Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Biosens Bioelectron ; 236: 115419, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37269753

RESUMEN

Designing nanozymes with excellent catalytic activity through valence state engineering and defect engineering is a widely applicable strategy. However, their development is hindered by the complexity of the design strategies. In this work, we employed a simple calcination method to regulate the valence of manganese and crystalline states in manganese oxide nanozymes. The oxidase-like activity of the nanozymes was found to benefit from a mixed valence state dominated by Mn (III). And the amorphous structure with more active defect sites significantly enhanced the catalytic efficiency. Moreover, we demonstrated that amorphous mixed-valent Mn-containing (amvMn) nanozymes with unique cocklebur-like biomimetic morphology achieved specific binding to cancer cells through the Velcro effects. Subsequently, the nanozymes mediated TMB coloration through their oxidase-like activity, enabling the colorimetric detection of cancer cells. This work not only provides guidance for optimizing nanozyme performance, but also inspire the development of equipment-free visual detection methods for cancer cells.


Asunto(s)
Técnicas Biosensibles , Neoplasias , Xanthium , Xanthium/metabolismo , Colorimetría/métodos , Técnicas Biosensibles/métodos , Oxidorreductasas/química , Manganeso/química , Neoplasias/diagnóstico
2.
Planta Med ; 89(8): 833-847, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37187191

RESUMEN

3ß-hydroxy-Δ5-steroid dehydrogenases (3ßHSDs) are supposed to be involved in 5ß-cardenolide biosynthesis. Here, a novel 3ßHSD (Dl3ßHSD2) was isolated from Digitalis lanata shoot cultures and expressed in E. coli. Recombinant Dl3ßHSD1 and Dl3ßHSD2 shared 70% amino acid identity, reduced various 3-oxopregnanes and oxidised 3-hydroxypregnanes, but only rDl3ßHSD2 converted small ketones and secondary alcohols efficiently. To explain these differences in substrate specificity, we established homology models using borneol dehydrogenase of Salvia rosmarinus (6zyz) as the template. Hydrophobicity and amino acid residues in the binding pocket may explain the difference in enzyme activities and substrate preferences. Compared to Dl3ßHSD1, Dl3ßHSD2 is weakly expressed in D. lanata shoots. High constitutive expression of Dl3ßHSDs was realised by Agrobacterium-mediated transfer of Dl3ßHSD genes fused to the CaMV-35S promotor into the genome of D. lanata wild type shoot cultures. Transformed shoots (35S:Dl3ßHSD1 and 35S:Dl3ßHSD2) accumulated less cardenolides than controls. The levels of reduced glutathione (GSH), which is known to inhibit cardenolide formation, were higher in the 35S:Dl3ßHSD1 lines than in the controls. In the 35S:Dl3ßHSD1 lines cardenolide levels were restored after adding of the substrate pregnane-3,20-dione in combination with buthionine-sulfoximine (BSO), an inhibitor of GSH formation. RNAi-mediated knockdown of the Dl3ßHSD1 yielded several shoot culture lines with strongly reduced cardenolide levels. In these lines, cardenolide biosynthesis was fully restored after addition of the downstream precursor pregnan-3ß-ol-20-one, whereas upstream precursors such as progesterone had no effect, indicating that no shunt pathway could overcome the Dl3ßHSD1 knockdown. These results can be taken as the first direct proof that Dl3ßHSD1 is indeed involved in 5ß-cardenolide biosynthesis.


Asunto(s)
Digitalis , Digitalis/genética , Digitalis/metabolismo , Cardenólidos/metabolismo , Escherichia coli/genética , Interferencia de ARN , Oxidorreductasas/genética , Oxidorreductasas/química , Oxidorreductasas/metabolismo
3.
Chembiochem ; 23(2): e202100578, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34726829

RESUMEN

Fatty amines represent an important class of commodity chemicals which have broad applicability in different industries. The synthesis of fatty amines starts from renewable sources such as vegetable oils or animal fats, but the process has multiple drawbacks that compromise the overall effectiveness and efficiency of the synthesis. Herein, we report a proof-of-concept biocatalytic alternative towards the synthesis of primary fatty amines from renewable triglycerides and oils. By coupling a lipase with a carboxylic acid reductase (CAR) and a transaminase (TA), we have accomplished the direct synthesis of multiple medium and long chain primary fatty amines in one pot with analytical yields as high as 97 %. We have also performed a 75 mL preparative scale reaction for the synthesis of laurylamine from trilaurin, obtaining 73 % isolated yield.


Asunto(s)
Aminas/síntesis química , Grasas/química , Aceites de Plantas/química , Triglicéridos/química , Lipasa/química , Oxidorreductasas/química , Transaminasas/química
4.
Pak J Biol Sci ; 24(8): 840-846, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34486351

RESUMEN

<b>Background and Objective:</b> Inflammation occurs <i>via</i> several mechanisms, one of which includes the production of Nitric Oxide (NO) catalyzed by inducible nitric oxide synthase (iNOS), which is inhibited selectively by isothioureas. <i>Ageratum conyzoides</i> L. has shown activity in reducing pain and inflammation, although the molecular mechanism had not been undertaken. The objectives of this work were (1) to study the mechanism of anti-inflammatory activity of <i>A. conyzoides</i> through inhibition of iNOS, (2) to correlate the iNOS inhibitory activity of the plant with the total flavonoid content of the plants and (3) to identify the flavonol synthase (FLS), an enzyme that catalyzes the production of quercetin. <b>Materials and Methods:</b> The inhibitory activity against iNOS was assayed by <i>in vitro</i> method. The total flavonoids (calculated as quercetin) of <i>A. conyzoides</i> were determined by fluorometry. The protein extraction of the leaves was carried out by employing Laing and Christeller's (2004) method, followed with SDS-PAGE. <b>Results:</b> The inhibitory activity (IC<sub>50</sub>) of ethanol extract and ethyl acetate fraction of <i>A. conyzoides</i> against iNOS was 92.05 and 4.78 µg mL<sup></sup><sup>1</sup>, respectively. Pearson correlation analysis resulted in 0.548 (ethanol extract) and 0.696 (ethyl acetate fraction). The total flavonoids (calculated as quercetin) contained in the ethanol extract and ethyl acetate fraction of <i>A. conyzoides</i> were 0.71 and 7.65%, respectively. The FLS in <i>A. conyzoides</i> leaves was identified at 31 kDa. <b>Conclusion:</b> <i>A. </i>c<i>onyzoides</i> L. is potential in inhibiting iNOS due to quercetin contained in the leaves. This report will add a scientific insight of <i>A. conyzoides</i> for biological sciences.


Asunto(s)
Ageratum/crecimiento & desarrollo , Ageratum/metabolismo , Óxido Nítrico Sintasa/metabolismo , Antiinflamatorios , Etanol/química , Flavonoides/química , Indonesia , Concentración 50 Inhibidora , Óxido Nítrico/química , Óxido Nítrico Sintasa de Tipo II/química , Oxidorreductasas/química , Fenol/química , Extractos Vegetales , Hojas de la Planta/efectos de los fármacos , Proteínas de Plantas/química , Quercetina/farmacología , Rayos Ultravioleta
5.
Neurochem Res ; 46(3): 535-549, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33548035

RESUMEN

Extensive data have reported the involvement of oxidative stress in the pathogenesis of neuropsychiatric disorders, prompting the pursuit of antioxidant molecules that could become adjuvant pharmacological agents for the management of oxidative stress-associated disorders. The 3-[(4-chlorophenyl)selanyl]-1-methyl-1H-indole (CMI) has been reported as an antioxidant and immunomodulatory compound that improves depression-like behavior and cognitive impairment in mice. However, the exact effect of CMI on specific brain cells is yet to be studied. In this context, the present study aimed to evaluate the antioxidant activity of CMI in H2O2-induced oxidative stress on human dopaminergic neuroblastoma cells (SH-SY5Y) and to shed some light into its possible mechanism of action. Our results demonstrated that the treatment of SH-SY5Y cells with 4 µM CMI protected them against H2O2 (343 µM)-induced oxidative stress. Specifically, CMI prevented the increased number of reactive oxygen species (ROS)-positive cells induced by H2O2 exposure. Furthermore, CMI treatment increased the levels of reduced glutathione in SH-SY5Y cells. Molecular docking studies demonstrated that CMI might interact with enzymes involved in glutathione metabolism (i.e., glutathione peroxidase and glutathione reductase) and H2O2 scavenging (i.e., catalase). In silico pharmacokinetics analysis predicted that CMI might be well absorbed, metabolized, and excreted, and able to cross the blood-brain barrier. Also, CMI was not considered toxic overall. Taken together, our results suggest that CMI protects dopaminergic neurons from H2O2-induced stress by lowering ROS levels and boosting the glutathione system. These results will facilitate the clinical application of CMI to treat nervous system diseases associated with oxidative stress.


Asunto(s)
Peróxido de Hidrógeno/toxicidad , Indoles/farmacología , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Compuestos de Selenio/farmacología , Dominio Catalítico , Línea Celular Tumoral , Glutatión/metabolismo , Glutatión Transferasa/química , Glutatión Transferasa/metabolismo , Humanos , Indoles/química , Indoles/metabolismo , Indoles/farmacocinética , Simulación del Acoplamiento Molecular , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacocinética , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Unión Proteica , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Selenio/química , Compuestos de Selenio/metabolismo , Compuestos de Selenio/farmacocinética
6.
ACS Appl Mater Interfaces ; 13(4): 5111-5124, 2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33472360

RESUMEN

Artificial enzymes with modulated enzyme-mimicking activities of natural systems represent a challenge in catalytic applications. Here, we show the creation of artificial Cu metalloenzymes based on the generation of Cu nanoparticles in an enzyme matrix. Different enzymes were used, and the structural differences between the enzymes especially influenced the controlled the size of the nanoparticles and the environment that surrounds them. Herein, we demonstrated that the oxidase-like catalytic activity of these copper nanozymes was rationally modulated by enzyme used as a scaffold, with a special role in the nanoparticle size and their environment. In this sense, these nanocopper hybrids have confirmed the ability to mimic a unique enzymatic activity completely different from the natural activity of the enzyme used as a scaffold, such as tyrosinase-like activity or as Fenton catalyst, which has extremely higher stability than natural mushroom tyrosinase. More interestingly, the oxidoreductase-like activity of nanocopper hybrids was cooperatively modulated with the synergistic effect between the enzyme and the nanoparticles improving the catalase activity (no peroxidase activity). Additionally, a novel dual (metallic and enzymatic activity) of the nanozyme made the highly improved catechol-like activity interesting for the design of 3,4-dihydroxy-l-phenylalanine (l-DOPA) biosensor for detection of tyrosinase. These hybrids also showed cytotoxic activity against different tumor cells, interesting in biocatalytic tumor therapy.


Asunto(s)
Materiales Biomiméticos/uso terapéutico , Técnicas Biosensibles , Cobre/uso terapéutico , Nanopartículas/uso terapéutico , Neoplasias/terapia , Bacterias/enzimología , Biocatálisis , Materiales Biomiméticos/química , Técnicas Biosensibles/métodos , Cobre/química , Terapia Enzimática/métodos , Hongos/enzimología , Humanos , Modelos Moleculares , Monofenol Monooxigenasa/análisis , Nanopartículas/química , Oxidorreductasas/química , Oxidorreductasas/uso terapéutico , Conformación Proteica
7.
Biotechnol Appl Biochem ; 68(4): 889-895, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32835428

RESUMEN

Copper oxide nanoparticles (CuONPs) were phytosynthesized by Laurus nobilis leaf extract, which was used as a reducing and capping agent. UV-vis spectroscopy was applied, and the spectrum of CuONPs gave a peak around 300 and 325 nm. An intense Fourier transform infrared spectroscopy between 4000 and 500 cm-1 wavelengths exhibited exterior functional groups of CuONPs. The results of scanning electron microscopy and transmission electron microscopy revealed that the green synthesized CuONPs were spherical in shape with sizes between 90 and 250 nm. Antibacterial activity of CuONPs was evaluated against both Gram-positive and Gram-negative bacteria. Brilliant Blue R-250 was employed in the dye decolorization studies, and CuONPs achieved 69% decolorization in 60 Min. The antioxidant activity of CuONPs was calculated by analyzing total phenolic compounds and flavonoid content. Furthermore, the reducing power of extract and nanoparticles was determined. Total phenolic compounds of CuONPs were determined as 6.7 µg of pyrocatechol equivalent/mg, while total flavonoids were measured as 236.62 µg catechin/mg sample. Results indicated that the method of CuONP formation is simple and low cost and the phytosynthesized CuONPs had antibacterial, antioxidant, and dye decolorization activity.


Asunto(s)
Antibacterianos , Antioxidantes , Bacterias Gramnegativas/crecimiento & desarrollo , Bacterias Grampositivas/crecimiento & desarrollo , Laurus/química , Oxidorreductasas/química , Procesos Fotoquímicos , Extractos Vegetales/química , Hojas de la Planta/química , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Antioxidantes/síntesis química , Antioxidantes/química , Antioxidantes/farmacología
8.
Prep Biochem Biotechnol ; 51(2): 105-111, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32720840

RESUMEN

Taro (Colocasia esculenta) starch is known to possess unique physical and functional properties such as low amylose content, A-crystalline form, small granules, higher swelling power, etc. Due to the presence of significant amount of calcium oxalate crystals, the food industry is reluctant to explore this unique and cheap starch source for various food applications. Traditional processes utilizing various physical and chemical methods to remove oxalate content of starch inevitably change its physical and functional properties. However, using oxalate oxidase can effectively remove oxalates without altering the unique properties of starch. Hence, an attempt was made to optimize oxalate oxidase assisted starch extraction process from taro flour using response surface methodology. A central composite design comprising 20 experimental trials with 10 cube points augmented with six axial points and four replicates at the center point was applied. A mathematical model was developed to show the effect of taro flour concentration, enzyme load and incubation time on the oxalate removal. Validity of the model was experimentally verified and found that 98.3% of total oxalates can be removed under optimal conditions. This is the first report of optimization of the production of starch from taro flour using microbial oxalate oxidase.


Asunto(s)
Biotecnología/métodos , Colocasia/metabolismo , Oxalatos/química , Oxidorreductasas/química , Almidón/química , Harina , Tecnología de Alimentos/métodos , Concentración de Iones de Hidrógeno , Modelos Teóricos , Extractos Vegetales , Solubilidad
9.
Chembiochem ; 22(2): 298-307, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-32735057

RESUMEN

Sulfoxides are a class of organic compounds that find wide application in medicinal and organic chemistry. Several biocatalytic approaches have been developed to synthesise enantioenriched sulfoxides, mainly by exploiting oxidative enzymes. Recently, the use of reductive enzymes such as Msr and Dms has emerged as a new, alternative method to obtain enantiopure sulfoxides from racemic mixtures. In parallel, novel oxidative approaches, employing nonclassical solvents such as ionic liquids (ILs) and deep eutectic solvents (DESs), have been developed as greener and more sustainable biocatalytic synthetic pathways. This minireview aims highlights the recent advances made in the biocatalytic synthesis of enantioenriched sulfoxides by employing such unconventional approaches.


Asunto(s)
Ferredoxina-NADP Reductasa/metabolismo , Proteínas Hierro-Azufre/metabolismo , Oxidorreductasas/metabolismo , Sulfóxidos/metabolismo , Biocatálisis , Ferredoxina-NADP Reductasa/química , Humanos , Proteínas Hierro-Azufre/química , Estructura Molecular , Oxidorreductasas/química , Sulfóxidos/química
10.
Biochimie ; 183: 108-125, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33190793

RESUMEN

Thiolatocobalamins are a class of cobalamins comprised of naturally occurring and synthetic ligands. Glutathionylcobalamin (GSCbl) occurs naturally in mammalian cells, and also as an intermediate in the glutathione-dependent dealkylation of methylcobalamin (MeCbl) to form cob(I)alamin by pure recombinant CblC from C. elegans. Glutathione-driven deglutathionylation of GSCbl was demonstrated both in mammalian as well as in C. elegans CblC. Dethiolation is orders of magnitude faster than dealkylation of Co-C bonded cobalamins, which motivated us to investigate two synthetic thiolatocobalamins as substrates to repair the enzymatic activity of pathogenic CblC variants in humans. We report the synthesis and kinetic characterization of cysteaminylcobalamin (CyaCbl) and 2-mercaptopropionylglycinocobalamin (MpgCbl). Both CyaCbl and MpgCbl were obtained in high purity (90-95%) and yield (78-85%). UV-visible spectral properties agreed with those reported for other thiolatocobalamins with absorbance maxima observed at 372 nm and 532 nm. Both CyaCbl and MpgCbl bound to wild type human recombinant CblC inducing spectral blue-shifts characteristic of the respective base-on to base-off transitions. Addition of excess glutathione (GSH) resulted in rapid elimination of the ß-ligand to give aquacobalamin (H2OCbl) as the reaction product under aerobic conditions. Further, CyaCbl and MpgCbl underwent spontaneous dethiolation thereby repairing the loss of activity of pathogenic variants of human CblC, namely R161G and R161Q. We posit that thiolatocobalamins could be exploited therapeutically for the treatment of inborn errors of metabolism that impair processing of dietary and supplemental cobalamin forms. While these disorders are targets for newborn screening in some countries, there is currently no effective treatment available to patients.


Asunto(s)
Mutación Missense , Oxidorreductasas/química , Vitamina B 12/química , Sustitución de Aminoácidos , Animales , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Glutatión Transferasa/química , Glutatión Transferasa/genética , Humanos , Oxidorreductasas/genética
11.
J Agric Food Chem ; 69(1): 345-353, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33350305

RESUMEN

Lipid extracts of the fungus Flammulina velutipes were found to contain various scarce fatty acids including dodec-11-enoic acid and di- and tri-unsaturated C16 isomers. A biotechnological approach using a heterologously expressed carboxylic acid reductase was developed to transform the fatty acids into the respective aldehydes, yielding inter alia dodec-11-enal. Supplementation studies gave insights into the fungal biosynthesis of this rarely occurring acid and suggested a terminal desaturation of lauric acid being responsible for its formation. A systematic structure-odor relationship assessment of terminally unsaturated aldehydes (C7-C13) revealed odor thresholds in the range of 0.24-22 µg/L in aqueous solution and 0.039-29 ng/L in air. In both cases, non-8-enal was identified as the most potent compound. All aldehydes exhibited green odor qualities. Short-chained substances were additionally associated with grassy, melon-, and cucumber-like notes, while longer-chained homologs smelled soapy and coriander leaf-like with partly herbaceous nuances. Dodec-11-enal turned out to be of highly pleasant scent without off-notes.


Asunto(s)
Aldehídos/química , Biotecnología/métodos , Adulto , Biocatálisis , Ácidos Grasos/química , Femenino , Flammulina/química , Humanos , Masculino , Oxidorreductasas/química , Olfato , Adulto Joven
12.
Int J Mol Sci ; 21(19)2020 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-32993084

RESUMEN

Natural products comprise a rich reservoir for innovative drug leads and are a constant source of bioactive compounds. To find pharmacological targets for new or already known natural products using modern computer-aided methods is a current endeavor in drug discovery. Nature's treasures, however, could be used more effectively. Yet, reliable pipelines for the large-scale target prediction of natural products are still rare. We developed an in silico workflow consisting of four independent, stand-alone target prediction tools and evaluated its performance on dihydrochalcones (DHCs)-a well-known class of natural products. Thereby, we revealed four previously unreported protein targets for DHCs, namely 5-lipoxygenase, cyclooxygenase-1, 17ß-hydroxysteroid dehydrogenase 3, and aldo-keto reductase 1C3. Moreover, we provide a thorough strategy on how to perform computational target predictions and guidance on using the respective tools.


Asunto(s)
Productos Biológicos/química , Simulación por Computador , Descubrimiento de Drogas , Inhibidores Enzimáticos/química , Oxidorreductasas , Evaluación Preclínica de Medicamentos , Humanos , Oxidorreductasas/antagonistas & inhibidores , Oxidorreductasas/química
13.
Microbiologyopen ; 9(10): e1110, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32979040

RESUMEN

Directed enzyme prodrug therapy (DEPT) is a cancer chemotherapy strategy in which bacterial enzymes are delivered to a cancer site before prodrug administration, resulting in prodrug activation at the cancer site and more localized treatment. A major limitation to DEPT is the poor effectiveness of the most studied enzyme for the CB1954 prodrug, NfnB from Escherichia coli, at concentrations suitable for human use. Much research into finding alternative enzymes to NfnB has resulted in the identification of the Xenobiotic reductases, XenA and XenB, which have been shown in the literature to reduce environmentally polluting nitro-compounds. In this study, they were assessed for their potential use in cancer prodrug therapy strategies. Both proteins were cloned into the pET28a+ expression vector to give the genetically modified proteins XenA-his and XenB-his, of which only XenB-his was active when tested with CB1954. XenB-his was further modified to include a cysteine-tag to facilitate direct immobilization on to a gold surface for future magnetic nanoparticle DEPT (MNDEPT) treatments and was named XenB-cys. When tested using high-performance liquid chromatography (HPLC), XenB-his and XenB-cys both demonstrated a preference for reducing CB1954 at the 4-nitro position. Furthermore, XenB-his and XenB-cys successfully induced cell death in SK-OV-3 cells when combined with CB1954. This led to XenB-cys being identified as a promising candidate for use in future MNDEPT treatments.


Asunto(s)
Antineoplásicos/química , Proteínas Bacterianas/química , Flavoproteínas/química , Nanopartículas de Magnetita/química , Oxidorreductasas/química , Pseudomonas putida/enzimología , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/farmacología , Supervivencia Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Flavoproteínas/genética , Flavoproteínas/metabolismo , Flavoproteínas/farmacología , Humanos , Neoplasias/tratamiento farmacológico , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Oxidorreductasas/farmacología , Profármacos/química , Profármacos/metabolismo , Profármacos/farmacología , Pseudomonas putida/química , Pseudomonas putida/genética
14.
Int J Mycobacteriol ; 9(1): 12-17, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32474482

RESUMEN

Background: Mycobacterium tuberculosis enoyl-acyl carrier protein reductase (mtInhA) is involved in the biosynthesis of mycolic acids, a major component of mycobacterial cell walls, and has been targeted in the development of anti-tuberculosis (TB) drugs. In our previous in silico structure-based drug screening study, we identified KES4, a novel class of mtInhA inhibitor. KES4 is composed of four ring structures (A-D-rings) and molecular dynamic simulation predicted that the D-ring is essential for the interaction with mtInhA. Methods: The structure-activity relationship study of the D-ring was attempted and aided by in silico docking simulations to improve the mtInhA inhibitory activity of KES4. A virtual chemical library of the D-ring-modified KES4 was then constructed and subjected to in silico docking simulation against mtInhA using the GOLD program. The candidate compound showing the highest GOLD score, referred to as KEN1, was synthesized, and its biological properties were compared with those of the lead compound KES4. Results: We achieved the synthesis of KEN1 and evaluated its effects on InhA activity, mycobacterial growth, and cytotoxicity. The antimycobacterial activity of KEN1 was comparable to that of the lead compound (KES4), although it exhibited superior activity in mtInhA inhibition. \. Conclusions: We obtained a KES4 derivative with high mtInhA inhibitory activity by in silico docking simulation with a chemical library consisting of a series of D-ring-modified KES4.


Asunto(s)
Proteína Transportadora de Acilo/antagonistas & inhibidores , Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Oxidorreductasas/antagonistas & inhibidores , Proteína Transportadora de Acilo/química , Animales , Antituberculosos/química , Línea Celular Tumoral , Perros , Evaluación Preclínica de Medicamentos/métodos , Humanos , Células de Riñón Canino Madin Darby , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Oxidación-Reducción , Oxidorreductasas/química , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad
15.
ACS Chem Biol ; 15(7): 1987-1995, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32568515

RESUMEN

A selenium nanoparticle binding peptide was isolated from a phage display library and genetically fused to a metalloid reductase that reduces selenite (SeO32-) to a Se0 nanoparticle (SeNP) form. The fusion of the Se binding peptide to the metalloid reductase regulates the size of the resulting SeNP to ∼35 nm average diameter, where without the peptide, SeNPs grow to micron sized polydisperse precipitates. The SeNP product remains associated with the enzyme/peptide fusion. The Se binding peptide fusion to the enzyme increases the enzyme's SeO32- reductase activity. Size control of particles was diminished if the Se binding peptide was only added exogenously to the reaction mixture. The enzyme-peptide construct shows preference for binding smaller SeNPs. The peptide-SeNP interaction is attributed to His based ligation that results in a peptide conformational change on the basis of Raman spectroscopy.


Asunto(s)
Proteínas Portadoras/metabolismo , Nanopartículas/metabolismo , Oxidorreductasas/metabolismo , Ácido Selenioso/química , Selenio/metabolismo , Proteínas Portadoras/química , Nanopartículas/química , Oligopéptidos/química , Oligopéptidos/metabolismo , Oxidación-Reducción , Oxidorreductasas/química , Tamaño de la Partícula , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Selenio/química
16.
Biotechnol Bioeng ; 117(7): 1979-1989, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32255509

RESUMEN

Immobilization of enzymes provides many benefits, including facile separation and recovery of enzymes from reaction mixtures, enhanced stability, and co-localization of multiple enzymes. Calcium-phosphate-protein supraparticles imbued with a leucine zipper binding domain (ZR ) serve as a modular immobilization platform for enzymes fused to the complementary leucine zipper domain (ZE ). The zippers provide high-affinity, specific binding, separating enzymatic activity from the binding event. Using fluorescent model proteins (mCherryZE and eGFPZE ), an amine dehydrogenase (AmDHZE ), and a formate dehydrogenase (FDHZE ), the efficacy of supraparticles as a biocatalytic solid support was assessed. Supraparticles demonstrated several benefits as an immobilization support, including predictable loading of multiple proteins, structural integrity in a panel of solvents, and the ability to elute and reload proteins without damaging the support. The dual-enzyme reaction successfully converted ketone to amine on supraparticles, highlighting the efficacy of this system.


Asunto(s)
Fosfatos de Calcio/química , Enzimas Inmovilizadas/química , Sitios de Unión , Estabilidad de Enzimas , Formiato Deshidrogenasas/química , Proteínas Fluorescentes Verdes/química , Leucina Zippers , Proteínas Luminiscentes/química , Oxidorreductasas/química , Proteína Fluorescente Roja
17.
Mikrochim Acta ; 187(4): 229, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32170465

RESUMEN

Black phosphorus quantum dots (BP QDs) with small size are synthesized using an easy to operate thermal method. It was found that BP QDs possess oxidase-mimicking activity. They can catalyze the oxidation of the substrate 3,3',5,5'-tetramethylbenzidine to produce a blue-colored product even in the absence of hydrogen peroxide. Active oxygen species are proved to be involved in the reaction through the experiments of radical scavenging and electron spin resonance. Biothiols including reduced glutathione and cysteine inactivate the oxidase-mimicking activity of BP QDs, concomitant to the fading of the blue solution. This provides the  base for a colorimetric method for the determination of glutathione and cysteine. The decreased absorbance at 652 nm displays linear response to the concentrations of glutathione ranging from 0.1 to 5.0 µmol L-1, and cysteine from 0.1 to 10.0 µmol L-1. The detection limits are 0.02 µmol L-1 and 0.03 µmol L-1 for glutathione and cysteine, respectively. Successive determinations of 1.0 µmol L-1 glutathione and 5.0 µmol L-1 cysteine solution give relative standard deviations of 0.8% and 1.7% (n = 11), respectively. As a preliminary application, the practicability of the method was evaluated by the determination of glutathione in pharmaceutical preparations. This work not only discovers a useful oxidase mimics but also sets up a reliable platform based on BP QDs in colorimetric detection. Graphical abstract Schematic representation of colorimetric determination for biothiols through inactivating oxidase mimetic-like catalytic activity of black phosphorus quantum dots (BP QDs) on the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) with dissolved oxygen to produce its blue oxidized product (oxTMB).


Asunto(s)
Técnicas Biosensibles , Colorimetría , Cisteína/análisis , Glutatión/análisis , Oxidorreductasas/química , Fósforo/química , Puntos Cuánticos/química , Cisteína/metabolismo , Glutatión/metabolismo , Estructura Molecular , Oxidorreductasas/metabolismo , Fósforo/metabolismo
18.
Pak J Biol Sci ; 23(3): 264-270, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31944087

RESUMEN

BACKGROUND AND OBJECTIVE: Flavonols in plants are catalyzed by flavonol synthase (FLS) enzyme. FLS was reported expressed in flowers and fruits, i.e., Dianthus caryophyllus L. (Caryophyllaceae), Petunia hybrida Hort. (Solanaceae), Arabidopsis thaliana L. (Brassicaceae), Citrus unshiu Marc. (Rutaceae). However, none reported about FLS in medicinal plants, particularly those which possess anti-inflammatory activity. This study was aimed to extract and identify FLS in the rhizome of Boesenbergia rotunda (Zingiberaceae) and to determine quercetin in the ethanol extract of the rhizome. MATERIALS AND METHODS: The protein extraction of the rhizome was carried out by employing Laing and Christeller's (2004) and Wang's (2014) methods. The extracted-proteins were separated by using SDS-PAGE, followed by the measurement of FLS intensity by using Gel Analyzer. The FLS-1 of recombinant A. thaliana was employed as the standard. The determination of quercetin in the rhizome was carried out using LC-MS. RESULTS: The FLS occurred as a thick band at 38 kDa with intensity 116-158. The LC chromatogram of the extract indicated a small peak at 7.94 min similar to that of quercetin standard. The MS spectra at 7.94 min indicated that quercetin is present in the B. rotunda rhizome (m/z = 303.0549). The concentration of quercetin in the extract is 0.022% w/v. CONCLUSION: The FLS, an enzyme which plays an important role in producing quercetin, was detected in B. rotunda rhizome planted in Indonesia. As a consequence, quercetin in a small amount, was also quantified in the rhizome of this plant. This report will add a scientific insight of B. rotunda for biological sciences.


Asunto(s)
Flores/enzimología , Frutas/enzimología , Oxidorreductasas/química , Proteínas de Plantas/química , Quercetina/biosíntesis , Zingiberaceae/enzimología , Arabidopsis/enzimología , Citrus/enzimología , Dianthus/enzimología , Etanol , Flavonoles/química , Indonesia , Petunia/enzimología , Extractos Vegetales , Plantas Medicinales/enzimología , Rizoma/enzimología
19.
Angew Chem Int Ed Engl ; 59(9): 3618-3623, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-31828919

RESUMEN

While dehydrogenases play crucial roles in tricarboxylic acid (TCA) cycle of cell metabolism, which are extensively explored for biomedical and chemical engineering uses, it is a big challenge to overcome the shortcomings (low stability and high costs) of recombinant dehydrogenases. Herein, it is shown that two-dimensional (2D) SnSe is capable of mimicking native dehydrogenases to efficiently catalyze hydrogen transfer from 1-(R)-2-(R')-ethanol groups. In contrary to susceptible native dehydrogenases, lactic dehydrogenase (LDH) for instance, SnSe is extremely tolerant to reaction condition changes (pH, temperature, and organic solvents) and displays extraordinary reusable capability. Structure-activity analysis indicates that the single-atom structure, Sn vacancy, and hydrogen binding affinity of SnSe may be responsible for their catalytic activity. Overall, this is the first report of a 2D SnSe nanozyme to mimic key dehydrogenases in cell metabolism.


Asunto(s)
Materiales Biomiméticos/química , Nanoestructuras/química , Selenio/química , Estaño/química , Materiales Biomiméticos/metabolismo , Catálisis , Concentración de Iones de Hidrógeno , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Temperatura , Termodinámica
20.
Molecules ; 24(21)2019 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-31717749

RESUMEN

Stinging nettle (Urtica dioica L.) has been used as herbal medicine to treat various ailments since ancient times. The biological activity of nettle is chiefly attributed to a large group of phenylpropanoid dimers, namely lignans. Despite the pharmacological importance of nettle lignans, there are no studies addressing lignan biosynthesis in this plant. We herein identified 14 genes encoding dirigent proteins (UdDIRs) and 3 pinoresinol-lariciresinol reductase genes (UdPLRs) in nettle, which are two gene families known to be associated with lignan biosynthesis. Expression profiling of these genes on different organs/tissues revealed a specific expression pattern. Particularly, UdDIR7, 12 and 13 displayed a remarkable high expression in the top internode, fibre tissues of bottom internodes and roots, respectively. The relatively high expression of UdPLR1 and UdPLR2 in the young internodes, core tissue of bottom internode and roots is consistent with the high accumulation of lariciresinol and secoisolariciresinol in these tissues. Lignan quantification showed a high abundance of pinoresinol in roots and pinoresinol diglucosides in young internodes and leaves. This study sheds light on lignan composition and biosynthesis in nettle, providing a good basis for further functional analysis of DIRs and PLRs and, ultimately, engineering lignan metabolism in planta and in cell cultures.


Asunto(s)
Oxidorreductasas/metabolismo , Urtica dioica/química , Biología Computacional , Lignanos/química , Oxidorreductasas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA