Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Eur J Hum Genet ; 30(8): 976-979, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34764427

RESUMEN

Mitochondrial flavin adenine dinucleotide (FAD) transporter deficiencies are new entities recently reported to cause a neuro-myopathic phenotype. We report three patients from two unrelated families who presented primarily with hypoketotic hypoglycemia. They all had acylcarnitine profiles suggestive of multiple acyl-CoA dehydrogenase deficiency (MADD) with negative next-generation sequencing of electron-transfer flavoprotein genes (ETFA, ETFB, and ETFDH). Whole exome sequencing revealed a homozygous c.272 G > T (p.Gly91Val) variant in exon 2 of the SLC25A32 gene. The three patients shared the same variant, and they all demonstrated similar clinical and biochemical improvement with riboflavin supplementation. To date, these are the first patients to be reported with hypoketotic hypoglycemia without the neuromuscular phenotype previously reported in patients with SLC25A32 deficiency.


Asunto(s)
Hipoglucemia , Proteínas Hierro-Azufre , Proteínas de Transporte de Membrana , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Flavoproteínas Transportadoras de Electrones/genética , Flavoproteínas Transportadoras de Electrones/metabolismo , Humanos , Hipoglucemia/genética , Proteínas Hierro-Azufre/genética , Proteínas de Transporte de Membrana/deficiencia , Proteínas de Transporte de Membrana/genética , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/genética , Mutación , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Riboflavina/metabolismo
2.
Genes (Basel) ; 12(11)2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34828403

RESUMEN

Apple exhibits typical gametophytic self-incompatibility, in which self-S-RNase can arrest pollen tube growth, leading to failure of fertilization. To date, there have been few studies on how to resist the toxicity of self-S-RNase. In this study, pollen tube polyamines were found to respond to self-S-RNase and help pollen tubes defend against self-S-RNase. In particular, the contents of putrescine, spermidine, and spermine in the pollen tube treated with self-S-RNase were substantially lower than those treated with non-self-S-RNase. Further analysis of gene expression of key enzymes in the synthesis and degradation pathways of polyamines found that the expression of DIAMINE OXIDASE 4 (MdDAO4) as well as several polyamine oxidases such as POLYAMINE OXIDASES 3 (MdPAO3), POLYAMINE OXIDASES 4 (MdPAO4), and POLYAMINE OXIDASES 6 (MdPAO6) were significantly up-regulated under self-S-RNase treatment, resulting in the reduction of polyamines. Silencing MdPAO6 in pollen tubes alleviates the inhibitory effect of self-S-RNase on pollen tube growth. In addition, exogenous polyamines also enhance pollen tube resistance to self-S-RNase. Transcriptome sequencing data found that polyamines may communicate with S-RNase through the calcium signal pathway, thereby regulating the growth of the pollen tubes. To summarize, our results suggested that polyamines responded to the self-incompatibility reaction and could enhance pollen tube tolerance to S-RNase, thus providing a potential way to break self-incompatibility in apple.


Asunto(s)
Malus/metabolismo , Poliaminas/metabolismo , Autoincompatibilidad en las Plantas con Flores , Malus/genética , Malus/fisiología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/genética , Polen/metabolismo , Polen/fisiología , Poliamino Oxidasa
3.
Crit Rev Biochem Mol Biol ; 56(4): 360-372, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33823724

RESUMEN

Electron transfer flavoprotein dehydrogenase, also called ETF-ubiquinone oxidoreductase (ETF-QO), is a protein localized in the inner membrane of mitochondria, playing a central role in the electron-transfer system. Indeed, ETF-QO mediates electron transport from flavoprotein dehydrogenases to the ubiquinone pool. ETF-QO mutations are often associated with riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency (RR-MADD, OMIM#231680), a multisystem genetic disease characterized by various clinical manifestations with different degrees of severity. In this review, we outline the clinical features correlated with ETF-QO deficiency and the benefits obtained from different treatments, such as riboflavin, L-carnitine and/or coenzyme Q10 supplementation, and a diet poor in fat and protein. Moreover, we provide a detailed summary of molecular and bioinformatic investigations, describing the mutations identified in ETFDH gene and highlighting their predicted impact on enzymatic structure and activity. In addition, we report biochemical and functional analysis, performed in HEK293 cells and patient fibroblasts and muscle cells, to show the relationship between the nature of ETFDH mutations, the variable impairment of enzyme function, and the different degrees of RR-MADD severity. Finally, we describe in detail 5 RR-MADD patients carrying different ETFDH mutations and presenting variable degrees of clinical symptom severity.


Asunto(s)
Flavoproteínas Transportadoras de Electrones , Proteínas Hierro-Azufre , Mitocondrias , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa , Mutación , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Animales , Carnitina/genética , Carnitina/metabolismo , Flavoproteínas Transportadoras de Electrones/genética , Flavoproteínas Transportadoras de Electrones/metabolismo , Humanos , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/enzimología , Mitocondrias/genética , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/enzimología , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/genética , Ubiquinona/metabolismo
4.
PLoS Negl Trop Dis ; 14(10): e0008762, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33044977

RESUMEN

Deoxyhypusine synthase (DHS) catalyzes the first step of the post-translational modification of eukaryotic translation factor 5A (eIF5A), which is the only known protein containing the amino acid hypusine. Both proteins are essential for eukaryotic cell viability, and DHS has been suggested as a good candidate target for small molecule-based therapies against eukaryotic pathogens. In this work, we focused on the DHS enzymes from Brugia malayi and Leishmania major, the causative agents of lymphatic filariasis and cutaneous leishmaniasis, respectively. To enable B. malayi (Bm)DHS for future target-based drug discovery programs, we determined its crystal structure bound to cofactor NAD+. We also reported an in vitro biochemical assay for this enzyme that is amenable to a high-throughput screening format. The L. major genome encodes two DHS paralogs, and attempts to produce them recombinantly in bacterial cells were not successful. Nevertheless, we showed that ectopic expression of both LmDHS paralogs can rescue yeast cells lacking the endogenous DHS-encoding gene (dys1). Thus, functionally complemented dys1Δ yeast mutants can be used to screen for new inhibitors of the L. major enzyme. We used the known human DHS inhibitor GC7 to validate both in vitro and yeast-based DHS assays. Our results show that BmDHS is a homotetrameric enzyme that shares many features with its human homologue, whereas LmDHS paralogs are likely to form a heterotetrameric complex and have a distinct regulatory mechanism. We expect our work to facilitate the identification and development of new DHS inhibitors that can be used to validate these enzymes as vulnerable targets for therapeutic interventions against B. malayi and L. major infections.


Asunto(s)
Antihelmínticos/farmacología , Antiprotozoarios/farmacología , Brugia Malayi/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Proteínas del Helminto/antagonistas & inhibidores , Leishmania major/efectos de los fármacos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/antagonistas & inhibidores , Proteínas Protozoarias/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Antihelmínticos/química , Antiprotozoarios/química , Brugia Malayi/enzimología , Brugia Malayi/genética , Brugia Malayi/crecimiento & desarrollo , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Proteínas del Helminto/química , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Ensayos Analíticos de Alto Rendimiento , Leishmania major/enzimología , Leishmania major/genética , Leishmania major/crecimiento & desarrollo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Alineación de Secuencia
5.
J Plant Physiol ; 246-247: 153092, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32065919

RESUMEN

The mechanisms regulating, and modulating potato wound-healing processes are of great importance in reducing tuber infections, reducing shrinkage and maintaining quality and nutritional value for growers and consumers. Wound-induced changes in tuber polyamine metabolism have been linked to the modulation of wound healing (WH) and in possibly providing the crucial amount of H2O2 required for suberization processes. In this investigation we determined the effect of inhibition of specific steps within the pathway of polyamine metabolism on polyamine content and the initial accumulation of suberin polyphenolics (SPP) during WH. The accumulation of SPP represents a critical part of the beginning or inchoate phase of tuber WH during closing-layer formation because it serves as a barrier to bacterial infection and is a requisite for the accumulation of suberin polyaliphatics which provide the barrier to fungal infection. Results showed that the inhibitor treatments that caused changes in polyamine content generally did not influence wound-induced accumulation of SPP. Such lack of correlation was found for inhibitors involved in metabolism and oxidation of putrescine (arginine decarboxylase, ornithine decarboxylase, and diamine oxidase). However, accumulation of SPP was dramatically reduced by treatment with guazatine, a potent inhibitor of polyamine oxidase (PAO), and methylglyoxal-bis(guanylhydrazone), a putative inhibitor of S-adenosylmethione decarboxylase which may also cross-react to inhibit PAO. The mode of action of these inhibitors is presumed to be blockage of essential H2O2 production within the WH cell wall. These results are of great importance in understanding the mechanisms modulating WH and ultimately controlling related infections and associated postharvest losses.


Asunto(s)
Diaminas/antagonistas & inhibidores , Lípidos/biosíntesis , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/metabolismo , Poliaminas/antagonistas & inhibidores , Solanum tuberosum/metabolismo , Carboxiliasas/metabolismo , Diaminas/metabolismo , Guanidinas/metabolismo , Mitoguazona/metabolismo , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Poliaminas/metabolismo , Putrescina/metabolismo , Solanum tuberosum/enzimología , Poliamino Oxidasa
6.
Med Sci Monit ; 25: 9103-9111, 2019 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-31785094

RESUMEN

BACKGROUND In this study, we investigated the clinical and pathological features of patients with lipid storage myopathy (LSM) complicated with hyperuricemia, to improve clinicians' understanding of metabolic multi-muscular disorder with metabolic disorders, and to reduce the risk of missed diagnosis of LSM. MATERIAL AND METHODS From January 2005 to December 2017, 8 patients underwent muscle biopsy and diagnosed by muscle pathology and genetic testing in our hospital. All 8 patients were in compliance with LSM diagnosis. We collected data on the patient's clinical performance, adjuvant examination, treatment, and outcomes to provide a comprehensive report and description of LSM patients with hyperuricemia. RESULTS All patients were diagnosed as having ETFDH gene mutations. The main clinical manifestations of patients were chronic limb and trunk weakness, limb numbness, and muscle pain. The serum creatine kinase (CK) values in all patients were higher than normal values. Electromyography showed 3 cases of simple myogenic damage and 3 cases of neurogenic injury. Hematuria metabolic screening showed that 2 patients had elevated glutaric aciduria, and 1 patient had elevated fatty acyl carnitine in the blood. All patients were given riboflavin treatment, and the clinical symptoms were significantly improved, and 3 patients returned to normal uric acid levels after treatment. Pathological staining showed an abnormal deposition of lipid droplets in muscle fibers. CONCLUSIONS If an adolescent hyperuricemia patient has abnormal limb weakness, exercise intolerance, and elevated serum CK values, clinicians need to be highly alert to the possibility of LSM. Early diagnosis and treatment of LSM should improve the clinical symptoms and quality of life and reduce complications.


Asunto(s)
Hiperuricemia/fisiopatología , Errores Innatos del Metabolismo Lipídico/genética , Errores Innatos del Metabolismo Lipídico/fisiopatología , Distrofias Musculares/genética , Distrofias Musculares/fisiopatología , Adolescente , Adulto , Carnitina/análogos & derivados , Carnitina/metabolismo , Niño , China , Flavoproteínas Transportadoras de Electrones/genética , Flavoproteínas Transportadoras de Electrones/metabolismo , Femenino , Humanos , Hiperuricemia/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Errores Innatos del Metabolismo Lipídico/metabolismo , Masculino , Debilidad Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Enfermedades Musculares/genética , Distrofias Musculares/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Calidad de Vida , Riboflavina/metabolismo , Adulto Joven
7.
J Sci Food Agric ; 99(8): 4082-4093, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30761554

RESUMEN

BACKGROUND: Selenium (Se)-induced phytotoxicity has been linked to oxidative injury triggered by the accumulation of reactive oxygen species (ROS) due to the disturbance of anti-oxidative systems. However, the way Se stress induces hydrogen peroxide (H2 O2 ) production in plants is a long-standing question. Here we identified the role of polyamine oxidase (PAO) in H2 O2 production in the root of Brassica rapa upon Se stress. RESULTS: Studying Se-induced growth inhibition, H2 O2 accumulation, and oxidative injury in the root of Brassica rapa, we found that excessive Se exposure resulted in a remarkable increase in PAO activity. Inhibition of PAO activity led to decreased H2 O2 content and alleviated oxidative injury in the Se-treated root. These results indicated that Se stress induced PAO-dependent H2 O2 production. A total of six BrPAO family members were discovered in the genome of B. rapa by in silico analysis. Se stress pronouncedly upregulated the expression of most BrPAOs and further transient expression analysis proved that it could lead to H2 O2 production. CONCLUSION: These results suggest that Se stress upregulates the expression of a set of BrPAOs which further enhances PAO activity, contributing to H2 O2 generation in roots. © 2019 Society of Chemical Industry.


Asunto(s)
Brassica rapa/genética , Peróxido de Hidrógeno/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Proteínas de Plantas/metabolismo , Selenio/metabolismo , Brassica rapa/enzimología , Brassica rapa/crecimiento & desarrollo , Brassica rapa/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Oxidativo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Proteínas de Plantas/genética , Especies Reactivas de Oxígeno/metabolismo , Poliamino Oxidasa
8.
Lipids Health Dis ; 17(1): 254, 2018 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-30424791

RESUMEN

BACKGROUND: Deficiency of electron transfer flavoprotein dehydrogenase (ETFDH) is associated with multiple acyl-CoA dehydrogenase deficiency (MADD). This disorder is an autosomal recessive lipid storage myopathy (LSM) that exhibits a wide range of clinical features, including myopathy, weakness and multisystem dysfunctions. Many patients with late onset of MADD improve when treated with riboflavin and are also referred to as RR-MADD (riboflavin-responsive multiple Acyl-CoA dehydrogenase disorder). METHODS: In this study, we report the clinical and genetic characterization of a novel RR-MADD patient. Biochemical data were obtained from analysis of muscle and plasma samples. DNA and RNA were extracted from peripheral blood, and sequence analysis and expression study of ETFDH gene were performed. Finally, the impact of mutations on ETFDH folding was evaluated using bioinformatic tools. RESULTS: Patient initially presented with vomiting, muscle weakness, and acidosis. Muscle biopsy revealed typical myopathological patterns of lipid storage myopathy and blood acylcarnitine profiles showed a combined elevation of long and medium chain acylcarnitines, supporting the diagnosis of RR-MADD. Molecular analysis of ETFDH gene revealed two heterozygous mutations, a novel splice variation in intron 10, c.1285 + 1G > A, and the previously reported c.560C > T missense mutation. RT-PCR analysis showed an alteration of ETFDH RNA splicing which in turn should lead to the production of a truncated protein. The in silico prediction analysis of ETFDH tridimensional structure demonstrated that the missense mutation resulted in instability and loss of protein activation, while the splice site variation induced a dramatic conformational change of the truncated protein. After MCT diet supplemented with carnitine and riboflavin, the patient showed significant biochemical and clinical improvement, in spite of severe molecular defect. CONCLUSION: This case report extends the spectrum of ETFDH mutations in MADD, providing further evidence that patients presenting at least one missense mutation in the FAD-binding domain may respond to either carnitine or riboflavin treatment, due to the recovery of some enzymatic activity.


Asunto(s)
Flavoproteínas Transportadoras de Electrones/genética , Proteínas Hierro-Azufre/genética , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/genética , Mutación , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Carnitina/uso terapéutico , Simulación por Computador , Análisis Mutacional de ADN , Quimioterapia Combinada , Flavoproteínas Transportadoras de Electrones/metabolismo , Femenino , Humanos , Proteínas Hierro-Azufre/metabolismo , Persona de Mediana Edad , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/tratamiento farmacológico , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/enzimología , Músculo Esquelético/enzimología , Mutación Missense , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Conformación Proteica , Riboflavina/uso terapéutico
9.
Free Radic Res ; 52(11-12): 1445-1455, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30003820

RESUMEN

Multiple acyl-CoA dehydrogenase deficiency (MADD), an autosomal recessive metabolic disorder of fatty acid metabolism, is mostly caused by mutations in the ETFA, ETFB or ETFDH genes that result in dysfunctions in electron transfer flavoprotein (ETF) or electron transfer flavoprotein-ubiquinone dehydrogenase (ETFDH). In ß-oxidation, fatty acids are processed to generate acyl-CoA, which is oxidised by flavin adenine dinucleotide and transfers an electron to ETF and, through ETFDH, to mitochondrial respiratory complex III to trigger ATP synthesis. Coenzyme Q10 (CoQ10) is believed to be a potential treatment that produces symptom relief in some MADD patients. CoQ10 acts as a key regulator linking ETFDH and mitochondrial respiratory complex III. Our aim is to investigate the effectiveness of CoQ10 in serving in the ETF/ETFDH system to improve mitochondrial function and to reduce lipotoxicity. In this study, we used lymphoblastoid cells with an ETFDH mutation from MADD patients. ETFDH dysfunction caused insufficient ß-oxidation, leading to increasing lipid droplet and lipid peroxide accumulation. In contrast, supplementation with CoQ10 significantly recovered mitochondrial function and concurrently decreased the generation of reactive oxygen species and lipid peroxides, inhibited the accumulation of lipid droplets and the formation of the NOD-like receptor family pyrin domain-containing three (NLRP3) inflammasome, and reduced interleukin-1ß release and cell death. These results clarify the causal role of CoQ10 in coupling the electron transport chain with ß-oxidation, which may promote the development of CoQ10-directed therapies for MADD patients.


Asunto(s)
Ácidos Grasos/metabolismo , Inflamasomas/antagonistas & inhibidores , Mitocondrias/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Fosforilación Oxidativa/efectos de los fármacos , Ubiquinona/análogos & derivados , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Flavoproteínas Transportadoras de Electrones/deficiencia , Flavoproteínas Transportadoras de Electrones/genética , Flavoproteínas Transportadoras de Electrones/metabolismo , Humanos , Inflamasomas/metabolismo , Proteínas Hierro-Azufre/deficiencia , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Gotas Lipídicas/efectos de los fármacos , Gotas Lipídicas/metabolismo , Mitocondrias/metabolismo , Mutación , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Oxidación-Reducción/efectos de los fármacos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/deficiencia , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Ubiquinona/administración & dosificación , Ubiquinona/metabolismo , Ubiquinona/farmacología
10.
Methods Mol Biol ; 1694: 141-147, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29080164

RESUMEN

Diamine and polyamine catabolism controls plant development, resistance to pathogens and stress responses. Diamine and polyamine oxidases control the catabolism of diamines and polyamines, respectively. Two major routes of di-/polyamine catabolism exist: the terminal and the interconverting. The in vitro activity of each route is assayed by the colorimetric or chemiluminescent determination of hydrogen peroxide produced by oxidation of di-/polyamine substrates. However, these assays fail to estimate activity of individual di-/polyamine oxidase isoenzymes. Herein, I describe an assay for the simultaneous in-gel determination of terminal and interconverting di-/polyamine oxidase isoenzyme activities.


Asunto(s)
Pruebas de Enzimas , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Plantas/enzimología , Espermidina/química , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Técnicas In Vitro , Extractos Vegetales/química , Poliamino Oxidasa
11.
Protoplasma ; 254(1): 379-388, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26945990

RESUMEN

Hyperhydricity is a physiological disorder associated with oxidative stress. Reactive oxygen species (ROS) generation in plants is initiated by various enzymatic sources, including plasma membrane-localized nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, cell wall-bound peroxidase (POD), and apoplastic polyamine oxidase (PAO). The origin of the oxidative burst associated with hyperhydricity remains unknown. To investigate the role of NADPH oxidases, POD, and PAO in ROS production and hyperhydricity, exogenous hydrogen peroxide (H2O2) and inhibitors of each ROS-producing enzyme were applied to explore the mechanism of oxidative stress induction in garlic plantlets in vitro. A concentration of 1.5 mM H2O2 increased endogenous ROS production and hyperhydricity occurrence and enhanced the activities of NADPH oxidases, POD, and PAO. During the entire treatment period, NADPH oxidase activity increased continuously, whereas POD and PAO activities exhibited a transient increase and subsequently declined. Histochemical and cytochemical visualization demonstrated that specific inhibitors of each enzyme effectively suppressed ROS accumulation. Moreover, superoxide anion generation, H2O2 content, and hyperhydric shoot frequency in H2O2-stressed plantlets decreased significantly. The NADPH oxidase inhibitor was the most effective at suppressing superoxide anion production. The results suggested that NADPH oxidases, POD, and PAO were responsible for endogenous ROS induction. NADPH oxidase activation might play a pivotal role in the oxidative burst in garlic plantlets in vitro during hyperhydricity.


Asunto(s)
Ajo/enzimología , Ajo/fisiología , NADPH Oxidasas/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Membrana Celular/metabolismo , Pared Celular/metabolismo , Peróxido de Hidrógeno/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Peroxidasas/metabolismo , Hojas de la Planta/metabolismo , Brotes de la Planta/metabolismo , Superóxidos/metabolismo , Poliamino Oxidasa
12.
Ukr Biochem J ; 88(1): 79-87, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-29227084

RESUMEN

In this study we have tested an idea on the important role of amine oxidases (semicarbazide-sensitive amine oxidase, diamine oxidase, polyamine oxidase) as an additional source of oxidative/carbonyl stress under glycerol-induced rhabdomyolysis, since the enhanced formation of reactive oxygen species and reactive carbonyl species in a variety of tissues is linked to various diseases. In our experiments we used the sensitive fluorescent method devised for estimation of amine oxidases activity in the rat kidney and thymus as targeted organs under rhabdomyolysis. We have found in vivo the multiple rises in activity of semicarbazide-sensitive amine oxidase, diamine oxidase, polyamine oxidase (2-4.5 times) in the corresponding cell fractions, whole cells or their lysates at the 3-6th day after glycerol injection. Aberrant antioxidant activities depended on rhabdomyolysis stage and had organ specificity. Additional treatment of animals with metal chelator 'Unithiol' adjusted only the activity of antioxidant enzymes but not amine oxidases in both organs. Furthermore the in vitro experiment showed that Fenton reaction (hydrogen peroxide in the presence of iron) products alone had no effect on semicarbazide-sensitive amine oxidase activity in rat liver cell fraction whereas supplementation with methylglyoxal resulted in its significant 2.5-fold enhancement. Combined action of the both agents had additive effect on semicarbazide-sensitive amine oxidase activity. We can assume that biogenic amine and polyamine catabolism by amine oxidases is upregulated by oxidative and carbonyl stress factors directly under rhabdomyolysis progression, and the increase in catabolic products concentration contributes to tissue damage in glycerol-induced acute renal failure and apoptosis stimulation in thymus.


Asunto(s)
Amina Oxidasa (conteniendo Cobre)/metabolismo , Monoaminooxidasa/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Rabdomiólisis/enzimología , Animales , Quelantes/farmacología , Glicerol , Hepatocitos/efectos de los fármacos , Hepatocitos/enzimología , Hepatocitos/patología , Peróxido de Hidrógeno/antagonistas & inhibidores , Peróxido de Hidrógeno/farmacología , Riñón/efectos de los fármacos , Riñón/enzimología , Riñón/patología , Hígado/efectos de los fármacos , Hígado/enzimología , Hígado/patología , Masculino , Especificidad de Órganos , Oxidación-Reducción , Carbonilación Proteica , Piruvaldehído/antagonistas & inhibidores , Piruvaldehído/farmacología , Ratas , Ratas Wistar , Rabdomiólisis/inducido químicamente , Rabdomiólisis/tratamiento farmacológico , Rabdomiólisis/patología , Semicarbacidas/antagonistas & inhibidores , Semicarbacidas/farmacología , Timo/efectos de los fármacos , Timo/enzimología , Timo/patología , Unitiol/farmacología , Poliamino Oxidasa
13.
J Plant Physiol ; 176: 89-95, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25577734

RESUMEN

Tuber wound-healing processes are complex, and the associated regulation and modulation of these processes are poorly understood. Polyamines (PA) are involved in modulating a variety of responses to biotic and abiotic plant stresses and have been suggested to be involved in tuber wound responses. However, the time course of wound-induced changes in tuber PA content, activity of key biosynthetic enzymes and associated gene expression has not been determined and coordinated with major wound-healing processes. The objective of this study was to determine these wound-induced changes and their coordination with wound-healing processes. Wounding induced increases in putrescine (Put) and spermidine (Spd), but had only minor effects on spermine (Spm) content during the 168 h time course which encompassed the initiation and completion of the closing layer formation, and the initiation of cell division and wound periderm formation. As determinants of the first committed step in PA biosynthesis, arginine and ornithine decarboxylase (ADC and ODC, respectively) activities were below levels of detectability in resting tubers and expression of genes encoding these two enzymes was low. Within 6h of wounding, increases in the in vitro activities of ADC and ODC and expression of their cognate genes were observed. Expression of a gene encoding S-adenosylmethionine decarboxylase, required for Spd and Spm biosynthesis, was also increased 6h after wounding and remained elevated throughout the time course. Expression of a polyamine catabolic gene, encoding polyamine oxidase, was down-regulated after wounding. Results indicated a rapid wound-induced increase in PA biosynthesis during closing layer formation and the time of nuclei entry and exit from S-phase. PA content remained elevated as wound-induced cells became meristematic and initiated formation of the wound periderm suggesting sustained involvement in wound-healing.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Redes y Vías Metabólicas/genética , Tubérculos de la Planta/enzimología , Tubérculos de la Planta/genética , Poliaminas/metabolismo , Solanum tuberosum/enzimología , Solanum tuberosum/genética , Carboxiliasas/metabolismo , Genes de Plantas , Ornitina Descarboxilasa/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Poliamino Oxidasa
14.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 31(4): 428-32, 2014 Aug.
Artículo en Chino | MEDLINE | ID: mdl-25119904

RESUMEN

OBJECTIVE: To identify pathogenic mutation in a boy affected with riboflavin responsive-multiple acyl-CoA dehydrogenase deficiency (RR-MADD). METHODS: The patient was initially diagnosed as primary carnitine deficiency (PCD) and has been treated with carnitine supplementation for 7 years. Clinical manifestations and characteristics of fibula muscle specimen were analyzed. Potential mutation in electron transfer flavoprotein dehydrogenase (ETFDH) gene (for the patient and his parents) and carnitine transfer protein gene (SLC22A5) (for the patient) was screened. RESULTS: Electronic microscopy of the muscle specimen has suggested lipid storage myopathy. Mutation analysis has found that the patient carried compound heterozygous mutations, c.250G>A and c.380T>C, in exon 3 of the ETFDH gene, whilst his father and mother were heterozygous for the c.380T>C and c.250G>A mutations, respectively. Screening of the SLC22A5 gene has yielded no clinically meaningful result. After the establishment of diagnosis of RR-MADD, the condition of the patient has improved greatly with supplementation of high doses of riboflavin along with continuous carnitine supplement. CONCLUSION: The c.250G>A (p.Ala84Thr) mutation of exon 3 of the ETFDH gene has been a hot spot in Southern Chinese population, whilst the c.380T>C (p.Leu127Pro) is rarely reported. Our case has suggested that therapeutic diagnosis cannot substitute genetic testing. The mechanism for having stabilized the patient with only carnitine supplementation for 7 years needs further investigation.


Asunto(s)
Flavoproteínas Transportadoras de Electrones/genética , Proteínas Hierro-Azufre/genética , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/genética , Proteínas de Transporte de Catión Orgánico/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Riboflavina/metabolismo , Adolescente , Adulto , Secuencia de Bases , Niño , Análisis Mutacional de ADN , Flavoproteínas Transportadoras de Electrones/metabolismo , Femenino , Humanos , Proteínas Hierro-Azufre/metabolismo , Masculino , Datos de Secuencia Molecular , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/enzimología , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/metabolismo , Músculo Esquelético/metabolismo , Proteínas de Transporte de Catión Orgánico/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Miembro 5 de la Familia 22 de Transportadores de Solutos
15.
ChemMedChem ; 9(5): 940-52, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24616161

RESUMEN

The human enzyme deoxyhypusine synthase (DHS) is an important host cell factor that participates in the post-translational hypusine modification of eukaryotic initiation factor 5A (eIF-5A). Hypusine-modified eIF-5A plays a role in a number of diseases, including HIV infection/AIDS. Thus, DHS represents a novel and attractive drug target. So far, four crystal structures are available, and various substances have been tested for inhibition of human DHS. Among these inhibitors, N-1-guanyl-1,7-diaminoheptane (GC7) has been co-crystallized in the active site of DHS. However, despite its potency, GC7 is not selective enough to be used in drug applications. Therefore, new compounds that target DHS are needed. Herein we report the in silico design, chemical synthesis, and biological evaluation of new DHS inhibitors. One of these inhibitors showed dose-dependent inhibition of DHS in vitro, as well as suppression of HIV replication in cell cultures. Furthermore, the compound exhibited no cytotoxic effects at active concentrations. Thus, this designed compound demonstrated proof of principle and represents a promising starting point for the development of new drug candidates to specifically interfere with DHS activity.


Asunto(s)
Simulación por Computador , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , VIH-1/efectos de los fármacos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , VIH-1/crecimiento & desarrollo , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Relación Estructura-Actividad
16.
Gene ; 537(1): 70-8, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24365592

RESUMEN

Protective effects of exogenous spermidine (Spd), activity of antioxygenic enzymes, and levels of free radicals in a well-known medicinal plant, Panax ginseng was examined. Seedlings grown in salinized nutrient solution (150 mM NaCl) for 7d exhibited reduced relative water content, plant growth, increased free radicals, and showing elevated lipid peroxidation. Application of Spd (0.01, 0.1, and 1mM) to the salinized nutrient solution showed increased plant growth by preventing chlorophyll degradation and increasing PA levels, as well as antioxidant enzymes such as CAT, APX, and GPX activity in the seedlings of ginseng. During salinity stress, Spd was effective for lowering the accumulation of putrescine (Put), with a significant increase in the spermidine (Spd) and spermine (Spm) levels in the ginseng seedlings. A decline in the Put level ran parallel to the higher accumulation of proline (Pro), and exogenous Spd also resulted in the alleviation of Pro content under salinity. Hydrogen peroxide (H2O2) and superoxide (O2(-)) production rates were also reduced in stressed plants after Spd treatment. Furthermore, the combined effect of Spd and salt led to a significant increase in diamine oxidase (DAO), and subsequent decline in polyamine oxidase (PAO). These positive effects were observed in 0.1 and 1mM Spd concentrations, but a lower concentration (0.01 mM) had a very limited effect. In summary, application of exogenous Spd could enhance salt tolerance of P. ginseng by enhancing the activities of enzyme scavenging system, which influence the intensity of oxidative stress.


Asunto(s)
Panax/efectos de los fármacos , Panax/crecimiento & desarrollo , Panax/metabolismo , Plantones/efectos de los fármacos , Espermidina/farmacología , Amina Oxidasa (conteniendo Cobre)/metabolismo , Antioxidantes/metabolismo , Relación Dosis-Respuesta a Droga , Enzimas/metabolismo , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Poliaminas/metabolismo , Prolina/metabolismo , Salinidad , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Espermidina/metabolismo , Espermina/metabolismo , Estrés Fisiológico/efectos de los fármacos , Superóxidos/metabolismo , Poliamino Oxidasa
17.
Hum Mol Genet ; 21(15): 3435-48, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22611163

RESUMEN

Riboflavin-responsive forms of multiple acyl-CoA dehydrogenation deficiency (RR-MADD) have been known for years, but with presumed defects in the formation of the flavin adenine dinucleotide (FAD) co-factor rather than genetic defects of electron transfer flavoprotein (ETF) or electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO). It was only recently established that a number of RR-MADD patients carry genetic defects in ETF-QO and that the well-documented clinical efficacy of riboflavin treatment may be based on a chaperone effect that can compensate for inherited folding defects of ETF-QO. In the present study, we investigate the molecular mechanisms and the genotype-phenotype relationships for the riboflavin responsiveness in MADD, using a human HEK-293 cell expression system. We studied the influence of riboflavin and temperature on the steady-state level and the activity of variant ETF-QO proteins identified in patients with RR-MADD, or non- and partially responsive MADD. Our results showed that variant ETF-QO proteins associated with non- and partially responsive MADD caused severe misfolding of ETF-QO variant proteins when cultured in media with supplemented concentrations of riboflavin. In contrast, variant ETF-QO proteins associated with RR-MADD caused milder folding defects when cultured at the same conditions. Decreased thermal stability of the variants showed that FAD does not completely correct the structural defects induced by the variation. This may cause leakage of electrons and increased reactive oxygen species, as reflected by increased amounts of cellular peroxide production in HEK-293 cells expressing the variant ETF-QO proteins. Finally, we found indications of prolonged association of variant ETF-QO protein with the Hsp60 chaperonin in the mitochondrial matrix, supporting indications of folding defects in the variant ETF-QO proteins.


Asunto(s)
Flavoproteínas Transportadoras de Electrones/genética , Variación Genética , Proteínas Hierro-Azufre/genética , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Riboflavina/metabolismo , Transporte de Electrón , Flavoproteínas Transportadoras de Electrones/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Células HEK293 , Humanos , Proteínas Hierro-Azufre/metabolismo , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/metabolismo , Mutación , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Pliegue de Proteína , Estructura Terciaria de Proteína , Transfección
18.
Free Radic Biol Med ; 51(6): 1221-34, 2011 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-21466848

RESUMEN

Salinity reduces Ca(2+) availability, transport, and mobility to growing regions of the plant and supplemental Ca(2+) is known to reduce salinity damages. This study was undertaken to unravel some of the ameliorative mechanisms of Ca(2+) on salt stress at the cellular and tissue levels. Zea mays L. plants were grown in nutrient solution containing 1 or 80 mM NaCl with various Ca(2+) levels. Measurements of growth and physiological parameters, such as ion imbalance, indicated that the Ca(2+)-induced alleviation mechanisms differed between plant organs. Under salinity, H(2)O(2) levels increased in the leaf-growing tissue with increasing levels of supplemental Ca(2+) and reached the levels of control plants, whereas superoxide levels remained low at all Ca(2+) levels, indicating that Ca(2+) affected growth by increasing H(2)O(2) but not superoxide levels. Salinity completely abolished apoplastic peroxidase activity. Supplemental Ca(2+) increased its activity only slightly. However, under salinity, polyamine oxidase (PAO) activity was shifted toward the leaf base probably as an adaptive mechanism aimed at restoring normal levels of reactive oxygen species (ROS) at the expansion zone where NADPH oxidase could no longer provide the required ROS for growth. Interestingly, addition of Ca(2+) shifted the PAO-activity peak back to its original location in addition to its enhancement. The increase in PAO activity in conjunction with low levels of apoplastic peroxidase is supportive of cellular growth via nonenzymatic wall loosening derived by the increase in H(2)O(2) and less supportive of the peroxidase-mediated cross-linking of wall material. Thus extracellular Ca(2+) can modulate ROS levels at specific tissue localization and developmental stages thereby affecting cellular extension.


Asunto(s)
Calcio/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Salinidad , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Peroxidasa/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo , Zea mays , Poliamino Oxidasa
19.
Plant J ; 63(6): 1042-53, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20626657

RESUMEN

Spermidine (Spd) has been correlated with various physiological and developmental processes in plants, including pollen tube growth. In this work, we show that Spd induces an increase in the cytosolic Ca(2+) concentration that accompanies pollen tube growth. Using the whole-cell patch clamp and outside-out single-channel patch clamp configurations, we show that exogenous Spd induces a hyperpolarization-activated Ca(2+) current: the addition of Spd cannot induce the channel open probability increase in excised outside-out patches, indicating that the effect of Spd in the induction of Ca(2+) currents is exerted via a second messenger. This messenger is hydrogen peroxide (H2O2), and is generated during Spd oxidation, a reaction mediated by polyamine oxidase (PAO). These reactive oxygen species trigger the opening of the hyperpolarization-activated Ca(2+) -permeable channels in pollen. To provide further evidence that PAO is in fact responsible for the effect of Spd on the Ca(2+) -permeable channels, two Arabidopsis mutants lacking expression of the peroxisomal-encoding AtPAO3 gene, were isolated and characterized. Pollen from these mutants was unable to induce the opening of the Ca(2+) -permeable channels in the presence of Spd, resulting in reduced pollen tube growth and seed number. However, a high Spd concentration triggers a Ca(2+) influx beyond the optimal, which has a deleterious effect. These findings strongly suggest that the Spd-derived H2O2 signals Ca(2+) influx, thereby regulating pollen tube growth.


Asunto(s)
Canales de Calcio/metabolismo , Membrana Celular/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Peróxido de Hidrógeno/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Tubo Polínico/metabolismo , Polen/metabolismo , Canales de Potasio/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Microscopía Fluorescente , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Técnicas de Placa-Clamp , Tubo Polínico/crecimiento & desarrollo , Espermidina/metabolismo , Poliamino Oxidasa
20.
J Biol Chem ; 285(8): 5748-58, 2010 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-20032466

RESUMEN

Oxidative stress in skeletal muscle is a hallmark of various pathophysiologic states that also feature increased reliance on long-chain fatty acid (LCFA) substrate, such as insulin resistance and exercise. However, little is known about the mechanistic basis of the LCFA-induced reactive oxygen species (ROS) burden in intact mitochondria, and elucidation of this mechanistic basis was the goal of this study. Specific aims were to determine the extent to which LCFA catabolism is associated with ROS production and to gain mechanistic insights into the associated ROS production. Because intermediates and by-products of LCFA catabolism may interfere with antioxidant mechanisms, we predicted that ROS formation during LCFA catabolism reflects a complex process involving multiple sites of ROS production as well as modified mitochondrial function. Thus, we utilized several complementary approaches to probe the underlying mechanism(s). Using skeletal muscle mitochondria, our findings indicate that even a low supply of LCFA is associated with ROS formation in excess of that generated by NADH-linked substrates. Moreover, ROS production was evident across the physiologic range of membrane potential and was relatively insensitive to membrane potential changes. Determinations of topology and membrane potential as well as use of inhibitors revealed complex III and the electron transfer flavoprotein (ETF) and ETF-oxidoreductase, as likely sites of ROS production. Finally, ROS production was sensitive to matrix levels of LCFA catabolic intermediates, indicating that mitochondrial export of LCFA catabolic intermediates can play a role in determining ROS levels.


Asunto(s)
Complejo III de Transporte de Electrones/metabolismo , Flavoproteínas Transportadoras de Electrones/metabolismo , Ácidos Grasos/metabolismo , Peróxido de Hidrógeno/metabolismo , Proteínas Hierro-Azufre/metabolismo , Mitocondrias Hepáticas/metabolismo , Mitocondrias Musculares/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Animales , Transporte de Electrón/fisiología , Masculino , Potencial de la Membrana Mitocondrial/fisiología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA