Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.620
Filtrar
Más filtros

Intervalo de año de publicación
1.
Eur J Pharmacol ; 974: 176604, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38649090

RESUMEN

Osteoporosis (OP) is a metabolic bone disease with a high incidence rate worldwide. Its main features are decreased bone mass, increased bone fragility and deterioration of bone microstructure. It is caused by an imbalance between bone formation and bone resorption. Ginsenoside is a safe and effective traditional Chinese medicine (TCM) usually extracted from ginseng plants, having various therapeutic effects, of which the effect against osteoporosis has been extensively studied. We searched a total of 44 relevant articles with using keywords including osteoporosis, ginsenosides, bone mesenchymal cells, osteoblasts, osteoclasts and bone remodeling, all of which investigated the cellular mechanisms of different types of ginsenosides affecting the activity of bone remodeling by mesenchymal stem cells, osteoblasts and osteoclasts to counteract osteoporosis. This review describes the different types of ginsenosides used to treat osteoporosis from different perspectives, providing a solid theoretical basis for future clinical applications.


Asunto(s)
Ginsenósidos , Osteoporosis , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Osteoporosis/tratamiento farmacológico , Humanos , Animales , Remodelación Ósea/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteoclastos/efectos de los fármacos
2.
Phytomedicine ; 129: 155604, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38614042

RESUMEN

BACKGROUND: Bone deficiency-related diseases caused by various factors have disrupted the normal function of the skeleton and imposed a heavy burden globally, urgently requiring potential new treatments. The multi-faceted role of compounds like ginsenosides and their interaction with the bone microenvironment, particularly osteoblasts can promote bone formation and exhibit anti-inflammatory, vascular remodeling, and antibacterial properties, holding potential value in the treatment of bone deficiency-related diseases and bone tissue engineering. PURPOSE: This review summarizes the interaction between ginsenosides and osteoblasts and the bone microenvironment in bone formation, including vascular remodeling and immune regulation, as well as their therapeutic potential and toxicity in the broad treatment applications of bone deficiency-related diseases and bone tissue engineering, to provide novel insights and treatment strategies. METHODS: The literature focusing on the mechanisms and applications of ginsenosides in promoting bone formation before March 2024 was searched in PubMed, Web of Science, Google Scholar, Scopus, and Science Direct databases. Keywords such as "phytochemicals", "ginsenosides", "biomaterials", "bone", "diseases", "bone formation", "microenvironment", "bone tissue engineering", "rheumatoid arthritis", "periodontitis", "osteoarthritis", "osteoporosis", "fracture", "toxicology", "pharmacology", and combinations of these keywords were used. RESULTS: Ginsenoside monomers regulate signaling pathways such as WNT/ß-catenin, FGF, and BMP/TGF-ß, stimulating osteoblast generation and differentiation. It exerts angiogenic and anti-inflammatory effects by regulating the bone surrounding microenvironment through signaling such as WNT/ß-catenin, NF-κB, MAPK, PI3K/Akt, and Notch. It shows therapeutic effects and biological safety in the treatment of bone deficiency-related diseases, including rheumatoid arthritis, osteoarthritis, periodontitis, osteoporosis, and fractures, and bone tissue engineering by promoting osteogenesis and improving the microenvironment of bone formation. CONCLUSION: The functions of ginsenosides are diverse and promising in treating bone deficiency-related diseases and bone tissue engineering. Moreover, potential exists in regulating the bone microenvironment, modifying biomaterials, and treating inflammatory-related bone diseases and dental material applications. However, the mechanisms and effects of some ginsenoside monomers are still unclear, and the lack of clinical research limits their clinical application. Further exploration and evaluation of the potential of ginsenosides in these areas are expected to provide more effective methods for treating bone defects.


Asunto(s)
Ginsenósidos , Osteoblastos , Osteogénesis , Ginsenósidos/farmacología , Humanos , Osteogénesis/efectos de los fármacos , Animales , Osteoblastos/efectos de los fármacos , Ingeniería de Tejidos/métodos , Huesos/efectos de los fármacos
3.
Phytomedicine ; 129: 155628, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38663117

RESUMEN

BACKGROUND: Postmenopausal osteoporosis (PMOP) is a systemic bone disease characterized by low bone mass and microstructural damage. Morinda Officinalis (MO) contains various components with anti-PMOP activities. Morinda Officinalis-derived extracellular vesicle-like particles (MOEVLPs) are new active components isolated from MO, and no relevant studies have investigated their anti-osteoporosis effect and mechanism. PURPOSE: To investigate the alleviating effect of MOEVLPs on PMOP and the underlying mechanism. METHODS: Differential centrifugation and ultracentrifugation were used to isolate MOEVLPs from MO. Transmission electron microscopy (TEM), flow nano analyzer, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), agarose gel electrophoresis, and thin-layer chromatography were employed to characterize MOEVLPs. PMOP mouse models were utilized to examine the anti-PMOP effect of MOEVLPs. H&E and immunohistochemical staining were used for drug safety and osteogenic effect assessment. Mouse embryo osteoblast precursor cells (MC3T3-E1) were used in vitro experiments. CCK-8 kit, alizarin red staining, proteomic, bioinformatic analyses, and western blot were used to explore the mechanism of MOEVLPs. RESULTS: In this study, MOEVLPs from MO were successfully isolated and characterized. Animal experiments demonstrated that MOEVLPs exhibited specific femur targeting, were non-toxic to the heart, liver, spleen, lung, kidney, and aorta, and possessed anti-PMOP properties. The ability of MOEVLPs to strengthen bone formation was better than that of alendronate. In vitro experiments, results revealed that MOEVLPs did not significantly enhance osteogenic differentiation in MC3T3-E1 cells. Instead, MOEVLPs promoted the proliferation of MC3T3-E1 cells. Proteomic and bioinformatic analyses suggested that the proliferative effect of MOEVLPs was closely associated with the mitogen-activated protein kinase (MAPK) signaling pathway, particularly the altered expression of cAMP response element-binding protein (CREB) and ribosomal S6 kinase 1 (RSK1). Western blot results further confirmed these findings. CONCLUSION: Our studies successfully isolated high-quality MOEVLPs and demonstrated that MOEVLPs can alleviate PMOP by promoting osteoblast proliferation through the MAPK pathway. MOEVLPs have the potential to become a novel and natural anti-PMOP drug.


Asunto(s)
Vesículas Extracelulares , Sistema de Señalización de MAP Quinasas , Morinda , Osteoporosis Posmenopáusica , Animales , Morinda/química , Ratones , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Femenino , Osteoporosis Posmenopáusica/tratamiento farmacológico , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Humanos , Modelos Animales de Enfermedad
4.
Aging (Albany NY) ; 16(5): 4832-4840, 2024 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461437

RESUMEN

Osteoporosis is a usual bone disease in aging populations, principally in postmenopausal women. Anti-resorptive and anabolic drugs have been applied to prevent and cure osteoporosis and are associated to a different of adverse effects. Du-Zhong is usually applied in Traditional Chinese Medicine to strengthen bone, regulate bone metabolism, and treat osteoporosis. Chlorogenic acid is a major polyphenol in Du-Zhong. In the current study, chlorogenic acid was found to enhance osteoblast proliferation and differentiation. Chlorogenic acid also inhibits the RANKL-induced osteoclastogenesis. Notably, ovariectomy significantly decreased bone volume and mechanical properties in the ovariectomized (OVX) rats. Administration of chlorogenic acid antagonized OVX-induced bone loss. Taken together, chlorogenic acid seems to be a hopeful molecule for the development of novel anti-osteoporosis treatment.


Asunto(s)
Osteoclastos , Osteoporosis , Humanos , Ratas , Femenino , Animales , Ácido Clorogénico/farmacología , Ácido Clorogénico/uso terapéutico , Ácido Clorogénico/metabolismo , Osteogénesis , Osteoporosis/metabolismo , Osteoblastos/metabolismo , Diferenciación Celular
5.
Biomed Pharmacother ; 173: 116346, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428312

RESUMEN

BACKGROUND: This study aimed to investigate the effects of the combination of Epimedii Folium (EF) and Ligustri Lucidi Fructus (LLF) on regulating apoptosis and autophagy in senile osteoporosis (SOP) rats. METHODS: Firstly, we identified the components in the decoction and drug-containing serum of EL (EF&LLF) by Ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS). Secondly, SOP rats were treated with EF, LLF, EL and caltrate to evaluate the advantages of EL. Finally, H2O2-, chloroquine-, and MHY1485-induced osteoblasts were treated with different doses of EL to reveal the molecular mechanism of EL. We detected bone microstructure, oxidative stress levels, ALP activity and the expressions of Bax, Bcl-2, caspase3, P53, Beclin-1, p-PI3K, PI3K, p-Akt, Akt, p-mTOR, mTOR, and LC3 in vivo and in vitro. RESULTS: 36 compounds in EL decoction and 23 in EL-containing serum were identified, including flavonoids, iridoid terpenoids, phenylethanoid glycosides, polyols and triterpenoids. EL could inhibit apoptosis activity and increase ALP activity. In SOP rats and chloroquine-inhibited osteoblasts, EL could improve bone tissue microstructure and osteoblasts functions by upregulating Bcl-2, Beclin1, and LC3-II/LC3-I, while downregulating p53 in all treatment groups. In H2O2-induced osteoblasts, EL could upregulate the protein and mRNA expressions of Bcl-2 while downregulate LC3-II/LC3-I, p53 and Beclin1. Besides, EL was able to down-regulate PI3K/AKT/mTOR pathway which activated in SOP rats and MHY1485-induced osteoblasts. CONCLUSIONS: These findings demonstrate that EL with bone protective effects on SOP rats by regulating autophagy and apoptosis via PI3K/Akt/mTOR signaling pathway, which might be an alternative medicine for the treatment of SOP.


Asunto(s)
Medicamentos Herbarios Chinos , Ligustrum , Osteoporosis , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ligustrum/química , Ligustrum/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Beclina-1/metabolismo , Peróxido de Hidrógeno/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Osteoporosis/tratamiento farmacológico , Osteoblastos , Apoptosis , Autofagia , Cloroquina/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
6.
Biomed Mater ; 19(3)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38537374

RESUMEN

Among various biomaterials employed for bone repair, composites with good biocompatibility and osteogenic ability had received increasing attention from biomedical applications. In this study, we doped selenium (Se) into hydroxyapatite (Se-HA) by the precipitation method, and prepared different amounts of Se-HA-loaded poly (amino acid)/Se-HA (PAA/Se-HA) composites (0, 10 wt%, 20 wt%, 30 wt%) byin-situmelting polycondensation. The physical and chemical properties of PAA/Se-HA composites were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and their mechanical properties. XRD and FT-IR results showed that PAA/Se-HA composites contained characteristic peaks of PAA and Se-HA with amide linkage and HA structures. DSC and TGA results specified the PAA/Se-HA30 composite crystallization, melting, and maximum weight loss temperatures at 203.33 °C, 162.54 °C, and 468.92 °C, respectively, which implied good thermal stability. SEM results showed that Se-HA was uniformly dispersed in PAA. The mechanical properties of PAA/Se-HA30 composites included bending, compressive, and yield strengths at 83.07 ± 0.57, 106.56 ± 0.46, and 99.17 ± 1.11 MPa, respectively. The cellular responses of PAA/Se-HA compositesin vitrowere studied using bone marrow mesenchymal stem cells (BMSCs) by cell counting kit-8 assay, and results showed that PAA/Se-HA30 composites significantly promoted the proliferation of BMSCs at the concentration of 2 mg ml-1. The alkaline phosphatase activity (ALP) and alizarin red staining results showed that the introduction of Se-HA into PAA enhanced ALP activity and formation of calcium nodule. Western blotting and Real-time polymerase chain reaction results showed that the introduction of Se-HA into PAA could promoted the expression of osteogenic-related proteins and mRNA (integrin-binding sialoprotein, osteopontin, runt-related transcription factor 2 and Osterix) in BMSCs. A muscle defect at the back and a bone defect at the femoral condyle of New Zealand white rabbits were introduced for evaluating the enhancement of bone regeneration of PAA and PAA/Se-HA30 composites. The implantation of muscle tissue revealed good biocompatibility of PAA and PAA/Se-HA30 composites. The implantation of bone defect showed that PAA/Se-HA30 composites enhanced bone formation at the defect site (8 weeks), exhibiting good bone conductivity. Therefore, the PAA-based composite was a promising candidate material for bone tissue regeneration.


Asunto(s)
Durapatita , Selenio , Animales , Conejos , Durapatita/química , Aminoácidos/química , Espectroscopía Infrarroja por Transformada de Fourier , Regeneración Ósea , Osteogénesis , Osteoblastos , Proliferación Celular
7.
Phytomedicine ; 128: 155501, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38471318

RESUMEN

BACKGROUND: The discovering of an osteoclast (OC) coupling active agent, capable of suppressing OC-mediated bone resorption while concurrently stimulating osteoblast (OB)-mediated bone formation, presents a promising strategy to overcome limitations associated with existing antiresorptive agents. However, there is a lack of research on active OC coupling agents. PURPOSE: This study aims to investigate the potential of Jiangu Formula (JGF) in inhibiting OCs while maintaining the OCOB coupling function. METHODS: The anti-osteoporosis efficacy of JGF was evaluated in osteoporosis models induced by ovariectomy in C57BL/6 mouse and SD rats. The effect of JGF on OCs was evaluated by detecting its capacity to inhibit OC differentiation and bone resorption in an in vitro osteoclastogenesis model induced by RANKL. The OCOB coupling activity of JGF was evaluated by measuring the secretion levels of OC-derived coupling factors, OB differentiation activity of MC3T3-E1 interfered with conditioned medium, and the effect of JGF on OC inhibition and OB differentiation in a C3H10T1/2-RAW264.7 co-culture system. The mechanism of JGF was studied by network pharmacology and validated using western blot, immunofluorescence (IF), and ELISA. Following that, the active ingredients of JGF were explored through a chemotype-assembly approach, activity evaluation, and LC-MS/MS analysis. RESULTS: JGF inhibited bone resorption in murine osteoporosis without compromising the OCOB coupling effect on bone formation. In vitro assays showed that JGF preserved the coupling effect of OC on OB differentiation by maintaining the secretion of OC-derived coupling factors. Network analysis predicted STAT3 as a key regulation point for JGF to exert anti-osteoporosis effect. Further validation assays confirmed that JGF upregulated p-STAT3(Ser727) and its regulatory factors IL-2 in RANKL-induced RAW264.7 cells. Moreover, 23 components in JGF with anti-OC activity identified by chemotype-assembly approach and verification experiments. Notably, six compounds, including ophiopogonin D, ginsenoside Re, ginsenoside Rf, ginsenoside Rg3, ginsenoside Ro, and ononin were identified as OC-coupling compounds. CONCLUSION: This study first reported JGF as an agent that suppresses bone loss without affecting bone formation. The potential coupling mechanism of JGF involves the upregulation of STAT3 by its regulators IL-2. Additionally, the chemotype-assembly approach elucidated the activity compounds present in JGF, offering a novel strategy for developing an anti-resorption agent that preserves bone formation.


Asunto(s)
Resorción Ósea , Diferenciación Celular , Medicamentos Herbarios Chinos , Ratones Endogámicos C57BL , Osteoblastos , Osteoclastos , Osteoporosis , Ratas Sprague-Dawley , Animales , Osteoclastos/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Ratones , Osteoporosis/tratamiento farmacológico , Osteoblastos/efectos de los fármacos , Femenino , Células RAW 264.7 , Diferenciación Celular/efectos de los fármacos , Resorción Ósea/tratamiento farmacológico , Ovariectomía , Ligando RANK , Ratas , Osteogénesis/efectos de los fármacos , Modelos Animales de Enfermedad , Factor de Transcripción STAT3/metabolismo
8.
Phytomedicine ; 128: 155516, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38547625

RESUMEN

BACKGROUND: Recently, osteoblast pyroptosis has been proposed as a potential pathogenic mechanism underlying osteoporosis, although this remains to be confirmed. Luteolin (Lut), a flavonoid phytochemical, plays a critical role in the anti-osteoporosis effects of many traditional Chinese medicine prescriptions. However, its protective impact on osteoblasts in postmenopausal osteoporosis (PMOP) has not been elucidated. PURPOSE: This research aimed to determine the effect of Lut in ameliorating PMOP by alleviating osteoblast pyroptosis and sustaining osteogenesis. STUDY DESIGN: This research was designed to investigate the novel mechanism of Lut in alleviating PMOP both in cell and animal models. METHODS: Ovariectomy-induced PMOP models were established in mice with/without daily gavaged of 10 or 20 mg/kg body weight Lut. The impact of Lut on bone microstructure, metabolism and oxidative stress was evaluated with 0.104 mg/kg body weight Estradiol Valerate Tablets daily gavaged as positive control. Network pharmacological analysis and molecular docking were employed to investigate the mechanisms of Lut in PMOP treatment. Subsequently, the impacts of Lut on the PI3K/AKT axis, oxidative stress, mitochondria, and osteoblast pyroptosis were assessed. In vitro, cultured MC3T3-E1(14) cells were exposed to H2O2 with/without Lut to examine its effects on the PI3K/AKT signaling pathway, osteogenic differentiation, mitochondrial function, and osteoblast pyroptosis. RESULTS: Our findings demonstrated that 20 mg/kg Lut, similar to the positive control drug, effectively reduced systemic bone loss and oxidative stress, and enhanced bone metabolism induced by ovariectomy. Network pharmacological analysis and molecular docking indicated that the PI3K/AKT axis was a potential target, with oxidative stress response and nuclear membrane function being key mechanisms. Consequently, the effects of Lut on the PI3K/AKT axis and pyroptosis were investigated. In vivo data revealed that the PI3K/AKT axis was deactivated following ovariectomy, and Lut restored the phosphorylation of key proteins, thereby reactivating the axis. Additionally, Lut alleviated osteoblast pyroptosis and mitochondrial abnormalities induced by ovariectomy. In vitro, Lut intervention mitigated the inhibition of the PI3K/AKT axis and osteogenesis, as well as H2O2-induced pyroptosis. Furthermore, Lut attenuated ROS accumulation and mitochondrial dysfunction. The effects of Lut, including osteogenesis restoration, anti-pyroptosis, and mitochondrial maintenance, were all reversed with LY294002 (a PI3K/AKT pathway inhibitor). CONCLUSION: In summary, Lut could improve mitochondrial dysfunction, alleviate GSDME-mediated pyroptosis and maintain osteogenesis via activating the PI3K/AKT axis, offering a new therapeutic strategy for PMOP.


Asunto(s)
Luteolina , Simulación del Acoplamiento Molecular , Osteoblastos , Osteogénesis , Osteoporosis Posmenopáusica , Ovariectomía , Estrés Oxidativo , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Piroptosis , Transducción de Señal , Animales , Femenino , Piroptosis/efectos de los fármacos , Osteoporosis Posmenopáusica/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones , Osteoblastos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Luteolina/farmacología , Osteogénesis/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Farmacología en Red , Línea Celular
9.
Complement Med Res ; 31(3): 222-233, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38387452

RESUMEN

BACKGROUND: Impaired fracture healing is a recurring interdisciplinary medical challenge. Alternative treatment concepts, apart from conventional medicine, are popular, but scientific evidence on their effects is still lacking. Plant-derived substances are widely assumed to support bone homeostasis. To clarify the effects on bone healing mechanisms, a commercially available, homeopathic-spagyric remedy, containing inter alia two herbal substances with assumed osteogenic potential, equisetum arvense and bellis perennis, was analyzed. METHODS: Human fetal osteoblastic (hFOB) 1.19 cells were incubated with the test substance in serial dilutions from 10 to 0.00001%. Cell viability has been evaluated through ATP level (CTG assay) and MTT tetrazolium reduction. Cell proliferation was analyzed by BrdU incorporation and cell migration by wound healing assay (WHA) via image analysis. Additionally, determination of the expression of key genes via real-time PCR and proteins via proteome array for inflammation, cell proliferation, and angiogenesis were performed. RESULTS: An incubation of hFOB 1.19 cells with the test substance for 24/72 h showed no reduction in cell number, viability, or proliferation. Cell migration was unimpaired. The test substance induced inflammatory genes and growth factors along with genes of osseous regeneration (ALP, Col1, IL-1α, IL-6, IL-8, IL-10, Osteocalcin, Osteonectin, RUMX2, TGF, VEGFA). Increased protein expression was found in multiple cytokines, chemokines, and acute phase proteins. CONCLUSION: The test substance did not impair cell vitality parameters (MTT, CTG, BrdU, and WHA). A tendency to activate growth factors, bone regeneration genes, and proteins was shown for osteoblasts, indicating a possible positive effect on osteogenic processes.HintergrundStörungen des komplexen Prozesses der Knochenheilung stellen auch heutzutage noch eine interdisziplinäre Herausforderung dar. Es existieren zahlreiche alternative Therapiekonzepte, deren Evidenz jedoch häufig nicht belegt ist. Es wird davon ausgegangen, dass pflanzliche Substanzen die Knochenheilung unterstützen können. Wir analysierten die Wirkung eines kommerziellen, homeopathisch-spagyrischen Heilmittels, welches unter anderen zwei Pflanzenstoffe enthält, denen ein osteogenes Potential zugeschrieben wird (Equisetum arvense und Bellis perennis).MethodenEs erfolgte eine Inkubation humaner fetaler Osteoblastenzellen (hFOB 1.19) mit der Testsubstanz in absteigender Verdünnung von 10 bis 0.00001%. Die Zellvitalität wurde anhand der Zellzahlbestimmung durch ATP-abhängige metabolische Aktivität mittels CellTiter-Glo® (CTG) Test sowie durch Tetrazolium Reduktion (MTT) evaluiert. Die Zellproliferation wurde durch Inkorporation von Bromdesoxyuridin (BrdU) in die DNA aktiver Zellen analysiert. Der Wound Healing Assay (WHA) diente der Quantifizierung der Zellmigration. Zusätzlich wurde die Expression bestimmter Schlüsselgene mittels real-time PCR und die Proteinexpression via proteom array für Inflammation, Zellproliferation und Angiogenese erhoben.ErgebnisseDie Inkubation von hFOB 1.19 mit der Testsubstanz für 24/72 Stunden führte zu keiner Reduktion von Zellzahl, -vitalität oder -proliferation. Auch die Zellmigration war unbeeinträchtigt. Es zeigte sich eine Induktion inflammatorischer Gene, Wachstumsfaktoren sowie Genen der knöchernen Regeneration (ALP, Col1, IL-1α, IL-6, IL-8, IL-10, Osteocalcin, Osteonectin, RUMX2, TGF, VEGFA). Verschiedene Zytokine, Chemokine und Akute Phase Proteine wurden vermehrt exprimiert.SchlussfolgerungDie Testsubstanz hatte keine negativen Auswirkungen auf die gemessenen Zellvitalitätsparameter (MTT, CTG, BrdU and WHA). Es zeigte sich eine Aktivierungstendenz für Wachstumsfaktoren, Gene und Proteine der Knochenregeneration, die auf einen möglichen positiven Effekt der Substanz auf den Prozess des Knochenheilung hinweisen.


Asunto(s)
Proliferación Celular , Supervivencia Celular , Osteoblastos , Extractos Vegetales , Humanos , Osteoblastos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Extractos Vegetales/farmacología , Movimiento Celular/efectos de los fármacos , Línea Celular , Osteogénesis/efectos de los fármacos , Fitoterapia
10.
Food Funct ; 15(5): 2587-2603, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38353975

RESUMEN

Deer sinew as a by-product has high collagen and nutritional value. This study focuses on its hydrolysate being used as a calcium carrier to develop functional foods. The chelation mechanism was analyzed by SEM, EDS, UV-vis, FTIR, and fluorescence spectroscopy and zeta potential analysis after using peptide-sequenced deer sinew peptides for chelation with calcium ions. The results showed that the chelation of deer sinew peptides with calcium ions occurs mainly at the O and N atoms of carboxyl, amino and amide bonds. In vitro and in vivo studies revealed that deer sinew peptide-calcium chelate (DSPs-Ca) promoted the proliferation of MC3T3-E1 cells without toxic side effects and increased the alkaline phosphatase activity. The DSPs-Ca group improved the bone microstructure induced by low calcium, as well as up-regulated the expression of genes responsible for calcium uptake in the kidneys, as evidenced by serum markers, bone sections, bone parameters, and gene expression analyses in low-calcium-fed mice. From the above, it can be concluded that DSPs-Ca is expected to be a calcium supplement food for promoting bone health.


Asunto(s)
Calcio , Ciervos , Ratones , Animales , Calcio/metabolismo , Ciervos/metabolismo , Proliferación Celular , Calcio de la Dieta/metabolismo , Péptidos/farmacología , Péptidos/metabolismo , Iones/metabolismo , Iones/farmacología , Osteoblastos
11.
Int J Mol Sci ; 25(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38396954

RESUMEN

Runx2 (runt related transcription factor 2) is an essential transcription factor for osteoblast proliferation and differentiation. Uridine diphosphate (UDP)-N-acetylgalactosamine (GalNAc): polypeptide GalNAc-transferase 3 (Galnt3) prevents proteolytic processing of fibroblast growth factor 23 (Fgf23), which is a hormone that regulates the serum level of phosphorus. Runx2 and Galnt3 were expressed in osteoblasts and osteocytes, and Fgf23 expression was restricted to osteocytes in bone. Overexpression and knock-down of Runx2 upregulated and downregulated, respectively, the expressions of Galnt3 and Fgf23, and Runx2 directly regulated the transcriptional activity of Galnt3 in reporter assays. The expressions of Galnt3 and Fgf23 in osteoblast-specific Runx2 knockout (Runx2fl/flCre) mice were about half those in Runx2fl/fl mice. However, the serum levels of phosphorus and intact Fgf23 in Runx2fl/flCre mice were similar to those in Runx2fl/fl mice. The trabecular bone volume was increased during aging in both male and female Galnt3-/- mice, but the osteoid was reduced. The markers for bone formation and resorption in Galnt3-/- mice were similar to the control in both sexes. Galnt3-/- mice exhibited hyperphosphatemia and hypercalcemia, and the intact Fgf23 was about 40% that of wild-type mice. These findings indicated that Runx2 regulates the expressions of Galnt3 and Fgf23 and that Galnt3 decelerates the mineralization of osteoid by stabilizing Fgf23.


Asunto(s)
Calcificación Fisiológica , Calcinosis , N-Acetilgalactosaminiltransferasas , Osteoblastos , Animales , Femenino , Masculino , Ratones , Calcinosis/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Factores de Crecimiento de Fibroblastos/metabolismo , N-Acetilgalactosaminiltransferasas/genética , N-Acetilgalactosaminiltransferasas/metabolismo , Osteoblastos/metabolismo , Fósforo , Polipéptido N-Acetilgalactosaminiltransferasa
12.
Sci Rep ; 14(1): 4404, 2024 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388663

RESUMEN

Prostate cancer (PCa) progression leads to bone modulation in approximately 70% of affected men. A nutraceutical, namely, α-lipoic acid (α-LA), is known for its potent anti-cancer properties towards various cancers and has been implicated in treating and promoting bone health. Our study aimed to explore the molecular mechanism behind the role of α-LA as therapeutics in preventing PCa and its associated bone modulation. Notably, α-LA treatment significantly reduced the cell viability, migration, and invasion of PCa cell lines in a dose-dependent manner. In addition, α-LA supplementation dramatically increased reactive oxygen species (ROS) levels and HIF-1α expression, which started the downstream molecular cascade and activated JNK/caspase-3 signaling pathway. Flow cytometry data revealed the arrest of the cell cycle in the S-phase, which has led to apoptosis of PCa cells. Furthermore, the results of ALP (Alkaline phosphatase) and TRAP (tartrate-resistant acid phosphatase) staining signifies that α-LA supplementation diminished the PCa-mediated differentiation of osteoblasts and osteoclasts, respectively, in the MC3T3-E1 and bone marrow macrophages (BMMs) cells. In summary, α-LA supplementation enhanced cellular apoptosis via increased ROS levels, HIF-1α expression, and JNK/caspase-3 signaling pathway in advanced human PCa cell lines. Also, the treatment of α-LA improved bone health by reducing PCa-mediated bone cell modulation.


Asunto(s)
Neoplasias de la Próstata , Ácido Tióctico , Masculino , Humanos , Ácido Tióctico/farmacología , Caspasa 3/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Diferenciación Celular , Osteoblastos/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo
13.
Osteoarthritis Cartilage ; 32(5): 535-547, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38403152

RESUMEN

OBJECTIVE: The subchondral bone is an emerging regulator of osteoarthritis (OA). However, knowledge of how specific subchondral alterations relate to cartilage degeneration remains incomplete. METHOD: Femoral heads were obtained from 44 patients with primary OA during total hip arthroplasty and from 30 non-OA controls during autopsy. A multiscale assessment of the central subchondral bone region comprising histomorphometry, quantitative backscattered electron imaging, nanoindentation, and osteocyte lacunocanalicular network characterization was employed. RESULTS: In hip OA, thickening of the subchondral bone coincided with a higher number of osteoblasts (controls: 3.7 ± 4.5 mm-1, OA: 16.4 ± 10.2 mm-1, age-adjusted mean difference 10.5 mm-1 [95% CI 4.7 to 16.4], p < 0.001) but a similar number of osteoclasts compared to controls (p = 0.150). Furthermore, higher matrix mineralization heterogeneity (CaWidth, controls: 2.8 ± 0.2 wt%, OA: 3.1 ± 0.3 wt%, age-adjusted mean difference 0.2 wt% [95% CI 0.1 to 0.4], p = 0.011) and lower tissue hardness (controls: 0.69 ± 0.06 GPa, OA: 0.67 ± 0.06 GPa, age-adjusted mean difference -0.05 GPa [95% CI -0.09 to -0.01], p = 0.032) were detected. While no evidence of altered osteocytic perilacunar/canalicular remodeling in terms of fewer osteocyte canaliculi was found in OA, specimens with advanced cartilage degeneration showed a higher number of osteocyte canaliculi and larger lacunocanalicular network area compared to those with low-grade cartilage degeneration. Multiple linear regression models indicated that several subchondral bone properties, especially osteoblast and osteocyte parameters, were closely related to cartilage degeneration (R2 adjusted = 0.561, p < 0.001). CONCLUSION: Subchondral bone properties in OA are affected at the compositional, mechanical, and cellular levels. Based on their strong interaction with cartilage degeneration, targeting osteoblasts/osteocytes may be a promising therapeutic OA approach. DATA AND MATERIALS AVAILABILITY: All data are available in the main text or the supplementary materials.


Asunto(s)
Enfermedades de los Cartílagos , Cartílago Articular , Osteoartritis de la Cadera , Humanos , Osteoblastos , Osteocitos
14.
Int J Biol Macromol ; 259(Pt 2): 129250, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199551

RESUMEN

This study delves into the potential of chito-oligosaccharides (COS) to promote osteoblast differentiation and prevent osteoporosis, utilizing experiments with mouse MSCs and the zebrafish model. The preliminary biocompatibility study affirms the non-toxic nature of COS across various concentrations. In the osteoblast differentiation study, COS enhances ALP activity and calcium deposition at the cellular level. Moreover, COS induces the upregulation of molecular markers, including Runx2, Type I collagen, ALP, osteocalcin, and osteonectin in mouse MSCs. Zebrafish studies further demonstrate COS's anti-osteoporotic effects, showcasing its ability to expedite fin fracture repair, vertebral mineralization, and bone mineralization in dexamethasone-induced osteoporosis models. The scale regenerative study reveals that COS mitigates the detrimental effects of dexamethasone induced osteoclastic activity, reducing TRAP and hydroxyproline levels while elevating the expression of Runx2a MASNA isoform, collagen2α, OC, and ON mRNAs. Additionally, COS enhances calcium and phosphorus levels in regenerated scales, impacting the bone-healthy calcium-to­phosphorus ratio. The study also suggests that COS modulates the MMP3-Osteopontin-MAPK signaling pathway. Overall, this comprehensive investigation underscores the potential of COS to prevent and treat osteoporosis. Its multifaceted cellular and molecular effects, combined with in vivo bone regeneration and repair, propose that COS may be effective in addressing osteoporosis and related bone disorders. Nonetheless, further research is imperative to unravel underlying mechanisms and optimize clinical applications.


Asunto(s)
Quitosano , Osteoporosis , Ratones , Animales , Pez Cebra/metabolismo , Quitosano/metabolismo , Calcio/metabolismo , Osteogénesis , Osteoporosis/metabolismo , Diferenciación Celular , Dexametasona/farmacología , Osteoblastos , Fósforo/metabolismo
15.
Biochimie ; 216: 24-33, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37716498

RESUMEN

In vitro tests using bone cells to evaluate the osteogenic potential of biomaterials usually employ the osteogenic medium (OM). The lack of correlation frequently reported between in vitro and in vivo studies in bone biomaterials, makes necessary the evaluation of the impact of osteogenic supplements on these results. This study analysed the proteomic profiles of human osteoblasts (HOb) cultured in the media with and without osteogenic agents (ascorbic acid and ß-glycerol phosphate). The cells were incubated for 1 and 7 days, on their own or in contact with Ti. The comparative Perseus analysis identified 2544 proteins whose expression was affected by osteogenic agents. We observed that the OM strongly alters protein expression profiles with a complex impact on multiple pathways associated with adhesion, immunity, oxidative stress, coagulation, angiogenesis and osteogenesis. OM-triggered changes in the HOb intracellular energy production mechanisms, with key roles in osteoblast maturation. HOb cultured with and without Ti showed enrichment in the skeletal system development function due to the OM. However, differentially expressed proteins with key regenerative functions were associated with a synergistic effect of OM and Ti. This synergy, caused by the Ti-OM interaction, could complicate the interpretation of in vitro results, highlighting the need to analyse this phenomenon in biomaterial testing.


Asunto(s)
Artefactos , Osteogénesis , Humanos , Proteómica , Huesos , Diferenciación Celular , Osteoblastos , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/metabolismo
16.
Acta Biomater ; 173: 442-456, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37984632

RESUMEN

Osteoporosis (OP), which largely increases the risk of fractures, is the most common chronic degenerative orthopedic disease in the elderly due to the imbalance of bone homeostasis. Alpha-ketoglutaric acid (AKG), an endogenous metabolic intermediate involved in osteogenesis, plays critical roles in osteogenic differentiation and mineralization and the inhibition of osteoclastogenic differentiation. However, the low bioavailability and poor bone-targeting efficiency of AKG seriously limit its efficacy in OP treatment. In this work, a bone-targeting, near-infrared emissive lanthanide luminescence nanocarrier loaded with AKG (ß-NaYF4:7%Yb, 60%Nd@NaLuF4@mSiO2-EDTA-AKG, abbreviated as LMEK) is developed for the enhancement of AKG efficacy in OP therapy. By utilizing the NIR-II luminescence (>1000 nm) of LMEK, whole-body bone imaging with high spatial resolution is achieved to confirm the bone enrichment of AKG noninvasively in vivo. The results reveal that LMEK exhibits a remarkable OP therapeutic effect in improving the osseointegration of the surrounding bone in the ovariectomized OP mice models, which is validated by the enhanced inhibition of osteoclast through hypoxia-inducible factor-1α suppression and promotion of osteogenic differentiation in osteoblast. Notably, the dose of AKG in LMEK can be reduced to only 0.2 % of the dose when pure AKG is used in therapy, which dramatically improves the bioavailability of AKG and mitigates the metabolism burden. This work provides a strategy to conquer the low utilization of AKG in OP therapy, which not only overcomes the challenges in AKG efficacy for OP treatment but also offers insights into the development and application of other potential drugs for skeletal diseases. STATEMENT OF SIGNIFICANCE: Alpha-ketoglutarate (AKG) is an intermediate within the Krebs cycle, participating in diverse metabolic and cellular processes, showing potential for osteoporosis (OP) therapy. However, AKG's limited bioavailability and inefficient bone-targeting hinder its effectiveness in treating OP. Herein, a near-infrared emissive nanocarrier is developed that precisely targets bones and delivers AKG, bolstering its effectiveness in OP therapy. Thanks to this efficient bone-targeting delivery, the AKG dosage is reduced to 0.2 % of the conventional treatment level. This marks the first utilization of a bone-targeting nanocarrier to amplify AKG's bioavailability and OP therapy efficacy. Furthermore, the mechanism of AKG-loaded nanocarrier regulating the biological behavior of osteoclasts and osteoblasts mediated is tentatively explored.


Asunto(s)
Ácidos Cetoglutáricos , Osteoporosis , Humanos , Ratones , Animales , Anciano , Ácidos Cetoglutáricos/farmacología , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/uso terapéutico , Osteogénesis , Luminiscencia , Osteoporosis/tratamiento farmacológico , Osteoblastos/metabolismo
17.
Invest Radiol ; 59(7): 495-503, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38117137

RESUMEN

OBJECTIVES: Administration of gadolinium-based contrast agents (GBCA) in magnetic resonance imaging results in the long-term retention of gadolinium (Gd) in tissues and organs, including the bone, and may affect their function and metabolism. This study aims to investigate the effects of Gd and GBCA on the proliferation/survival, differentiation, and function of bone cell lineages. MATERIALS AND METHODS: Primary murine osteoblasts (OB) and osteoclast progenitor cells (OPC) isolated from C57BL/6J mice were used to test the effects of Gd 3+ (12.5-100 µM) and GBCA (100-2000 µM). Cultures were supplemented with the nonionic linear Gd-DTPA-BMA (gadodiamide), ionic linear Gd-DTPA (gadopentetic acid), and macrocyclic Gd-DOTA (gadoteric acid). Cell viability and differentiation were analyzed on days 4-6 of the culture. To assess the resorptive activity of osteoclasts, the cells were grown in OPC cultures and were seeded onto layers of amorphous calcium phosphate with incorporated Gd. RESULTS: Gd 3+ did not affect OB viability, but differentiation was reduced dose-dependently up to 72.4% ± 6.2%-73.0% ± 13.2% (average ± SD) at 100 µM Gd 3+ on days 4-6 of culture as compared with unexposed controls ( P < 0.001). Exposure to GBCA had minor effects on OB viability with a dose-dependent reduction up to 23.3% ± 10.2% for Gd-DTPA-BMA at 2000 µM on day 5 ( P < 0.001). In contrast, all 3 GBCA caused a dose-dependent reduction of differentiation up to 88.3% ± 5.2% for Gd-DTPA-BMA, 49.8% ± 16.0% for Gd-DTPA, and 23.1% ± 8.7% for Gd-DOTA at 2000 µM on day 5 ( P < 0.001). In cultures of OPC, cell viability was not affected by Gd 3+ , whereas differentiation was decreased by 45.3% ± 9.8%-48.5% ± 15.8% at 100 µM Gd 3+ on days 4-6 ( P < 0.05). Exposure of OPC to GBCA resulted in a dose-dependent increase in cell viability of up to 34.1% ± 11.4% at 2000 µM on day 5 of culture ( P < 0.001). However, differentiation of OPC cultures was reduced on day 5 by 24.2% ± 9.4% for Gd-DTPA-BMA, 47.1% ± 14.0% for Gd-DTPA, and 38.2% ± 10.0% for Gd-DOTA ( P < 0.001). The dissolution of amorphous calcium phosphate by mature osteoclasts was reduced by 36.3% ± 5.3% upon incorporation of 4.3% Gd/Ca wt/wt ( P < 0.001). CONCLUSIONS: Gadolinium and GBCA inhibit differentiation and activity of bone cell lineages in vitro. Thus, Gd retention in bone tissue could potentially impair the physiological regulation of bone turnover on a cellular level, leading to pathological changes in bone metabolism.


Asunto(s)
Diferenciación Celular , Supervivencia Celular , Medios de Contraste , Ratones Endogámicos C57BL , Osteoblastos , Osteoclastos , Animales , Ratones , Diferenciación Celular/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoblastos/citología , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteoclastos/citología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Gadolinio/farmacología , Gadolinio DTPA/farmacología , Linaje de la Célula , Imagen por Resonancia Magnética/métodos , Proliferación Celular/efectos de los fármacos , Compuestos Organometálicos/farmacología
18.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38069425

RESUMEN

Plant extracts are widely used as traditional medicines. Sophora flavescens Aiton-derived natural compounds exert various beneficial effects, such as anti-inflammatory, anticancer, antioxidant, and antiregenerative activities, through their bioactive compounds, including flavonoids and alkaloids. In the present study, we investigated the biological effects of an S. flavescens-derived flavonoid, trifolirhizin (trifol), on the stimulation of osteogenic processes during osteoblast differentiation. Trifol (>98% purity) was successfully isolated from the root of S. flavescens and characterized. Trifol did not exhibit cellular toxicity in osteogenic cells, but promoted alkaline phosphatase (ALP) staining and activity, with enhanced expression of the osteoblast differentiation markers, including Alp, ColI, and Bsp. Trifol induced nuclear runt-related transcription factor 2 (RUNX2) expression during the differentiation of osteogenic cells, and concomitantly stimulated the major osteogenic signaling proteins, including GSK3ß, ß-catenin, and Smad1/5/8. Among the mitogen-activated protein kinases (MAPKs), Trifol activated JNK, but not ERK1/2 and p38. Trifol also increased the osteoblast-mediated bone-forming phenotypes, including transmigration, F-actin polymerization, and mineral apposition, during osteoblast differentiation. Overall, trifol exhibits bioactive activities related to osteogenic processes via differentiation, migration, and mineralization. Collectively, these results suggest that trifol may serve as an effective phytomedicine for bone diseases such as osteoporosis.


Asunto(s)
Glucósidos , Osteogénesis , Diferenciación Celular , Glucósidos/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Proteínas Morfogenéticas Óseas/metabolismo , Flavonoides/farmacología , Flavonoides/metabolismo , Osteoblastos/metabolismo
19.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38139007

RESUMEN

Highly porous hydroxyapatite is sometimes considered toxic and useless as a biomaterial for bone tissue regeneration because of the high adsorption of calcium and phosphate ions from cell culture media. This negatively affects the osteoblast's growth in such ion-deprived media and suggests "false cytotoxicity" of tested hydroxyapatite. In our recent study, we showed that a small addition of calcium sulfate dihydrate (CSD) may compensate for this adsorption without a negative effect on other properties of hydroxyapatite-based biomaterials. This study was designed to verify whether such CSD-supplemented biomaterials may serve as antibiotic carriers. FTIR, roughness, mechanical strength analysis, drug release, hemocompatibility, cytotoxicity against human osteoblasts, and antibacterial activity were evaluated to characterize tested biomaterials. The results showed that the addition of 1.75% gypsum and gentamicin caused short-term calcium ion compensation in media incubated with the composite. The combination of both additives also increased antibacterial activity against bacteria representative of bone infections without affecting osteoblast proliferation, hemocompatibility, and mechanical parameters. Thus, gypsum and antibiotic supplementation may provide advanced functionality for bone-regeneration materials based on hydroxyapatite of a high surface area and increasingly high Ca2+ sorption capacity.


Asunto(s)
Antibacterianos , Durapatita , Humanos , Durapatita/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Sulfato de Calcio/farmacología , Calcio/metabolismo , Porosidad , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/metabolismo , Osteoblastos/metabolismo
20.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38139307

RESUMEN

Plants contain a large number of small-molecule compounds that are useful for targeting human health and in drug discovery. Healthy bone metabolism depends on the balance between bone-forming osteoblast activity and bone-resorbing osteoclast activity. In an ongoing study searching for 22 plant extracts effective against osteoporosis, we found that the crude extract of Euptelea polyandra Sieb. et Zucc (E. polyandra) had osteogenic bioactivity. In this study, we isolated two compounds, isoquercitrin (1) and astragalin (2), responsible for osteogenic bioactivity in osteoblastic MC3T3-E1 cells from the leaf of E. polyandra using column chromatography and the spectroscopic technique. This is the first report to isolate astragalin from E. polyandra. Compounds (1) and (2) promoted osteoblast differentiation by increasing alkaline phosphatase (ALP) activity and alizarin red S stain-positive calcium deposition, while simultaneously suppressing tartrate-resistant acid phosphatase (TRAP)-positive osteoclast differentiation in RAW264.7 cells at non-cytotoxic concentrations. Isoquercitrin (1) and astragalin (2) increased the expression of osteoblastic differentiation genes, Osterix, ALP, and Osteoprotegerin in the MC3T3-E1 cells, while suppressing osteoclast differentiation genes, TRAP, Cathepsin K, and MMP 9 in the RAW264.7 cells. These compounds may be ideal targets for the treatment of osteoporosis due to their dual function of promoting bone formation and inhibiting bone resorption.


Asunto(s)
Resorción Ósea , Osteoporosis , Humanos , Osteoclastos/metabolismo , Osteogénesis , Osteoblastos/metabolismo , Resorción Ósea/metabolismo , Diferenciación Celular , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA