Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.700
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Int J Pharm ; 656: 124076, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38569976

RESUMEN

Vaccines represent a pivotal health advancement for preventing infection. However, because carrier systems with repeated administration can invoke carrier-targeted immune responses that diminish subsequent immune responses (e.g., PEG antibodies), there is a continual need to develop novel vaccine platforms. Zinc carnosine microparticles (ZnCar MPs), which are composed of a one-dimensional coordination polymer formed between carnosine and the metal ion zinc, have exhibited efficacy in inducing an immune response against influenza. However, ZnCar MPs' limited suspendability hinders clinical application. In this study, we address this issue by mixing mannan, a polysaccharide derived from yeast, with ZnCar MPs. We show that the addition of mannan increases the suspendability of this promising vaccine formulation. Additionally, since mannan is an adjuvant, we illustrate that the addition of mannan increases the antibody response and T cell response when mixed with ZnCar MPs. Mice vaccinated with mannan + OVA/ZnCar MPs had elevated serum IgG and IgG1 levels in comparison to vaccination without mannan. Moreover, in the mannan + OVA/ZnCar MPs vaccinated group, mucosal washes demonstrated increased IgG, IgG1, and IgG2c titers, and antigen recall assays showed enhanced IFN-γ production in response to MHC-I and MHC-II immunodominant peptide restimulation, compared to the vaccination without mannan. These findings suggest that the use of mannan mixed with ZnCar MPs holds potential for subunit vaccination and its improved suspendability further promotes clinical translation.


Asunto(s)
Carnosina , Mananos , Vacunas de Subunidad , Zinc , Mananos/química , Mananos/administración & dosificación , Mananos/inmunología , Animales , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología , Zinc/química , Zinc/administración & dosificación , Carnosina/administración & dosificación , Carnosina/química , Femenino , Inmunoglobulina G/sangre , Ratones , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/química , Ovalbúmina/inmunología , Ovalbúmina/administración & dosificación , Ratones Endogámicos C57BL , Polímeros/química , Polímeros/administración & dosificación , Ratones Endogámicos BALB C , Portadores de Fármacos/química
2.
Clin Respir J ; 18(4): e13742, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38664220

RESUMEN

BACKGROUND: Allergic asthma is an important respiratory system problem characterized by airway inflammation, breathlessness, and bronchoconstriction. Allergic asthma and its outcomes are triggered by type 2 allergic immune responses. Tectorigenin is a methoxy-isoflavone with anti-inflammatory effects. In this study, we investigated the effects of tectorigenin on the pathophysiology of allergic asthma in an animal model. METHODS: Asthmatic mice were treated with tectorigenin. Then airway hyperresponsiveness (AHR), eosinophil percentage, levels of interleukin (IL)-33, IL-25, IL-13, IL-5, IL-4, total and ovalbumin (OVA)-specific immunoglobulin (Ig)E, and lung histopathology were evaluated. RESULT: Tectorigenin significantly (P 〈 0.05) reduced eosinophil infiltration (41 ± 7%) in the broncho-alveolar lavage fluid (BALF), serum IL-5 level (41 ± 5, pg/mL), and bronchial and vascular inflammation (scores of 1.3 ± 0.2 and 1.1 ± 0.3, respectively) but had no significant effects on AHR, serum levels of IL-33, -25, -13, and -4 (403 ± 24, 56 ± 7, 154 ± 11, and 89 ± 6 pg/mL, respectively), total and OVA-specific IgE (2684 ± 265 and 264 ± 19 ng/mL, respectively), goblet cell hyperplasia, and mucus production. CONCLUSION: Tectorigenin could control inflammation and the secretion of inflammatory mediators of asthma, so it can be regarded as a potential antiasthma treatment with the ability to control eosinophilia-related problems.


Asunto(s)
Antiinflamatorios , Antioxidantes , Asma , Modelos Animales de Enfermedad , Isoflavonas , Ratones Endogámicos BALB C , Ovalbúmina , Animales , Asma/tratamiento farmacológico , Asma/inducido químicamente , Asma/metabolismo , Asma/inmunología , Asma/patología , Ratones , Ovalbúmina/toxicidad , Ovalbúmina/efectos adversos , Isoflavonas/farmacología , Isoflavonas/uso terapéutico , Antioxidantes/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inmunoglobulina E/sangre , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Femenino , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/inmunología , Citocinas/metabolismo
3.
J Ethnopharmacol ; 330: 118102, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38561057

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Xiaoqinglong Decotion (XQLD) is a commonly used Chinese herbal formula in clinical practice, especially for allergic diseases such as asthma. However, its intrinsic mechanism for the treatment of neutrophilic asthma (NA) remains unclear. AIM OF THE STUDY: The aim of this study was to evaluate the efficacy and potential mechanisms of XQLD on NA using network pharmacology and in vivo experiments. MATERIALS AND METHODS: First, the active compounds, potential targets and mechanisms of XQLD against NA were initially elucidated by network pharmacology. Then, OVA/CFA-induced NA mice were treated with XQLD to assess its efficacy. Proteins were then analyzed and quantified using a Tandem Mass Tags approach for differentially expressed proteins (DEPs) to further reveal the mechanisms of NA treatment by XQLD. Finally, the hub genes, critical DEPs and potential pathways were validated. RESULTS: 176 active compounds and 180 targets against NA were identified in XQLD. Protein-protein interaction (PPI) network revealed CXCL10, CX3CR1, TLR7, NCF1 and FABP4 as hub genes. In vivo experiments showed that XQLD attenuated inflammatory infiltrates, airway mucus secretion and remodeling in the lungs of NA mice. Moreover, XQLD significantly alleviated airway neutrophil inflammation in NA mice by decreasing the expression of IL-8, MPO and NE. XQLD also reduced the levels of CXCL10, CX3CR1, TLR7, NCF1 and FABP4, which are closely associated with neutrophil inflammation. Proteomics analysis identified 28 overlapping DEPs in the control, NA and XQLD groups, and we found that XQLD inhibited ferroptosis signal pathway (elevated GPX4 and decreased ASCL3) as well as the expression of ARG1, MMP12 and SPP1, while activating the Rap1 signaling pathway. CONCLUSION: This study revealed that inhibition of ARG1, MMP12 and SPP1 expression as well as ferroptosis pathways, and activation of the Rap1 signaling pathway contribute to the therapeutic effect of XQLD on NA.


Asunto(s)
Asma , Medicamentos Herbarios Chinos , Farmacología en Red , Proteómica , Animales , Asma/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Ratones , Mapas de Interacción de Proteínas , Femenino , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Ratones Endogámicos BALB C , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Antiasmáticos/farmacología , Modelos Animales de Enfermedad , Ovalbúmina , Masculino
4.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1000-1006, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621907

RESUMEN

This study aims to investigate the effect and mechanism of Maxingshigan Decoction on inflammation in the rat model of cough variant asthma(CVA). The SPF-grade SD rats of 6-8 weeks were randomized into normal, model, Montelukast sodium, and low-, medium-, and high-dose Maxing Shigan Decoction groups, with 8 rats in each group. The CVA rat model was induced by ovalbumin(OVA) and aluminum hydroxide sensitization and ovalbumin stimulation. The normal group and model group were administrated with equal volume of normal saline by gavage, and other groups with corresponding drugs by gavage. After the experiment, the number of white blood cells in blood and the levels of interleukin-6(IL-6), interleukin-10(IL-10), and tumor necrosis factor-α(TNF-α) in the serum were measured. The lung tissue was stained with hematoxylin-eosin(HE). Western blot was employed to determine the protein levels of nuclear factor-κB(NF-κB), Toll-like receptor 4(TLR4), myeloid differentiation protein(MyD88), and mitogen-activated protein kinase(MAPK) in the lung tissue. Real-time PCR was carried out to measure the mRNA levels of TLR4 and MyD88 in the lung tissue. Compared with the normal group, the model group showed increased white blood cells, elevated IL-6 and TNF-α levels(P<0.01), lowered IL-10 level(P<0.01), up-regulated protein levels of TLR4, MyD88, p-p65/NF-κB p65, and p-p38 MAPK/p38 MAPK(P<0.01) and mRNA levels of TLR4 and MyD88(P<0.01) in the lung tissue. HE staining showed obvious infiltration of inflammatory cells around the airway and cell disarrangement in the model group. Compared with the model group, Montelukast sodium and high-dose Maxing Shigan Decoction reduced the white blood cells, lowered the IL-6 and TNF-α levels(P<0.01), and elevated the IL-10 level(P<0.01). Moreover, they down-regulated the protein levels of TLR4, MyD88, p-p65/NF-κB p65, p-p38 MAPK/p38 MAPK in the lung tissue(P<0.01) and the mRNA levels of TLR4 and MyD88 in the lung tissue(P<0.01). HE staining showed that Montelukast sodium and high-dose Maxing Shigan Decoction reduced inflammatory cell infiltration and cell disarrangement. The number of white blood cells, the levels of IL-10 and TNF-α in the serum, the protein levels of TLR4, MyD88, p-p65/NF-κB p65, and p-p38 MAPK/p38 MAPK, and the mRNA levels of TLR4 and MyD88 in the lung tissue showed no significant differences between the Montelukast sodium group and high-dose Maxing Shigan Decoction group. Maxing Shigan Decoction can inhibit airway inflammation in CVA rats by inhibiting the activation of TLR4/MyD88/NF-κB and p38 MAPK signaling pathways.


Asunto(s)
Acetatos , Asma Variante con Tos , Ciclopropanos , FN-kappa B , Quinolinas , Sulfuros , Ratas , Animales , FN-kappa B/genética , FN-kappa B/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Interleucina-10/genética , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Ratas Sprague-Dawley , Ovalbúmina , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Inflamación , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , ARN Mensajero
5.
J Pharm Biomed Anal ; 243: 116063, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38479305

RESUMEN

BACKGROUND: Xiao-Qing-Long-Tang (XQLT), a classical Chinese herbal medicine formula, has been extensively used for allergic asthma treatment. However, there is limited research on its anti-inflammatory effects and mechanisms specifically in neutrophilic asthma (NA). PURPOSE: This study aims to investigate the potential therapeutic effects of XQLT against NA using a combination of network pharmacology and experimental validation. STUDY DESIGN: By utilizing traditional Chinese medicine and disease databases, we constructed an XQLT-asthma network to identify potential targets of XQLT for NA. In the experimental phase, we utilized an ovalbumin (OVA)/lipopolysaccharide (LPS)-induced model for neutrophilic asthma and examined the therapeutic effects of XQLT. RESULTS: Our research identified 174 bioactive components within XQLT and obtained 140 target genes of XQLT against asthma. Functional enrichment analysis revealed that these target genes were primarily associated with inflammation and cytokines. In the experimental validation, mice induced with OVA-LPS showcased eosinophilic and neutrophilic cell infiltration in peri-bronchial areas, elevated levels of IL-4 and IL-17 in both serum and lung, increased percentages of Th2 and Th17 cells in the spleen, as well as elevated levels of CD11b+ and CD103+ dendritic cells (DCs) within the lung. Treatment with XQLT effectively reduced IL-4 and IL-17 levels, decreased the percentages of Th2, Th17, CD11b+, and CD103+ DCs, and improved inflammatory cell infiltrations in lung tissues. These findings serve as a foundation for the potential clinical application of XQLT in neutrophilic asthma.


Asunto(s)
Asma , Medicamentos Herbarios Chinos , Interleucina-17 , Ratones , Animales , Interleucina-17/farmacología , Interleucina-17/uso terapéutico , Interleucina-4/farmacología , Interleucina-4/uso terapéutico , Lipopolisacáridos/farmacología , Lipopolisacáridos/uso terapéutico , Farmacología en Red , Asma/tratamiento farmacológico , Pulmón , Citocinas , Ovalbúmina , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad , Líquido del Lavado Bronquioalveolar
6.
Biomater Sci ; 12(9): 2292-2301, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38498328

RESUMEN

Colorectal cancer (CRC) ranks among the most prevalent cancers globally, demanding innovative therapeutic strategies. Immunotherapy, a promising avenue, employs cancer vaccines to activate the immune system against tumors. However, conventional approaches fall short of eliciting robust responses within the gastrointestinal (GI) tract, where CRC originates. Harnessing the potential of all-trans retinoic acid (ATRA) and cytosine-phosphorothioate-guanine (CpG), we developed layered nanoparticles using a layer-by-layer assembly method to co-deliver these agents. ATRA, crucial for gut immunity, was efficiently encapsulated alongside CpG within these nanoparticles. Administering these ATRA@CpG-NPs, combined with ovalbumin peptide (OVA), effectively inhibited orthotopic CRC growth in mice. Our approach leveraged the inherent benefits of ATRA and CpG, demonstrating superior efficacy in activating dendritic cells, imprinting T cells with gut-homing receptors, and inhibiting tumor growth. This mucosal adjuvant presents a promising strategy for CRC immunotherapy, showcasing the potential for targeting gut-associated immune responses in combating colorectal malignancies.


Asunto(s)
Neoplasias Colorrectales , Fosfatos de Dinucleósidos , Nanopartículas , Tretinoina , Tretinoina/química , Tretinoina/administración & dosificación , Tretinoina/farmacología , Animales , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/inmunología , Nanopartículas/química , Nanopartículas/administración & dosificación , Ratones , Humanos , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/química , Ratones Endogámicos C57BL , Femenino , Inmunoterapia/métodos , Ovalbúmina/administración & dosificación , Ovalbúmina/inmunología , Ovalbúmina/química , Línea Celular Tumoral , Ratones Endogámicos BALB C , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/administración & dosificación , Oligodesoxirribonucleótidos/farmacología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Nanopartículas Capa por Capa
7.
Food Chem ; 448: 138988, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38522295

RESUMEN

This study prepared emulsion gels by modifying ovalbumin (OVA)-flaxseed oil (FSO) emulsions with transglutaminase (TGase) and investigated their properties, structure and oxidative stability under different enzyme reaction times. Here, we found prolonged reaction times led to the transformation of α-helix and ß-turn into ß-sheet and random coil. The elasticity, hardness and water retention of the emulsion gels increased significantly, but the water-holding capacity decreased when the reaction time exceeded 4 h. Confocal laser scanning microscope (CLSM) indicated extended enzyme reaction time fostered oil droplet aggregation with proteins. Emulsion gel reduced FSO oxidation, especially after 4 h of the enzyme reaction, the peroxide value (PV) of the emulsion gel was reduced by 29.16% compared to the control. In summary, the enzyme reaction time of 4 h resulted in the formation of a dense gel structure and enhanced oxidative stability. This study provides the potential applications in functional foods and biomedical fields.


Asunto(s)
Emulsiones , Geles , Aceite de Linaza , Ovalbúmina , Oxidación-Reducción , Transglutaminasas , Ovalbúmina/química , Transglutaminasas/química , Transglutaminasas/metabolismo , Emulsiones/química , Aceite de Linaza/química , Geles/química
8.
J Vis Exp ; (204)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38465928

RESUMEN

Cationic nanostructures have emerged as an adjuvant and antigen delivery system that enhances dendritic cell maturation, ROS generation, and antigen uptake and then promotes antigen-specific immune responses. In recent years, retinoic acid (RA) has received increasing attention due to its effect in activating the mucosal immune response; however, in order to use RA as a mucosal adjuvant, it is necessary to solve the problem of its dissolution, loading, and delivery. Here, we describe a cationic nanoemulsion-encapsulated retinoic acid (CNE-RA) delivery system composed of the cationic lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOTAP), retinoic acid, squalene as the oil phase, polysorbate 80 as surfactant, and sorbitan trioleate 85 as co-surfactant. Its physical and chemical properties were characterized using dynamic light scattering and a spectrophotometer. Immunization of mice with the mixture of antigen (ovalbumin, OVA) and CNE-RA significantly elevated the levels of anti-OVA secretory immunoglobulin A (sIgA) in vaginal lavage fluid and the small intestinal lavage fluid of mice compared with OVA alone. This protocol describes a detailed method for the preparation, characterization, and evaluation of the adjuvant effect of CNE-RA.


Asunto(s)
Adyuvantes Inmunológicos , Inmunización , Femenino , Animales , Ratones , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/química , Membrana Mucosa , Vacunación , Antígenos , Inmunidad Mucosa , Tensoactivos/farmacología , Ovalbúmina , Ratones Endogámicos BALB C
9.
Crit Rev Immunol ; 44(2): 77-87, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38305338

RESUMEN

Rhizoma Dioscoreae Nipponicae (RDN) is a traditional Chinese medicine that widely applied in the treatment of human diseases. This study aims to explore the therapeutic potential of RDN in asthma and the underlying mechanisms. A mouse model of asthma was established by the stimulation of ovalbumin (OVA). HE staining was performed to detect the pathological injuries of tracheal tissues. The protein expression of collagen I, FN1, α-SMA (airway remodeling markers), and p-p38 (a marker of the p38 MAPK pathway) were detected by Western blot. Eosinophils were then isolated from the model mice. Cell viability and ROS level were measured by CCK-8 and Flow cytometry, respectively. The mRNA expression of GPX4 and ACSL4 (ferroptosis markers) in eosinophils were measured by qRT-PCR. RDN significantly reduced the numbers of total cells and eosnophils in bronchoalveolar lavage fluid (BALF), inhibited inflammatory cell infiltration, and down-regulated remodeling markers (Collagen I, FN1, and α-SMA) in OVA-induced mice. The p38 MAPK pathway was blocked by the intervention of RDN in the model mice, and its blocking weakens the poor manifestations of OVA-induced asthma. In addition, RDN induced the ferroptosis of eosnophils both in vitro and in vivo. Blocking of the p38 MAPK pathway also enhanced the ferroptosis of eosnophils in vitro, evidenced by the decreased cell viability and GPX4 expression, and increased ROS level and ACSL4 expression. RDN induced the ferroptosis of eosinophils through inhibiting the p38 MAPK pathway, contributing to the remission of asthma.


Asunto(s)
Asma , Ferroptosis , Animales , Humanos , Ratones , Asma/metabolismo , Colágeno/metabolismo , Modelos Animales de Enfermedad , Eosinófilos/metabolismo , Pulmón/patología , Ovalbúmina/efectos adversos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
10.
Mol Biol Rep ; 51(1): 319, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38388914

RESUMEN

OBJECTIVE: The prevalence of allergic rhinitis is high, making it a relatively common chronic condition. Countless patients suffer from seasonal Allergic rhinitis (AR). The objective of this investigation is to examine the potential involvement of common pollen allergens in seasonal allergic rhinitis, and study the proposed mechanism of Toll-like receptor 4 (TLR4)/Myeloid differentiation primary response gene 88 (MyD88) signaling pathway in the induction of AR. METHOD: A mouse AR model (sensitized group) was constructed with pollen extracts and ovalbumin (OVA) of Artemisia annua (An), Artemisia argyi (Ar) and Artemisia Sieversiana (Si), and thereafter, AR symptom score was performed. After successful modeling, mouse serum and nasal mucosa tissues were extracted for subsequent experiments. The expression levels of immunoglobulin E (IgE), Interleukin (IL)-4, IL-5, IL-13 and Tumor Necrosis Factor-α (TNF-α) in serum were detected using Enzyme-linked immunosorbent assay (ELISA); Hematoxylin-eosin (H&E) staining methods were used to observe the pathological changes of the nasal mucosal tissue; Utilizing immunohistochemistry (IHC) staining, the expression levels of TLR4, MyD88 and Nuclear factor kappa B (NF-κB) p65 in mouse nasal mucosa were quantified; The mRNA and protein expression levels of TLR4, MyD88 and NF-κB p65 in nasal mucosa of sensitized mice were detected with Quantitative reverse transcription PCR (qRT-PCR) and Western Blot. Finally, the in vitro culture of Human nasal mucosal epithelial cells (HNEpC) cells was conducted, and cells were treated with 200 µg/ml Artemisia annua pollen extract and OVA for 24 h. Western Blot assay was used to detect the expression level of TLR4, MyD88 and NF-κB p65 proteins before and after HNEpC cells were treated with MyD88 inhibitor ST-2825. RESULT: On the second day after AR stimulation, the mice showed obvious AR symptoms. H&E results showed that compared to the control group, the nasal mucosal tissue in the sensitized group was significantly more inflamed. Furthermore, ELISA assay showed increased expression levels of IgE, IL-4, IL-5, IL-13 and TNF-α in serum of mice induced by OVA and Artemisia annua pollen, Artemisia argyi pollen and Artemisia Sieversiana pollen than those of the control group. However, the expression level of IL-2 was lower than that of the control group (P < 0.05). Using Immunohistochemistry staining visually observed the expression levels of TLR4, MyD88 and NF-κB p65 in mouse nasal mucosa tissues and quantitatively analyzed. The expression levels of TLR4, MyD88 and NF-κB p65 in the sensitized group were higher than those in the control group, and the differences were statistically significant (P < 0.05). The results from qRT-PCR and Western Blot showed that the mRNA and protein expression levels of TLR4, MyD88 and NF-κB p65 in nasal mucosa of the sensitized group were significantly higher than those in the control group (P < 0.05). Finally, HNEpC cells were cultured in vitro and analyzed using Western Blot. The expression levels of TLR4, MyD88 and NF-κB p65 in OVA and An groups were significantly increased (P < 0.05). After ST-2825 treatment, TLR4 protein expression was significantly increased (P < 0.05) and MyD88 and NF-κB p65 protein expression were significantly decreased (P < 0.05). CONCLUSION: To sum up, the occurrence and development of AR induced by OVA and pollen of Artemisia annua, Artemisia argyi and Artemisia Sieversiana were related to TLR4/MyD88 signal pathway.


Asunto(s)
Artemisia , Rinitis Alérgica Estacional , Rinitis Alérgica , Humanos , Ratones , Animales , FN-kappa B/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Ovalbúmina , Interleucina-13/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-5/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Transducción de Señal , Polen , Inmunoglobulina E/metabolismo , ARN Mensajero
11.
J Ethnopharmacol ; 325: 117851, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38336182

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Raphanus sativus L. is a well-known medicinal plant with traditional therapeutic applications in various common ailments including inflammation and asthma. AIMS OF THE STUDY: This study aimed to evaluate the chemical composition and anti-asthmatic potential of the hydro-methanolic extract of the leaves of R. sativus L. (Rs.Cr) using various in vitro and in vivo investigations. MATERIALS AND METHODS: The Rs.Cr was subjected to preliminary phytochemical analysis and HPLC profiling. The safety was assessed through oral acute toxicity tests in mice. The antiasthmatic effect of the extract was studied using milk-induced leukocytosis and ovalbumin (OVA)-induced allergic asthma models established in mice. While mast cell degranulation and passive paw anaphylaxis models were established in rats. Moreover, effect of the extract was studied on various oxidative and inflammatory makers. The antioxidant effect of the extract was also studied by in vitro DPPH method. RESULTS: The HPLC profiling of Rs.Cr showed the presence of important polyphenols in a considerable quantity. In toxicity evaluation, Rs.Cr showed no sign of morbidity or mortality with LD50 < 2000 mg/kg. The extract revealed significant mast cell disruption in a dose-dependent manner compared to the intoxicated group. Similarly, treatment with Rs.Cr and dexamethasone significantly (p < 0.001) reduced paw edema volume. Subcutaneous injection of milk at a dose of 4 mL/kg, after 24 h of its administration, showed an increase in the leukocyte count in the intoxicated group. Similarly, mice treated with dexamethasone and Rs.Cr respectively showed a significant decrease in leukocytes and eosinophils count in the ovalbumin-induced allergic asthma model. The extract presented a significant (p˂0.001) alleviative effect on the levels of SOD and GSH, MDA, IL-4, IL-5, and IL-13 in a dose-dependent manner as compared to the intoxicated group. Furthermore, the histological evaluation also revealed a notable decrease in inflammatory and goblet cell count with reduced mucus production. CONCLUSION: The current study highlights mechanism-based novel insights into the anti-asthmatic potential of R. sativus that also strongly supports its traditional use in asthma.


Asunto(s)
Antiasmáticos , Asma , Raphanus , Ratas , Ratones , Animales , Antiasmáticos/farmacología , Antiasmáticos/uso terapéutico , Raphanus/química , Raphanus/metabolismo , Ovalbúmina , Líquido del Lavado Bronquioalveolar , Estrés Oxidativo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Semillas/metabolismo , Dexametasona/farmacología , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C
12.
J Complement Integr Med ; 21(1): 113-122, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38353268

RESUMEN

OBJECTIVES: Desmodium triquetrum DC (Fabaceae) is a plant commonly used in Indian traditional medicine to treat allergies. Asthma is a severe condition, with an estimated 300 million deaths annually, which could increase to 400 million by 2025. Flavonoids, a class of compounds found in many plants, have been found to have beneficial effects in treating asthma. In this study, researchers focused on three flavonoids, Baicalein, Naringin, and Neohesperidin, derived from Desmodium triquetrum DC, to investigate their potential as a treatment for asthma. METHODS: The study used an aerosolized ovalbumin-induced asthma model to evaluate the effects of the flavonoids on various substances in bronchoalveolar lavage fluid, including total differential leukocyte, nitrite, nitrate, TNF, IL-4, and IL-13. The researchers also measured the levels of myeloperoxidase and malondialdehyde in the lungs. RESULTS: The results showed that ovalbumin-induced airway hyper-responsiveness led to a significant increase in pro-inflammatory cytokine levels. However, the flavonoids significantly decreased the severity of airway inflammation. Histopathology results also supported the effectiveness of the flavonoids. These findings suggest that these flavonoids could be a supplementary and alternative treatment for asthma by inhibiting the pro-inflammatory pathway. CONCLUSIONS: The findings suggest that the isolated compounds have the potential to act cumulatively to decrease the levels of the tested cytokines, normalize eosinophil and activated lymphocyte counts, and significantly reduce MPO and MDA. This indicates a possible respiratory mechanism of action for the drugs.


Asunto(s)
Asma , Flavonoides , Animales , Ratones , Ovalbúmina/efectos adversos , Ovalbúmina/metabolismo , Flavonoides/farmacología , Flavonoides/uso terapéutico , Asma/inducido químicamente , Asma/tratamiento farmacológico , Pulmón/metabolismo , Pulmón/patología , Citocinas , Inflamación/tratamiento farmacológico , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad
13.
Phytomedicine ; 126: 155410, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38367422

RESUMEN

BACKGROUND: Chronic airway inflammation and hyperresponsiveness are characteristics of asthma. The isoquinoline alkaloid protopine (PRO) has been shown to exert anti-inflammatory effects, but its mechanism of action in asthma is not known. PURPOSE: Investigate the protective properties of PRO upon asthma and elucidate its mechanism. STUDY DESIGN AND METHODS: The effects of PRO in asthma treatment were assessed by histology, biochemical analysis, and real-time reverse transcription-quantitative polymerase chain reaction. Then, we integrated molecular docking, western blotting, cellular experiments, immunohistochemistry, immunofluorescence analysis, flow cytometry, and metabolomics analysis to reveal its mechanism. RESULTS: In vivo, PRO therapy reduced the number of inflammatory cells (eosinophils, leukocytes, monocytes) in bronchoalveolar lavage fluid (BALF), ameliorated pathologic alterations in lung tissues, and inhibited secretion of IgG and histamine. Molecular docking showed that PRO could dock with the proteins of TLR4, MyD88, TRAF6, TAK1, IKKα, and TNF-α. Western blotting displayed that PRO inhibited the TLR4/NF-κB signaling pathway. PRO regulated expression of the pyroptosis-related proteins NLR family pyrin domain containing 3 (NLRP3) inflammasome, gasdermin D, caspase-1, and drove caspase-1 inactivation to affect inflammatory responses by inhibiting the NLRP3 inflammasome. In vitro, 24 h after treatment with PRO, cell activity, as well as levels of reactive oxygen species (ROS) and interleukin (IL)-1ß and IL-18, decreased significantly. Immunofluorescence staining showed that PRO decreased expression of TLR4 and MyD88 in vitro. PRO decreased nuclear translocation of NF-κB p65. Twenty-one potential biomarkers in serum were identified using metabolomics analysis, and they predominantly controlled the metabolism of phenylalanine, tryptophan, glucose, and sphingolipids. CONCLUSION: PRO reduced OVA-induced asthma. The underlying mechanism was associated with the TLR4/MyD88/NF-κB pathway and NLRP3 inflammasome-mediated pyroptosis.


Asunto(s)
Asma , Benzofenantridinas , Alcaloides de Berberina , FN-kappa B , Humanos , FN-kappa B/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Ovalbúmina , Piroptosis , Receptor Toll-Like 4/metabolismo , Simulación del Acoplamiento Molecular , Asma/inducido químicamente , Asma/tratamiento farmacológico , Inflamación , Caspasa 1/metabolismo
14.
Biomater Sci ; 12(7): 1771-1787, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38385306

RESUMEN

In the development of cancer vaccines, antigens are delivered to elicit potent and specific T-cell responses to eradicate tumour cells. Nonetheless, successful vaccines are often hampered by the poor immunogenicity of tumour antigens, rapid clearance by the innate immunity, and limited cross-presentation on MHC-I to activate CD8+ T-cells arm. To address these issues, we developed dextran-based nanogels to promote antigen uptake, storage, and cross-presentation on MHC-I, while directing immunogenic maturation of the antigen-presenting cells (APCs). To promote the nanocarriers interaction with cells, we modified DX with L-arginine (Arg), whose immunomodulatory activities have been well documented. The ArgDX nanogel performance was compared with the nanogel modified with L-histidine (His) and L-glutamate (Glut). Moreover, we introduced pH-sensitive hydrazone crosslinking during the nanogel formation for the conjugation and controlled release of antigen ovalbumin (OVA). The OVA-laden nanogels have an average size of 325 nm. We demonstrated that the nanogels could rapidly release cargoes upon a pH change from 7 to 5 within 8 days, indicating the controlled release of antigens in the acidic cellular compartments upon internalization. Our results revealed that the ArgDX nanogel could promote greater antigen uptake and storage in DCs in vitro and promoted a stronger immunogenic maturation of DCs and M1 polarization of the macrophages. The OVA signals were co-localized with lysosomal compartments up till 96 hours post-treatment and washing, suggesting the nanogels could facilitate prolonged antigen storage and supply from endo-lysosomal compartments. Furthermore, all the tested nanogel formulations retained antigens at the skin injection sites until day 21. Such delayed clearance could be due to the formation of micron-sized aggregates of OVA-laden nanogels, extending the interactions with the resident DCs. Amongst the amino acid modifications, ArgDX nanogels promoted the highest level of lymph node homing signal CCR7 on DCs. The nanogels also showed higher antigen presentation on both MHC-I and II than DX in vitro. In the in vivo immune studies, ArgDX nanogels were more superior in inducing cellular and humoral immunity than the other treatment groups on day 21 post-treatment. These results suggested that ArgDX nanogel is a promising self-adjuvanted nanocarrier for vaccine delivery.


Asunto(s)
Vacunas contra el Cáncer , Inmunidad Humoral , Polietilenglicoles , Polietileneimina , Animales , Ratones , Nanogeles , Dextranos , Linfocitos T CD8-positivos , Preparaciones de Acción Retardada , Células Dendríticas , Antígenos , Adyuvantes Inmunológicos/farmacología , Ovalbúmina/química , Ratones Endogámicos C57BL
15.
J Ethnopharmacol ; 326: 117927, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38373665

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Jiawei Yanghe Decoction (JWYHD) is modified Yanghe Decoction (YHD). YHD historically utilized as a potent medicinal solution for addressing chronic inflammatory conditions, holds promising therapeutic potential in the treatment of asthma. However, the mechanisms underlying JWYHD's effects on allergic asthma remain unclear. AIM OF THE STUDY: To investigate the therapeutic effect as well as the underlying mechanisms of JWYHD on asthmatic mice. MATERIALS AND METHODS: The ovalbumin (OVA)-induced mouse model was utilized, followed by the administration of JWYHD to allergic asthmatic mice. Subsequently, inflammatory cells in the bronchoalveolar lavage fluid (BALF) and lung tissues were conducted. The levels of various cytokines including interleukin (IL)-4, IL-5, IL-13, IL-33, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ in BALF, as well as the total immunoglobulin E (IgE) content in serum, were assessed. Lung function and tissue pathology examinations were performed to assess the protective impacts of JWYHD. The chemical components of JWYHD and its lung prototype compounds (referred to the chemical components present in JWYHD that were observed in the lung) were explored by ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). RNA-seq analysis revealed the regulation mechanisms of JWYHD treating asthma. Furthermore, the effect of JWYHD on type 2 innate lymphoid cells (ILC2s) in asthmatic mice was detected by flow cytometry and Smart-RNA-seq analysis. Then molecular docking analysis was used to show the interaction between identified compounds and key targets. RESULTS: JWYHD significantly attenuated the airway inflammation of asthmatic mice, reduced the levels of inflammatory cells in BALF, as well the levels of the cytokines IL-4, IL-5, IL-13, IL-33, and TNF-α in BALF and IgE in serum. Airway hyperresponsiveness (AHR) and lung inflammation infiltration were also alleviated by JWYHD. Moreover, RNA-seq analysis revealed that JWYHD attenuated airway inflammation in asthmatic mice via regulating immunity. Flow cytometry confirmed that JWYHD could inhibit ILC2 responses. ILC2 Smart-RNA-seq analysis showed that JWYHD impaired the inflammation reaction-related signaling pathways in ILC2s, and neuropilin-1 (Nrp1), endothelial transcription factor 3 (GATA3) and interleukin 1 receptor like protein 1 (ST2) might be the key targets. The molecular docking analysis investigating the connection between the primary targets and JWYHD's prototype compounds in the lung demonstrated that liquiritin apioside, icariin, glycyrrhizic acid, and uralsaponin B, identified through UPLC-Q-TOF/MS, exhibited significant affinity in binding to the mentioned key targets. CONCLUSION: Our results suggested that the mechanism of JWYHD in treating asthma might be related to limiting ILC2 responses. Our findings provided some pharmacological evidence for the clinical application of JWYHD in the treatment of asthma.


Asunto(s)
Asma , Medicamentos Herbarios Chinos , Inmunidad Innata , Ratones , Animales , Interleucina-33 , Interleucina-13 , Interleucina-5 , Simulación del Acoplamiento Molecular , Linfocitos/metabolismo , Pulmón , Inflamación/tratamiento farmacológico , Inflamación/patología , Citocinas/metabolismo , Líquido del Lavado Bronquioalveolar , Inmunoglobulina E , Ovalbúmina/farmacología , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad
16.
Respir Res ; 25(1): 10, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178132

RESUMEN

BACKGROUND: Although Traditional Chinese Medicine (TCM) has been used for treating asthma for centuries, the understanding of its mechanism of action is still limited. Thus, the purpose of this study was to explore the possible therapeutic effects, and underlying mechanism of baicalein in the treatment of asthma. METHODS: Freely availabled atabases (e.g. OMIM, TTD, Genecards, BATMAN-TCM, STITCH 5.0, SEA, SwissTargetPrediction) and software (e.g. Ligplot 2.2.5 and PyMoL) were used for disease drug target prediction and molecular docking by network pharmacology. The efficacy and mechanism of action of baicalein in the treatment of asthma were validated using an ovalbumin (OVA)-induced asthma mouse model and molecular biology techniques. RESULTS: A total of 1655 asthma-related genes and 161 baicalein-related targets were identified from public databases. Utilizing common databases and software for network pharmacology and molecular docking analysis, seven potential target proteins for the therapeutic effects of baicalein on asthma were selected, including v-akt murine thymoma viral oncogene homolog 1 (AKT1), vascular endothelial growth factor A (VEGFA), epidermal growth factor receptor (EGFR), proto-oncogene tyrosine-protein kinase Src (SRC), mitogen-activated protein kinase 3 (MAPK3), matrix metallopeptidase 9 (MMP9), and MAPK1. In vivo, baicalein treatment via intraperitoneal injection at a dose of 50 mg/kg significantly reduced airway inflammation, collagen deposition, smooth muscle thickness, lung interleukin (IL)-4 and IL-13 levels, peripheral blood immunoglobulin (Ig)E levels, as well as the count and ratio of eosinophils in bronchoalveolar lavage fluid (BALF) in an OVA-induced asthma mouse model. Further validation by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting analysis revealed that the VEGF and EGFR signaling pathways involving VEGFA, MAPK1, MAPK3, and EGFR were inhibited by baicalein in the asthma mouse model. CONCLUSION: Baicalein attenuates airway inflammation and airway remodeling through inhibition of VEGF and EGFR signaling pathways in an OVA-induced asthma mouse model. This will provide a new basis for the development of baicalein as a treatment for asthma and highlights the potential of network pharmacology and molecular docking in drug discovery and development.


Asunto(s)
Asma , Factor A de Crecimiento Endotelial Vascular , Animales , Ratones , Ovalbúmina , Factor A de Crecimiento Endotelial Vascular/metabolismo , Remodelación de las Vías Aéreas (Respiratorias) , Simulación del Acoplamiento Molecular , Asma/inducido químicamente , Asma/tratamiento farmacológico , Asma/genética , Inflamación , Transducción de Señal , Líquido del Lavado Bronquioalveolar , Receptores ErbB/metabolismo , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad
17.
Angew Chem Int Ed Engl ; 63(10): e202318530, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38196070

RESUMEN

Dendritic cell (DC) maturation and antigen presentation are key factors for successful vaccine-based cancer immunotherapy. This study developed manganese-based layered double hydroxide (Mn-LDH) nanoparticles as a self-adjuvanted vaccine carrier that not only promoted DC maturation through synergistically depleting endogenous glutathione (GSH) and activating STING signaling pathway, but also facilitated the delivery of model antigen ovalbumin (OVA) into lymph nodes and subsequent antigen presentation in DCs. Significant therapeutic-prophylactic efficacy of the OVA-loaded Mn-LDH (OVA/Mn-LDH) nanovaccine was determined by the tumor growth inhibition in the mice bearing B16-OVA tumor. Our results showed that the OVA/Mn-LDH nanoparticles could be a potent delivery system for cancer vaccine development without the need of adjuvant. Therefore, the combination of GSH exhaustion and STING pathway activation might be an advisable approach for promoting DC maturation and antigen presentation, finally improving cancer vaccine efficacy.


Asunto(s)
Vacunas contra el Cáncer , Nanopartículas , Neoplasias , Ratones , Animales , Eficacia de las Vacunas , Neoplasias/patología , Inmunoterapia/métodos , Adyuvantes Inmunológicos/farmacología , Glutatión , Células Dendríticas , Ratones Endogámicos C57BL , Ovalbúmina
18.
Int J Pharm ; 651: 123778, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38181990

RESUMEN

To identify a replacement strategy for bronchial thermoplasty (BT) with non-invasive and free-of-severe side effect is urgently needed in the clinic for severe asthma treatment. In this study, PLGA-PEG@ICG@TRPV1 pAb (PIT) photothermal nanoparticles targeting bronchial TRPV1 were designed for photothermal therapy (PTT) against severe murine asthma induced by ovalbumin and lipopolysaccharide. PIT was formulated with a polyethylene glycol (PEG)-grafted poly (lactic-co-glycolic) acid (PLGA) coating as a skeleton structure to encapsulate indocyanine green (ICG) and was conjugated to the polyclonal antibody against transient receptor potential vanilloid 1 (TRPV1 pAb). The results revealed that PIT held good druggability due to its electronegativity and small diameter. PIT demonstrated great photothermal effects both in vivo and in vitro and exhibited good ability to target TRPV1 in vitro because of its selective cell uptake and specific cell toxicity toward TRPV1-overexpressing cells. The PIT treatment effectively reduced asthma symptoms in mice. This is evident from improvements in expiratory airflow limitation, significant decreases in inflammatory cell infiltration in the airways, and increases in goblet cell and columnar epithelial cell proliferation. In conclusion, PIT alleviates severe murine asthma symptoms through a combination of TRPV1 targeting and photothermal effects.


Asunto(s)
Antineoplásicos , Asma , Nanopartículas , Animales , Ratones , Verde de Indocianina , Fototerapia/métodos , Ovalbúmina , Lipopolisacáridos , Nanopartículas/química , Polietilenglicoles/química , Asma/tratamiento farmacológico , Línea Celular Tumoral , Canales Catiónicos TRPV
19.
J Ethnopharmacol ; 321: 117405, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37952734

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Allergic asthma is a recurring respiratory condition that typically manifests during childhood or adolescence. It is characterized by a dominant type II immune response triggered by the identification and capturing of inhaled allergens by dendritic cells (DCs). Jiangqi Pingxiao Formula (JQPXF), a prescription medicine used for the treatment of pediatric asthma, has been clinically proven to be both safe and effective. However, its mechanism of action in the treatment of asthma has not been fully been fully elucidated. Recent research suggests that several natural compounds have the potential to target dendritic cells (DCs) and alleviate ovalbumin (OVA)-induced asthma, which may also be found within JQPXF. AIM OF THE STUDY: This study aimed to elucidate the effect of JQPXF on OVA-induced asthma model and its molecular mechanism targeting DCs. MATERIALS AND METHODS: The main constituents of JQPXF were analyzed by ultra performance liquid chromatography (UPLC). An asthma model was established by OVA. Hematoxylin-eosin staining and measurement of respiratory function was used to evaluate the treatment effect of JQPXF on asthmatic mice. Cytokine (IL-5, IL-13 and IgE) concentrations were determined by enzyme-linked immunosorbent assay (ELISA). Flow cytometry was employed to evaluate inflammatory cell infiltration (T helper 2 cells and DCs) in vivo and DC survival in vivo and vitro. Western blot and immunofluorescence were used to verify the molecular mechanisms. RESULTS: The results suggest that JQPXF can ameliorate pathological conditions and improve lung function in asthmatic mice, as well as the Th2 cells. Treatment with JQPXF significantly reduced the number of DCs and increased the number of Propidium iodide+ (PI) DCs. Furthermore, JQPXF upregulated protein levels of the pro-apoptotic factors Cleaved-caspase-3 and Bax, while downregulating the anti-apoptotic factor Bcl-2. Simultaneously, JQPXF increased autophagy levels by facilitating p62 degradation and promoting translation from LC3B I to LC3B II of DCs in vitro, as well as reducing the integrated optical density (IOD) of p62 within the CD11c-positive area in the lung. 3-Methyladenine (3-MA) was used to block autophagic flux and the apoptotic effect of JQPXF on DCs was abolished in vitro, with the number of DCs decreased by JQPXF being reversed in vivo. We further investigated the upstream key regulator of autophagy, the AMPK/mTOR pathway, and found that JQPXF increased AMPK phosphorylation while decreasing mTOR phosphorylation levels. Additionally, we employed Compound C (CC) as an AMPK inhibitor to inhibit this signaling pathway, and our findings revealed that both autophagic flux and apoptotic levels in DCs were abolished in vitro. CONCLUSIONS: In summary, we have demonstrated that JQPXF could alleviate type II inflammation in an asthmatic model by promoting the apoptosis of DCs through an autophagy-dependent mechanism, achieved by regulating the AMPK/mTOR signaling pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Asma , Humanos , Niño , Ratones , Animales , Ovalbúmina , Proteínas Quinasas Activadas por AMP/metabolismo , Modelos Animales de Enfermedad , Asma/inducido químicamente , Asma/tratamiento farmacológico , Serina-Treonina Quinasas TOR/metabolismo , Autofagia , Células Dendríticas , Apoptosis , Ratones Endogámicos BALB C
20.
J Ethnopharmacol ; 321: 117490, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38030025

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Xiaoqinglong decoction (XQLD), first recorded in Shang Han Lun, is a traditional Chinese medicine prescribed for the treatment of allergic rhinitis (AR). XQLD alleviates the clinical symptoms of AR by inhibiting the occurrence of an inflammatory response, but the specific regulatory mechanism remains unclear. AIM OF THE STUDY: NLRP3-mediated pyroptosis is closely related to AR pathogenesis. Hence, this study aimed to explore the potential role of NLRP3-mediated pyroptosis pathway in the AR-associated pharmacological mechanism of XQLD. MATERIALS AND METHODS: BALB/C mice models of AR was established by using ovalbumin (OVA) and aluminum hydroxide sensitization. After intragastric administration of different dosages of XQLD, nasal allergic symptoms were observed. The expression of OVA-sIgE and Th2 inflammatory factors (IL-4, IL-5, and IL-13) in serum was detected by ELISA. The histopathological morphology and expression of inflammatory factors in nasal mucosa along with pyroptosis were investigated. Molecular docking was performed to analyze the binding of representative compounds of XQLD with NLRP3. Activation of the NLRP3 inflammasome was detected by immunofluorescence and western blotting. RESULTS: XQLD significantly improved the nasal allergic symptoms of mice, reduced the degree of goblet cell proliferation, mast cell infiltration, and collagen fiber hyperplasia in nasal mucosa. Meanwhile, it could downregulate the expression of Th2 inflammatory factors (IL-4, IL-5, and IL-13) in serum and nasal mucosa. XQLD significantly reduced the number of GSDMD and TUNEL double-positive cells and IL-1ß and IL-18 expression. Molecular docking confirmed that seven representative compounds of XQLD had good binding properties with NLRP3 and were able to inhibit the activation of the NLRP3 inflammasome. CONCLUSIONS: The representative compounds of XQLD might inhibit pyroptosis in nasal mucosa mediated by the NLRP3 inflammasome to helping the recovery of AR, which provides a new modern pharmacological proof for XQLD to treat AR.


Asunto(s)
Proteína con Dominio Pirina 3 de la Familia NLR , Rinitis Alérgica , Ratones , Animales , Inflamasomas/metabolismo , Interleucina-13 , Ratones Endogámicos BALB C , Piroptosis , Interleucina-4 , Interleucina-5 , Simulación del Acoplamiento Molecular , Rinitis Alérgica/tratamiento farmacológico , Modelos Animales de Enfermedad , Ovalbúmina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA