivity of plants. However, whether MT could enhance the thermotolerance of maize seedlings and the underlying mechanisms is not completely known. In this study, treatment of maize seedlings with MT enhanced the survival percentage of maize seedlings under HS conditions, mitigated an increase in malondialdehyde (MDA, product of membrane lipid peroxidation) and electrolyte leakage, and improved tissue vitality compared with the control without MT treatment, indicating that MT treatment could enhance the theromotolerance of maize seedlings. To understand the mechanisms underlying MT-enhanced thermotolerance of maize seedlings, the antioxidant defense (guaiacol peroxidease: GPX; glutathione reductase: GR; catalase: CAT; ascorbic acid: AsA; and glutathione: GSH), methylglyoxal (MG) detoxification (glyoxalase I: Gly I; and glyoxalase II: Gly II), and osmoregulation (proline: Pro; trehalose: Tre; and total soluble sugar: TSS) systems were assayed. The results showed that MT treatment stimulated the activities of antioxidant enzymes (GPX, GR, and CAT) and MG detoxification enzymes (Gly I and Gly II), increased the contents of nonenzyme antioxidants (AsA and GSH) and osmolytes (Pro, Tre, and TSS) in maize seedlings under normal culture conditions, and maintained a higher abovementioned enzyme activity and antioxidant and osmolyte contents under HS conditions compared with the control. This work reported that MT could enhance the thermotolerance of maize seedlings by modulating the antioxidant defense, MG detoxification, and osmoregulation systems.


Asunto(s)
Antioxidantes/química , Melatonina/uso terapéutico , Plantones/química , Zea mays/química , Melatonina/farmacología , Osmorregulación , Termotolerancia
19.
An Acad Bras Cienc ; 90(4): 3433-3447, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30379265

RESUMEN

This study evaluated the effect of osmoregulators and carbohydrates on the maturation and germination of somatic embryos of papaya 'Golden THB'. Cotyledon explants from papaya seedlings germinated in vitro on basal MS medium were cultured on somatic embryogenesis induction medium (IM) containing MS salts, myo-inositol, sucrose, agar and p-chlorophenoxyacetic acid. After 50 days, embryogenic calli were transferred onto maturation media (MM) for 45 additional days. For experiment 1, a MS-based medium supplemented with abscisic acid, activated charcoal and concentrations of PEG 6000 (0; 40; 50; 60 and 70 g L-1) was used, whereas for experiment 2 malt extract concentrations (0; 0.1; 0.2; 0.3 and 0.4 g L-1) were assessed. The normal cotyledonary somatic embryos produced in experiment 2 were transferred to the germination medium (GM). The GM consisted of full-strength MS medium, sucrose, agar and was supplemented with myo-inositol at varying concentrations (0; 0.275; 0.55 and 0.825 mM). The PEG concentrations tested impaired the maturation of 'Golden THB' papaya somatic embryos. The MM, supplemented with malt extract at 0.153 g L-1, promoted the greatest development of normal somatic embryos (18.28 SE calli-1), that is, two cotyledonary leaves produced 36.56 SE calli-1. The supplementation with 0.45 mM myo-inositol provided the highest germination percentage (47.42%) and conversion to emblings.


Asunto(s)
Ácido Abscísico/farmacología , Carbohidratos/farmacología , Carica/efectos de los fármacos , Germinación/efectos de los fármacos , Osmorregulación , Reguladores del Crecimiento de las Plantas/farmacología , Brotes de la Planta/efectos de los fármacos , Técnicas de Embriogénesis Somática de Plantas/métodos , Polímeros/farmacología , Carica/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo
20.
Pestic Biochem Physiol ; 150: 10-16, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30195382

RESUMEN

Selenium (Se) in soil is beneficial for environmental stress tolerance of plants, and it has widespread toxic effects on pathogens. Based on the fact that Se significantly inhibited the growth of Sclerotinia sclerotiorum, we set experiments with different concentrations of Se to investigate the action of Se against S. sclerotiorum in this study. The results showed that Se (>0.5 mg L-1) changed the morphology of S. sclerotiorum mycelia, and higher Se concentrations severely damaged mycelial structures. Fourier transform infrared spectroscopy (FTIR) analysis indicated that Se treatment induced the chemical composition of mycelia with much abundance of functional groups such as alcohols, ketones, ammonium and esters, and 0.5 mg L-1 Se maximized their concentrations. Under Se treatments, the electrical conductivity of mycelia increased in a time-dependent manner, and osmolyte concentrations of mycelia increased as well. Se supplementation significantly reduced polymethylgalacturonase (PMG) and carboxymethylcellulase (Cx) activities, which protecting plants from infection, and increased the energy expenditure in S. sclerotiorum. Combined action of Se damage on membrane system, osmoregulation, reduction of cell wall degrading enzymes activities and improvement of energy expenditure resulted in the inhibition of S. sclerotiorum growth. Findings in this study provided evidences for using Se as a potential fungicide to control S. sclerotiorum.


Asunto(s)
Ascomicetos/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Fungicidas Industriales/farmacología , Selenio/farmacología , Adenosina Trifosfato/metabolismo , Ascomicetos/enzimología , Ascomicetos/crecimiento & desarrollo , Ascomicetos/metabolismo , Pared Celular/enzimología , Celulasa/metabolismo , Conductividad Eléctrica , Glicósido Hidrolasas/metabolismo , Microscopía Electrónica de Rastreo , Micelio/efectos de los fármacos , Micelio/ultraestructura , Osmorregulación , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA