Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.855
Filtrar
Más filtros

Intervalo de año de publicación
1.
ACS Nano ; 18(15): 10625-10641, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38563322

RESUMEN

Development of nanomedicines that can collaboratively scavenge reactive oxygen species (ROS) and inhibit inflammatory cytokines, along with osteogenesis promotion, is essential for efficient osteoarthritis (OA) treatment. Herein, we report the design of a ROS-responsive nanomedicine formulation based on fibronectin (FN)-coated polymer nanoparticles (NPs) loaded with azabisdimethylphoaphonate-terminated phosphorus dendrimers (G4-TBP). The constructed G4-TBP NPs-FN with a size of 268 nm are stable under physiological conditions, can be specifically taken up by macrophages through the FN-mediated targeting, and can be dissociated in the oxidative inflammatory microenvironment. The G4-TBP NPs-FN loaded with G4-TBP dendrimer having intrinsic anti-inflammatory property and FN having both anti-inflammatory and antioxidative properties display integrated functions of ROS scavenging, hypoxia attenuation, and macrophage M2 polarization, thus protecting macrophages from apoptosis and creating designed bone immune microenvironment for stem cell osteogenic differentiation. These characteristics of the G4-TBP NPs-FN lead to their effective treatment of an OA model in vivo to reduce pathological changes of joints including synovitis inhibition and cartilage matrix degradation and simultaneously promote osteogenic differentiation for bone repair. The developed nanomedicine formulation combining the advantages of both bioactive phosphorus dendrimers and FN to treat OA may be developed for immunomodulatory therapy of different inflammatory diseases.


Asunto(s)
Dendrímeros , Nanopartículas , Osteoartritis , Humanos , Especies Reactivas de Oxígeno/metabolismo , Osteogénesis , Dendrímeros/uso terapéutico , Osteoartritis/tratamiento farmacológico , Antiinflamatorios/uso terapéutico , Fósforo/uso terapéutico
2.
Nutrients ; 16(7)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38613068

RESUMEN

Osteoarthritis (OA) is a degenerative bone disease characterized by inflammation as a primary pathology and currently lacks therapeutic interventions to impede its progression. Erigeron breviscapus (Vant.) Hand.-Mazz. (EB) is an east Asian herbal medicine with a long history of use and a wide range of confirmed efficacy against cardiovascular and central nervous system diseases. The purpose of this study is to evaluate whether EB is worthy of further investigation as a treatment for OA based on anti-inflammatory activity. This study aims to assess the potential of EB as a treatment for OA, focusing on its anti-inflammatory properties. Analgesic effects, functional improvements, and inhibition of cartilage destruction induced by EB were evaluated in acetic acid-induced peripheral pain mice and monosodium iodoacetate-induced OA rat models. Additionally, the anti-inflammatory effect of EB was assessed in serum and cartilage tissue in vivo, as well as in lipopolysaccharide-induced RAW 264.7 cells. EB demonstrated a significant alleviation of pain, functional impairment, and cartilage degradation in OA along with a notable inhibition of pro-inflammatory cytokines, including interleukin-1ß, interleukin-6, matrix metalloproteinases 13, and nitric oxide synthase 2, both in vitro and in vivo, in a dose-dependent manner compared to the active control. Accordingly, EB merits further exploration as a potential disease-modifying drug for OA, capable of mitigating the multifaceted pathology of osteoarthritis through its anti-inflammatory properties. Nonetheless, additional validation through a broader experimental design is essential to substantiate the findings of this study.


Asunto(s)
Erigeron , Osteoartritis , Animales , Ratones , Ratas , Proyectos de Investigación , Antiinflamatorios no Esteroideos , Osteoartritis/inducido químicamente , Osteoartritis/tratamiento farmacológico , Dolor/tratamiento farmacológico , Extractos Vegetales/farmacología
3.
Exp Gerontol ; 190: 112413, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38570055

RESUMEN

BACKGROUND: Osteoporotic osteoarthritis (OP-OA) is a severe pathological form of OA, urgently requiring precise management strategies and more efficient interventions. Emodin (Emo), an effective ingredient found in the traditional Chinese medicine rhubarb, has been dEmonstrated to promote osteogenesis and inhibit extracellular matrix degradation. In this study, we aimed to investigate the interventional effects of Emo on the subchondral bone and cartilage of the knee joints in OP-OA model rats. METHODS: Thirty-two SD rats were randomly and equally divided into sham, OP-OA, Emo low-dose, and Emo high-dose groups. Micro-CT scanning was conducted to examine the bone microstructure of the rat knee joints. H&E and Safranin O and Fast Green staining (SO&FG) were performed for the pathomorphological evaluation of the rat cartilage tissues. ELISA was used to estimate the rat serum expression levels of inflammatory factors, including interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α). Additionally, the CCK-8 assay was utilized for determining the viability of Emo-treated BMSCs. Western blot and real-time PCR analyses were also employed to measure the bone formation indexes and cartilage synthesis and decomposition indexes. Lastly, the osteogenic and chondrogenic differentiation efficiency of the BMSCs was investigated via Alizarin Red and Alcian Blue staining. RESULTS: Emo intervention alleviated the bone microstructural disruption of the subchondral bone and articular cartilage in the OP-OA rats and up-regulated the expression of bone and cartilage anabolic metabolism indicators, decreased the expression of cartilage catabolism indicators, and diminished the expression of inflammatory factors in the rat serum (P<0.05). Furthermore, Emo reversed the decline in the osteogenic and chondrogenic differentiation ability of the BMSCs (P<0.05). CONCLUSION: Emo intervention mitigates bone loss and cartilage damage in OP-OA rats and promotes the osteogenic and chondrogenic differentiation of BMSCs.


Asunto(s)
Cartílago Articular , Emodina , Osteoporosis , Ratas Sprague-Dawley , Microtomografía por Rayos X , Animales , Emodina/farmacología , Cartílago Articular/efectos de los fármacos , Cartílago Articular/patología , Cartílago Articular/metabolismo , Ratas , Osteoporosis/tratamiento farmacológico , Osteoporosis/prevención & control , Femenino , Modelos Animales de Enfermedad , Osteogénesis/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-1beta/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/patología
4.
J Mater Chem B ; 12(17): 4148-4161, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38591180

RESUMEN

Cyaonoside A (CyA), derived from the natural Chinese medicine, Cyathula officinalis Kuan, which was for a long time used to treat knee injuries and relieve joint pain in traditional Chinese medicine, showed an unclear mechanism for protecting cartilage. In addition, CyA was poorly hydrosoluble and incapable of being injected directly into the joint cavity, which limited its clinical application. This study reveals that CyA resisted IL-1ß-mediated chondrogenic inflammation and apoptosis. Next, transcriptome sequencing is used to explore the potential mechanisms underlying CyA regulation of MSC chondrogenic differentiation. Based on these findings, CyA-loaded composite hydrogel microspheres (HLC) were developed and they possessed satisfactory loading efficiency, a suitable degradation rate and good biocompatibility. HLC increased chondrogenic anabolic gene (Acan, COL2A, and SOX9) expression, while downregulating the expression of the catabolic marker MMP13 in vitro. In the osteoarthritis mouse model, HLC demonstrated promising therapeutic capabilities by protecting the integrity of articular cartilage. In conclusion, this study provides insights into the regulatory mechanisms of CyA for chondrocytes and proposes a composite hydrogel microsphere-based advanced therapeutic strategy for osteoarthritis.


Asunto(s)
Condrocitos , Hidrogeles , Microesferas , Osteoartritis , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Animales , Hidrogeles/química , Hidrogeles/farmacología , Osteoartritis/tratamiento farmacológico , Osteoartritis/patología , Ratones , Inflamación/tratamiento farmacológico , Ratones Endogámicos C57BL , Masculino , Tamaño de la Partícula , Células Cultivadas
5.
Medicine (Baltimore) ; 103(14): e37483, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38579081

RESUMEN

Osteoarthritis (OA) is a major contributor to disability and social costs in the elderly. As the population ages and becomes increasingly obese, the incidence of the disease is higher than in previous decades. In recent years, important progress has been made in the causes and pathogenesis of OA pain. Modern medical treatment modalities mainly include the specific situation of the patient and focus on the core treatment, including self-management and education, exercise, and related weight loss. As an important part of complementary and alternative medicine, TCM has remarkable curative effect, clinical safety, and diversity of treatment methods in the treatment of OA. Traditional Chinese Medicine treatment of OA has attracted worldwide attention. Therefore, this article will study the pathophysiological mechanism of OA based on modern medicine, and explore the treatment of OA by acupuncture combined with Chinese Medicine.


Asunto(s)
Terapia por Acupuntura , Medicina Tradicional China , Osteoartritis , Anciano , Humanos , Osteoartritis/terapia , Osteoartritis/complicaciones , Dolor/etiología , Terapia Combinada
6.
Phytomedicine ; 128: 155279, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581801

RESUMEN

BACKGROUND: Osteoarthritis (OA) is characterized by degeneration of articular cartilage, leading to joint pain and dysfunction. Gubi Zhitong formula (GBZTF), a traditional Chinese medicine formula, has been used in the clinical treatment of OA for decades, demonstrating definite efficacy. However, its mechanism of action remains unclear, hindering its further application. METHODS: The ingredients of GBZTF were analyzed and performed with liquid chromatography-mass spectrometry (LC-MS). 6 weeks old SD rats were underwent running exercise (25 m/min, 80 min, 0°) to construct OA model with cartilage wear and tear. It was estimated by Micro-CT, Gait Analysis, Histological Stain. RNA-seq technology was performed with OA Rats' cartilage, and primary chondrocytes induced by IL-1ß (mimics OA chondrocytes) were utilized to evaluated and investigated the mechanism of how GBZTF protected OA cartilage from being damaged with some functional experiments. RESULTS: A total of 1006 compounds were identified under positive and negative ion modes by LC-MS. Then, we assessed the function of GBZTF through in vitro and vivo. It was found GBZTF could significantly up-regulate OA rats' limb coordination and weight-bearing capacity, and reduce the surface and sub-chondral bone erosions of OA joints, and protect cartilage from being destroyed by inflammatory factors (iNOS, IL-6, IL-1ß, TNF- α, MMP13, ADAMTS5), and promote OA chondrocytes proliferation and increase the S phage of cell cycle. In terms of mechanism, RNA-seq analysis of cartilage tissues revealed 1,778 and 3,824 differentially expressed genes (DEGs) in model vs control group and GBZTF vs model group, respectively. The mitophagy pathway was most significantly enriched in these DEGs. Further results of subunits of OA chondrocytes confirmed that GBZTF could alleviate OA-associated inflammation and cartilage damage through modulation BCL2 interacting protein 3-like (BNIP3L)-mediated mitophagy. CONCLUSION: The therapeutic effectiveness of GBZTF on OA were first time verified in vivo and vitro through functional experiments and RNA-seq, which provides convincing evidence to support the molecular mechanisms of GBZTF as a promising therapeutic decoction for OA.


Asunto(s)
Condrocitos , Medicamentos Herbarios Chinos , Mitofagia , Osteoartritis , Ratas Sprague-Dawley , Animales , Osteoartritis/tratamiento farmacológico , Condrocitos/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Ratas , Mitofagia/efectos de los fármacos , Masculino , Modelos Animales de Enfermedad , Proteínas de la Membrana/metabolismo , Cartílago Articular/efectos de los fármacos , Proteínas Mitocondriales/metabolismo
7.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1007-1016, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621908

RESUMEN

Chondrocytes are unique resident cells in the articular cartilage, and the pathological changes of them can lead to the occurrence of osteoarthritis(OA). Ligusticum cycloprolactam(LIGc) are derivatives of Z-ligustilide(LIG), a pharmacodynamic marker of Angelica sinensis, which has various biological functions such as anti-inflammation and inhibition of cell apoptosis. However, its protective effect on chondrocytes in the case of OA and the underlying mechanism remain unclear. This study conducted in vitro experiments to explore the molecular mechanism of LIGc in protecting chondrocytes from OA. The inflammation model of rat OA chondrocyte model was established by using interleukin-1ß(IL-1ß) to induce. LIGc alone and combined with glycyrrhizic acid(GA), a blocker of the high mobility group box-1 protein(HMGB1)/Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB) signaling pathway, were used to intervene in the model, and the therapeutic effects were systematically evaluated. The viability of chondrocytes treated with different concentrations of LIGc was measured by the cell counting kit-8(CCK-8), and the optimal LIGc concentration was screened out. Annexin V-FITC/PI apoptosis detection kit was employed to examine the apoptosis of chondrocytes in each group. The enzyme-linked immunosorbent assay(ELISA) was employed to measure the expression of cyclooxygenase-2(COX-2), prostaglandin-2(PGE2), and tumor necrosis factor-alpha(TNF-α) in the supernatant of chondrocytes in each group. Western blot was employed to determine the protein levels of B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), caspase-3, HMGB1, TLR4, and NF-κB p65. The mRNA levels of HMGB1, TLR4, NF-κB p65, and myeloid differentiation factor 88(MyD88) in chondrocytes were determined by real-time fluorescent quantitative PCR(RT-qPCR). The safe concentration range of LIGc on chondrocytes was determined by CCK-8, and then the optimal concentration of LIGc for exerting the effect was clarified. Under the intervention of IL-1ß, the rat chondrocyte model of OA was successfully established. The modeled chondrocytes showed increased apoptosis rate, promoted expression of COX-2, PGE2, and TNF-α, up-regulated protein levels of Bax, caspase-3, HMGB1, TLR4, and NF-κB p65 and mRNA levels of HMGB1, TLR4, NF-κB p65, and MyD88, and down-regulated protein level of Bcl-2. However, LIGc reversed the IL-1ß-induced changes of the above factors. Moreover, LIGc combined with GA showed more significant reversal effect than LIGc alone. These fin-dings indicate that LIGc extracted and derived from the traditional Chinese medicine A. sinensis can inhibit the inflammatory response of chondrocytes and reduce the apoptosis of chondrocytes, and this effect may be related to the HMGB1/TLR4/NF-κB signaling pathway. The pharmacological effect of LIGc on protecting chondrocytes has potential value in delaying the progression of OA and improving the clinical symptoms of patients, and deserves further study.


Asunto(s)
Proteína HMGB1 , Ligusticum , Osteoartritis , Humanos , Ratas , Animales , FN-kappa B/genética , FN-kappa B/metabolismo , Condrocitos , Caspasa 3/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacología , Dinoprostona , Factor 88 de Diferenciación Mieloide/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Transducción de Señal , Inflamación/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/genética , Apoptosis , ARN Mensajero/metabolismo
8.
J Orthop Surg Res ; 19(1): 178, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38468339

RESUMEN

BACKGROUND: Osteoarthritis (OA) is a common degenerative joint disease characterized by persistent articular cartilage degeneration and synovitis. Oxymatrine (OMT) is a quinzolazine alkaloid extracted from the traditional Chinese medicine, matrine, and possesses anti-inflammatory properties that may help regulate the pathogenesis of OA; however, its mechanism has not been elucidated. This study aimed to investigate the effects of OMT on interleukin-1ß (IL-1ß)-induced damage and the potential mechanisms of action. METHODS: Chondrocytes were isolated from Sprague-Dawley rats. Toluidine blue and Collagen II immunofluorescence staining were used to determine the purity of the chondrocytes. Thereafter, the chondrocytes were subjected to IL-1ß stimulation, both in the presence and absence of OMT, or the autophagy inhibitor 3-methyladenine (3-MA). Cell viability was assessed using the MTT assay and SYTOX Green staining. Additionally, flow cytometry was used to determine cell apoptosis rate and reactive oxygen species (ROS) levels. The protein levels of AKT, mTOR, LC3, P62, matrix metalloproteinase-13, and collagen II were quantitatively analyzed using western blotting. Immunofluorescence was used to assess LC3 expression. RESULTS: OMT alleviated IL-1ß-induced damage in chondrocytes, by increasing the survival rate, reducing the apoptosis rates of chondrocytes, and preventing the degradation of the cartilage matrix. In addition, OMT decreased the ROS levels and inhibited the AKT/mTOR signaling pathway while promoting autophagy in IL-1ß treated chondrocytes. However, the effectiveness of OMT in improving chondrocyte viability under IL-1ß treatment was limited when autophagy was inhibited by 3-MA. CONCLUSIONS: OMT decreases oxidative stress and inhibits the AKT/mTOR signaling pathway to enhance autophagy, thus inhibiting IL-1ß-induced damage. Therefore, OMT may be a novel and effective therapeutic agent for the clinical treatment of OA.


Asunto(s)
Alcaloides , Cartílago Articular , Matrinas , Osteoartritis , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Condrocitos/metabolismo , Interleucina-1beta/toxicidad , Interleucina-1beta/metabolismo , Osteoartritis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratas Sprague-Dawley , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Cartílago Articular/metabolismo , Alcaloides/farmacología , Alcaloides/uso terapéutico , Alcaloides/metabolismo , Autofagia , Colágeno/metabolismo , Apoptosis
9.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38473759

RESUMEN

Osteoarthritis (OA) causes joint pain and disability due to the abnormal production of inflammatory cytokines and reactive oxygen species (ROS) in chondrocytes, leading to cell death and cartilage matrix destruction. Selenium (Se) intake can protect cells against oxidative damage. It is still unknown whether Se supplementation is beneficial for OA. This study investigated the effects of Se on sodium iodoacetate (MIA)-imitated OA progress in human chondrocyte cell line (SW1353 cells) and rats. The results showed that 0.3 µM of Se treatment could protect SW1353 cells from MIA-induced damage by the Nrf2 pathway by promoting the gene expression of glutathione-synthesis-related enzymes such as the glutamate-cysteine ligase catalytic subunit, the glutamate-cysteine ligase modifier subunit, and glutathione synthetase. In addition, glutathione, superoxide dismutase, glutathione peroxidase, and glutathione reductase expressions are also elevated to eliminate excessive ROS production. Moreover, Se could downregulate NF-κB, leading to a decrease in cytokines, matrix proteases, and glycosaminoglycans. In the rats, MIA-induced cartilage loss was lessened after 2 weeks of Se supplementation by oral gavage; meanwhile, glutathione synthesis was increased, and the expressions of pro-inflammatory cytokines were decreased. These results suggest that Se intake is beneficial for OA due to its effects of decreasing cartilage loss by enhancing antioxidant capacity and reducing inflammation.


Asunto(s)
Cartílago Articular , Osteoartritis , Selenio , Humanos , Ratas , Animales , FN-kappa B/metabolismo , Condrocitos/metabolismo , Selenio/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Glutamato-Cisteína Ligasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Osteoartritis/metabolismo , Estrés Oxidativo , Citocinas/metabolismo , Glutatión/metabolismo , Cartílago Articular/metabolismo
10.
Front Immunol ; 15: 1363947, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500879

RESUMEN

Introduction: Osteoarthritis (OA) is associated with excessive cartilage degradation, inflammation, and decreased autophagy. Insufficient efficacy of conventional monotherapies and poor tissue regeneration due to side effects are just some of the unresolved issues. Our previous research has shown that Calebin A (CA), a component of turmeric (Curcuma longa), has pronounced anti-inflammatory and anti-oxidative effects by modulating various cell signaling pathways. Whether CA protects chondrocytes from degradation and apoptosis in the OA environment (EN), particularly via the autophagy signaling pathway, is however completely unclear. Methods: To study the anti-degradative and anti-apoptotic effects of CA in an inflamed joint, an in vitro model of OA-EN was created and treated with antisense oligonucleotides targeting NF-κB (ASO-NF-κB), and IκB kinase (IKK) inhibitor (BMS-345541) or the autophagy inhibitor 3-methyladenine (3-MA) and/or CA to affect chondrocyte proliferation, degradation, apoptosis, and autophagy. The mechanisms underlying the CA effects were investigated by MTT assays, immunofluorescence, transmission electron microscopy, and Western blot analysis in a 3D-OA high-density culture model. Results: In contrast to OA-EN or TNF-α-EN, a treatment with CA protects chondrocytes from stress-induced defects by inhibiting apoptosis, matrix degradation, and signaling pathways associated with inflammation (NF-κB, MMP9) or autophagy-repression (mTOR/PI3K/Akt), while promoting the expression of matrix compounds (collagen II, cartilage specific proteoglycans), transcription factor Sox9, and autophagy-associated proteins (Beclin-1, LC3). However, the preventive properties of CA in OA-EN could be partially abrogated by the autophagy inhibitor 3-MA. Discussion: The present results reveal for the first time that CA is able to ameliorate the progression of OA by modulating autophagy pathway, inhibiting inflammation and apoptosis in chondrocytes, suggesting that CA may be a novel therapeutic compound for OA.


Asunto(s)
FN-kappa B , Osteoartritis , Humanos , Fosfatidilinositol 3-Quinasas , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Inflamación/metabolismo , Autofagia
11.
J Orthop Surg Res ; 19(1): 198, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528538

RESUMEN

PURPOSE: This study aimed to evaluate the protective effects of gentiopicroside against lipopolysaccharide-induced chondrocyte inflammation. METHODS: SW 1353 chondrosarcoma cells were stimulated with LPS (5 µg/ml) for 24 h and treated with different concentrations of gentiopicroside (GPS) for 24 h. The toxic effects of GPS on chondrocytes were determined using a CCK-8 assay and EdU staining. Western blotting, qPCR, and immunofluorescence analysis were used to examine the protective effect of GPS against the inflammatory response in chondrocytes induced by lipopolysaccharide (LPS). One-way ANOVA was used to compare the differences between the groups (significance level of 0.05). RESULTS: The CCK-8 results showed that 10, 20 and 40 µM GPS had no significant toxic effects on chondrocytes; GPS effectively reduced the production of IL-1ß and PGE2, reversed LPS-induced extracellular matrix degradation in cartilage by inhibiting the Stat3/Runx2 signaling pathway, and suppressed the hypertrophic transformation of SW 1353 chondrosarcoma cells. CONCLUSION: Our study demonstrated that GPS significantly inhibited the LPS-induced inflammatory response and hypertrophic cellular degeneration in SW 1353 chondrosarcoma cells and is a valuable traditional Chinese medicine for the treatment of knee osteoarthritis.


Asunto(s)
Condrosarcoma , Glucósidos Iridoides , Osteoartritis , Humanos , Condrocitos/metabolismo , Lipopolisacáridos/toxicidad , Osteoartritis/metabolismo , Sincalida/metabolismo , Sincalida/farmacología , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Hipertrofia , Condrosarcoma/tratamiento farmacológico , Interleucina-1beta/metabolismo , FN-kappa B/metabolismo
12.
J Bodyw Mov Ther ; 37: 90-93, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38432847

RESUMEN

BACKGROUND: Retinacula of the ankle are thickening of the deep fascia of the leg (crural fascia) and foot i.e. inseparable structures. Recent studies report their crucial role in functional stability and proprioception of the ankle. CASE PRESENTATION: A 38-yr-old Caucasian man - with a history of lateral malleolus fracture 12 years ago, obesity and right ankle osteoarthritis - was referred to a physiatrist for a right ankle pain that had significantly worsened over the last year. During walking, the patient experienced stinging pain in the area of tibialis anterior and peroneus tertius muscles, and the superior extensor retinaculum. Magnetic resonance imaging and ultrasonography showed clear thicknening (2.05 mm) of the oblique superomedial band of the inferior extensor retinaculum. Sonopalpation was performed to precisely evaluate/confirm the site of maximum pain. Foot function index (FFI) score was 42. RESULTS: Subsequently, the patient was prescribed fascial manipulation, and he had clinical improvement after the first session (FFI: 21). At 1-month follow-up, the patient was still asymptomatic without any functional limitation (FFI: 24). US imaging confirmed the decreased thickness of the oblique superomedial band of the extensor retinaculum (1.35 mm). CONCLUSION: Fascial Manipulation® appears to be a useful tool to reduce thickness, stiffness, and pain in this case as displayed by the ultrasound Imaging.


Asunto(s)
Tobillo , Osteoartritis , Masculino , Humanos , Tobillo/diagnóstico por imagen , Articulación del Tobillo/diagnóstico por imagen , Ultrasonografía , Fascia/diagnóstico por imagen , Dolor
13.
J Ethnopharmacol ; 325: 117887, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38346525

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ginkgo biloba, as the most widely available medicinal plant worldwide, has been frequently utilized for treat cardiovascular, cerebrovascular, diabetic and other diseases. Due to its distinct pharmacological effects, it has been broadly applications in pharmaceuticals, health products, dietary supplements, and so on. Ginkgolide C (GC), a prominent extract of Ginkgo biloba, possesses potential in anti-inflammatory and anti-oxidant efficacy. AIMS OF THE STUDY: To determine whether GC mitigated the progressive degeneration of articular cartilage in a Monosodium Iodoacetate (MIA)-induced osteoarthritis (OA) rat model by inhibiting the activation of the NLRP3 inflammasome, and the specific underlying mechanisms. MATERIALS AND METHODS: In vivo, an OA rat model was established by intra-articular injection of MIA. The protective effect of GC (10 mg/kg) on articular cartilage was evaluated. Application of ATDC5 cells to elucidate the mechanism of the protective effect of GC on articular cartilage. Specifically, the expression levels of molecules associated with cartilage ECM degrading enzymes, OS, ERS, and NLRP3 inflammasome activation were analyzed. RESULTS: In vivo, GC ameliorated MIA-induced OA rat joint pain, and exhibited remarkable anti-inflammatory and anti- ECM degradation effects via inhibition of the activation of NLRP3 inflammasome, the release of inflammatory factors, and the expression of matrix-degrading enzymes in cartilage. Mechanically, GC inhibited the activation of NLRP3 inflammasome by restraining ROS-mediated p-IRE1α and activating Nrf2/NQO1 signal path, thereby alleviating OA. The ROS scavenger NAC was as effective as GC in reducing ROS production and inhibiting the activation of NLRP3 inflammasome. CONCLUSIONS: GC have exerted chondroprotective effects by inhibiting the activation of NLRP3 inflammasome.


Asunto(s)
Cartílago Articular , Ginkgólidos , Lactonas , Osteoartritis , Ratas , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Condrocitos , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Osteoartritis/inducido químicamente , Osteoartritis/tratamiento farmacológico , Antiinflamatorios/efectos adversos , Ácido Yodoacético/efectos adversos , Ácido Yodoacético/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/metabolismo
14.
Aging Clin Exp Res ; 36(1): 45, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38376694

RESUMEN

Osteoarthritis (OA) is a disease with systemic implications that go beyond joint problems. Its pathogenic mechanisms involve a variety of systemic conditions that contribute to joint damage. These include metabolic dysfunction, chronic low-grade inflammation, neuroplastic pain, and the influence of the central nervous system in the development of neuropathic pain. Besides, OA can negatively affect other aspects of health, such as quality of life, reduced physical activity, social isolation, depression, and anxiety. OA can be considered a complex system in which pathological interactions involve not only obesity and metabolic dysfunction, but also fragility syndrome, sarcopenia, neurological complications, and systemic energy redistribution. Complex systems are composed of multiple interacting and dynamic parts and exhibit emergent properties that cannot be fully explained by examining their individual components. Chronic low-grade inflammation is characteristic of OA, occurring both in the affected joint, and systemically, mainly due to adipose tissue inflammation in obese patients. Obesity is a key factor in the progression of OA, so primary treatment should focus on its control, while maintaining muscle health. The chronic inflammation could lead to changes in energy distribution among the affected joint tissues. Therefore, OA should be approached as a systemic disease, considering individual patient factors, such as genetics, inflammatory response, and lifestyle. Medical care should be more holistic and personalized. Consideration of a name change, such as "systemic OA", could help to move away from the perception of a disease focused only on the joints.


Asunto(s)
Osteoartritis , Calidad de Vida , Humanos , Inflamación , Dolor , Obesidad
15.
Chin J Nat Med ; 22(2): 137-145, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38342566

RESUMEN

Excessive oxidative stress impairs cartilage matrix metabolism balance, significantly contributing to osteoarthritis (OA) development. Celastrol (CSL), a drug derived from Tripterygium wilfordii, has recognized applications in the treatment of cancer and immune system disorders, yet its antioxidative stress mechanisms in OA remain underexplored. This study aimed to substantiate CSL's chondroprotective effects and unravel its underlying mechanisms. We investigated CSL's impact on chondrocytes under both normal and inflammatory conditions. In vitro, CSL mitigated interleukin (IL)-1ß-induced activation of proteinases and promoted cartilage extracellular matrix (ECM) synthesis. In vivo, intra-articular injection of CSL ameliorated cartilage degeneration and mitigated subchondral bone lesions in OA mice. Mechanistically, it was found that inhibiting nuclear factor erythroid 2-related factor 2 (NRF2) abrogated CSL-mediated antioxidative functions and exacerbated the progression of OA. This study is the first to elucidate the role of CSL in the treatment of OA through the activation of NRF2, offering a novel therapeutic avenue for arthritis therapy.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Osteoartritis , Ratones , Animales , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Osteoartritis/patología , Triterpenos Pentacíclicos/farmacología , Triterpenos Pentacíclicos/metabolismo , Condrocitos , Interleucina-1beta
16.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38396803

RESUMEN

Osteoarthritis is the most common type of arthritis, characterized by joint pain and a decline in physiological function. Scutellaria baicalensis Georgi (SB) is potentially effective against osteoarthritis because of its wide range of anti-inflammatory pharmacological activities. This study aimed to identify the mode of action of SB against osteoarthritis using network pharmacology prediction and experimental verification. Networks were constructed to key compounds, hub targets, and pathways essential for SB's effectiveness against osteoarthritis. Additionally, in vivo and in vitro tests were performed, including investigations on weight bearing in hind limbs, the acetic acid-induced writhing response, lipopolysaccharide-stimulated RAW264.7 cells, and serum cytokine responses. We identified 15 active compounds and 14 hub targets, supporting the anti-osteoarthritis effects of SB. The Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that fluid shear stress, atherosclerosis, phosphatidylinositol 3-kinase-Akt signaling, and cellular senescence pathways were important. SB showed substantial anti-inflammatory, analgesic, and joint tissue-protective effects against osteoarthritis. Our study shows that SB has the potential value to be further investigated as a candidate material for the treatment of osteoarthritis in the future.


Asunto(s)
Medicamentos Herbarios Chinos , Osteoartritis , Farmacología en Red , Scutellaria baicalensis , Osteoartritis/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inflamación/tratamiento farmacológico , Dolor/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Simulación del Acoplamiento Molecular
17.
J Ethnopharmacol ; 326: 117827, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38310989

RESUMEN

BACKGROUND: In many different plants, including Dorstenia and Psoralea corylifolia L., Isobavachalcone (IBC) is a naturally occurring flavonoid chemical having a range of biological actions, including anti-inflammatory, immunomodulatory, and anti-bacterial. The "Theory of Medicinal Properties" of the Tang Dynasty states that Psoralea corylifolia L. has the ability to alleviate discomfort in the knees and waist. One of the most widespread chronic illnesses, osteoarthritis (OA), is characterized by stiffness and discomfort in the joints. However, there hasn't been much research done on the effectiveness and underlying processes of IBC in the treatment of osteoarthritis. AIM OF THE STUDY: To investigate the potential efficacy and mechanism of IBC in treating osteoarthritis, we adopted an integrated strategy of network pharmacology, molecular docking and experiment assessment. MATERIALS AND METHODS: The purpose of this research was to determine the impact of IBC on OA and the underlying mechanisms. IBC and OA possible targets and processes were predicted using network pharmacology, including the relationship between IBC and OA intersection targets, Cytoscape protein-protein interaction (PPI) to obtain key potential targets, and GO and KEGG pathway enrichment analysis to reveal the probable mechanism of IBC on OA. Following that, in vitro tests were carried out to confirm the expected underlying processes. Finally, in vivo tests clarified IBC's therapeutic efficacy on OA. RESULTS: We anticipated and validated that the impact of IBC on osteoarthritis is mostly controlled by the PI3K-AKT-NF-κB signaling pathway by combining the findings of network pharmacology analysis, molecular docking and Experiment Validation. CONCLUSIONS: This study reveals the IBC has potential to delay OA development.


Asunto(s)
Chalconas , Medicamentos Herbarios Chinos , Fabaceae , Osteoartritis , Simulación del Acoplamiento Molecular , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Osteoartritis/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
18.
Sci Rep ; 14(1): 2696, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302538

RESUMEN

Osteoarthritis is the most common degenerative joint condition, leading to articular cartilage (AC) degradation, chronic pain and immobility. The lack of appropriate therapies that provide tissue restoration combined with the limited lifespan of joint-replacement implants indicate the need for alternative AC regeneration strategies. Differentiation of human pluripotent stem cells (hPSCs) into AC progenitors may provide a long-term regenerative solution but is still limited due to the continued reliance upon growth factors to recapitulate developmental signalling processes. Recently, TTNPB, a small molecule activator of retinoic acid receptors (RARs), has been shown to be sufficient to guide mesodermal specification and early chondrogenesis of hPSCs. Here, we modified our previous differentiation protocol, by supplementing cells with TTNPB and administering BMP2 at specific times to enhance early development (referred to as the RAPID-E protocol). Transcriptomic analyses indicated that activation of RAR signalling significantly upregulated genes related to limb and embryonic skeletal development in the early stages of the protocol and upregulated genes related to AC development in later stages. Chondroprogenitors obtained from RAPID-E could generate cartilaginous pellets that expressed AC-related matrix proteins such as Lubricin, Aggrecan, and Collagen II, but additionally expressed Collagen X, indicative of hypertrophy. This protocol could lay the foundations for cell therapy strategies for osteoarthritis and improve the understanding of AC development in humans.


Asunto(s)
Benzoatos , Cartílago Articular , Osteoartritis , Células Madre Pluripotentes , Retinoides , Humanos , Condrocitos/metabolismo , Tretinoina/farmacología , Condrogénesis/genética , Diferenciación Celular , Cartílago Articular/metabolismo , Colágeno/metabolismo , Osteoartritis/metabolismo
19.
Drug Des Devel Ther ; 18: 259-275, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38318502

RESUMEN

Background: Astragalus membranaceus (AM) shows promise as a therapeutic agent for osteoarthritis (OA), a debilitating condition with high disability rates. OA exacerbation is linked to chondrocyte ferroptosis, yet the precise pharmacological mechanisms of AM remain unclear. Methods: We validated AM's protective efficacy in an anterior cruciate ligament transection (ACLT) mouse model of OA. The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database was utilized to identify AM's active components and their targets. FerrDb (a database for regulators and markers of ferroptosis and ferroptosis-disease associations) pinpointed ferroptosis-related targets, while GeneCards, Online Mendelian Inheritance in Man (OMIM), Pharmacogenomics Knowledgebase (PharmGKB), Therapeutic Target Database (TTD), and DrugBank sourced OA-related genes. Molecular docking analysis further validated these targets. Ultimately, the validation of the results was accomplished through in vitro experiments. Results: AM exhibited anabolic effects and suppressed catabolism in OA chondrocytes. Network pharmacology identified 19 common genes, and molecular docking suggested quercetin, an AM constituent, interacts with key proteins like HO-1 and NRF2 to inhibit chondrocyte ferroptosis. In vitro experiments confirmed AM's ability to modulate the NRF2/HO-1 pathway via quercetin, mitigating chondrocyte ferroptosis. Conclusion: This study elucidates how AM regulates chondrocyte ferroptosis, impacting OA progression, providing a theoretical basis and experimental support for AM's scientific application.


Asunto(s)
Medicamentos Herbarios Chinos , Ferroptosis , Osteoartritis , Humanos , Animales , Ratones , Astragalus propinquus , Simulación del Acoplamiento Molecular , Factor 2 Relacionado con NF-E2 , Farmacología en Red , Quercetina , Bases de Datos Genéticas , Osteoartritis/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología
20.
Phytother Res ; 38(4): 1990-2006, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38372204

RESUMEN

Osteoarthritis (OA) is characterized by an imbalance between M1 and M2 polarized synovial macrophages. Quercetin has shown protective effects against OA by altering M1/M2-polarized macrophages, but the underlying mechanisms remain unclear. In this study, rat chondrocytes were treated with 10 ng/mL of IL-1ß. To create M1-polarized macrophages in vitro, rat bone marrow-derived macrophages (rBMDMs) were treated with 100 ng/mL LPS. To mimic OA conditions observed in vivo, a co-culture system of chondrocytes and macrophages was established. ATP release assays, immunofluorescence assays, Fluo-4 AM staining, Transwell assays, ELISA assays, and flow cytometry were performed. Male adult Sprague-Dawley (SD) rats were used to create an OA model. Histological analyses, including H&E, and safranin O-fast green staining were performed. Our data showed a quercetin-mediated suppression of calcium ion influx and ATP release, with concurrent downregulation of TRPV1 and P2X7 in the chondrocytes treated with IL-1ß. Activation of TRPV1 abolished the quercetin-mediated effects on calcium ion influx and ATP release in chondrocytes treated with IL-1ß. In the co-culture system, overexpression of P2X7 in macrophages attenuated the quercetin-mediated effects on M1 polarization, migration, and inflammation. Either P2X7 or NLRP3 knockdown attenuated IL-1ß-induced M1/M2 polarization, migration, and inflammation. Moreover, overexpression of TRPV1 reduced the quercetin-mediated suppressive effects on OA by promoting M1/M2-polarized macrophages in vivo. Collectively, our data showed that quercetin-induced suppression of TRPV1 leads to a delay in OA progression by shifting the macrophage polarization from M1 to M2 subtypes via modulation of the P2X7/NLRP3 pathway.


Asunto(s)
Osteoartritis , Quercetina , Animales , Masculino , Ratas , Adenosina Trifosfato/metabolismo , Calcio/metabolismo , Inflamación/metabolismo , Macrófagos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Osteoartritis/tratamiento farmacológico , Quercetina/farmacología , Ratas Sprague-Dawley , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA