Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genes (Basel) ; 13(10)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36292625

RESUMEN

This study aimed to apply transcriptomics to determine how Molor-Dabos-4 (MD-4) protects healthy rats against indomethacin (IND)-induced gastric ulcers and to identify the mechanism behind this protective effect. Rats were pretreated with MD-4 (0.3, 1.5, or 3 g/kg per day) for 21 days before inducing gastric ulcers by oral administration with indomethacin (30 mg/kg). Unulcerated and untreated healthy rats were used as controls. Effects of the treatment were assessed based on the ulcer index, histological and pathological examinations, and indicators of inflammation, which were determined by enzyme-linked immunosorbent assay. Transcriptomic analysis was performed for identifying potential pharmacological mechanisms. Eventually, after identifying potential target genes, the latter were validated by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). After pretreatment with MD-4, gastric ulcers, along with other histopathological features, were reduced. MD-4 significantly (p < 0.05) increased the superoxide dismutase (SOD) levels in ulcers and reduced pepsin, TNF-α, and IL-6 levels. RNA-seq analysis identified a number of target genes on which MD-4 could potentially act. Many of these genes were involved in pathways that were linked to anti-inflammatory and antioxidant responses, and other protective mechanisms for the gastric mucosa. qRT-PCR showed that altered expression of the selected genes, such as Srm, Ryr-1, Eno3, Prkag3, and Eef1a2, was consistent with the transcriptome results. MD-4 exerts protective effects against IND-induced gastric ulcers by reducing inflammatory cytokines and pepsin and increasing the expression of SOD levels. Downregulation of Srm, Ryr-1, Eno3, Prkag3, and Eef1a2 genes involved in regulating arginine and proline metabolism, calcium signaling pathway, HIF-1 signaling pathway, oxytocin signaling pathway, and legionellosis are possibly involved in MD-4-mediated protection against gastric ulcers.


Asunto(s)
Úlcera Gástrica , Ratas , Animales , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/tratamiento farmacológico , Úlcera Gástrica/genética , Indometacina/efectos adversos , Antioxidantes/farmacología , Factor de Necrosis Tumoral alfa/genética , Medicina Tradicional Mongoliana , RNA-Seq , Pepsina A/efectos adversos , Oxitocina/genética , Interleucina-6/genética , Superóxido Dismutasa , Citocinas/genética , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Arginina , Prolina
2.
PLoS One ; 17(2): e0263632, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35192674

RESUMEN

Adults of many species will care for young offspring that are not their own, a phenomenon called alloparenting. However, in many cases, nonparental adults must be sensitized by repeated or extended exposures to newborns before they will robustly display parental-like behaviors. To capture neurogenomic events underlying the transition to active parental caring behaviors, we analyzed brain gene expression and chromatin profiles of virgin female mice co-housed with pregnant dams during pregnancy and after birth. After an initial display of antagonistic behaviors and a surge of defense-related gene expression, we observed a dramatic shift in the chromatin landscape specifically in amygdala of the pup-exposed virgin females compared to females co-housed with mother before birth, accompanied by a dampening of anxiety-related gene expression. This epigenetic shift coincided with hypothalamic expression of the oxytocin gene and the emergence of behaviors and gene expression patterns classically associated with maternal care. The results outline a neurogenomic program associated with dramatic behavioral changes and suggest molecular networks relevant to human postpartum mental health.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Conducta Animal/fisiología , Epigénesis Genética , Conducta Materna/fisiología , Proteínas del Tejido Nervioso/genética , Oxitocina/genética , Animales , Animales Recién Nacidos , Ansiedad/psicología , Cromatina/química , Cromatina/metabolismo , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Hipotálamo/metabolismo , Conducta Materna/psicología , Ratones , Proteínas del Tejido Nervioso/clasificación , Proteínas del Tejido Nervioso/metabolismo , Oxitocina/metabolismo , Embarazo , Abstinencia Sexual
3.
Handb Clin Neurol ; 182: 389-400, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34266607

RESUMEN

This chapter covers the phenomenon of Internet use disorders (IUDs) and putative associations with different neurotransmitter and neuropeptide systems. Genes coding for such messengers can be seen as an important starting point in the complicated quest to understand human behavior including new phenomena such as IUDs. Therefore, a special focus of this chapter will lie on individual differences in molecular genetic underpinnings of neurotransmitter and neuropeptide systems and their associations with individual differences in tendencies towards IUDs. By shedding light on these associations, putative predisposing molecular genetic factors for the emergence and maintenance of IUDs can be carved out. Therefore, first an introduction to IUDs and a model that can guide research on putative associations of IUDs with different specific neurotransmitters and neuropeptides will be presented. Subsequently, twin studies on the heritability of IUDs are reviewed. Finally, studies on differences in molecular genetic predispositions and their associations with differences in IUDs will be presented and discussed, including targets related to the dopaminergic and serotonergic system as well as the hypothalamic neuropeptide oxytocin. The chapter closes with a conclusion about what is already known and what needs to be investigated in future studies to gain further insights into putative associations between molecular genetic markers and IUDs.


Asunto(s)
Trastorno de Adicción a Internet , Neuropéptidos , Oxitocina , Humanos , Hipotálamo/metabolismo , Trastorno de Adicción a Internet/genética , Uso de Internet , Neuropéptidos/genética , Neuropéptidos/metabolismo , Neurotransmisores , Oxitocina/genética
4.
J Neuroendocrinol ; 33(7): e12975, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33942400

RESUMEN

The Wistar audiogenic rat (WAR) strain is used as an animal model of epilepsy, which when submitted to acute acoustic stimulus presents tonic-clonic seizures, mainly dependent on brainstem (mesencephalic) structures. However, when WARs are exposed to chronic acoustic stimuli (audiogenic kindling-AK), they usually present tonic-clonic seizures, followed by limbic seizures, after recruitment of forebrain structures such as the cortex, hippocampus and amygdala. Although some studies have reported that hypothalamic-hypophysis function is also altered in WAR through modulating vasopressin (AVP) and oxytocin (OXT) secretion, the role of these neuropeptides in epilepsy still is controversial. We analyzed the impact of AK and consequent activation of mesencephalic neurocircuits and the recruitment of forebrain limbic (LiR) sites on the hypothalamic-neurohypophysial system and expression of Avpr1a and Oxtr in these structures. At the end of the AK protocol, nine out of 18 WARs presented LiR. Increases in both plasma vasopressin and oxytocin levels were observed in WAR when compared to Wistar rats. These results were correlated with an increase in the expressions of heteronuclear (hn) and messenger (m) RNA for Oxt in the paraventricular nucleus (PVN) in WARs submitted to AK that presented LiR. In the paraventricular nucleus, the hnAvp and mAvp expressions increased in WARs with and without LiR, respectively. There were no significant differences in Avp and Oxt expression in supraoptic nuclei (SON). Also, there was a reduction in the Avpr1a expression in the central nucleus of the amygdala and frontal lobe in the WAR strain. In the inferior colliculus, Avpr1a expression was lower in WARs after AK, especially those without LiR. Our results indicate that both AK and LiR in WARs lead to changes in the hypothalamic-neurohypophysial system and its receptors, providing a new molecular basis to better understaind epilepsy.


Asunto(s)
Epilepsia Refleja , Hipotálamo/metabolismo , Excitación Neurológica/fisiología , Sistemas Neurosecretores/metabolismo , Neurohipófisis/metabolismo , Estimulación Acústica , Animales , Modelos Animales de Enfermedad , Epilepsia Refleja/genética , Epilepsia Refleja/metabolismo , Epilepsia Refleja/patología , Epilepsia Refleja/fisiopatología , Regulación de la Expresión Génica , Hipocampo/metabolismo , Hipocampo/patología , Hipocampo/fisiopatología , Hipotálamo/patología , Hipotálamo/fisiopatología , Excitación Neurológica/patología , Masculino , Sistemas Neurosecretores/patología , Sistemas Neurosecretores/fisiopatología , Oxitocina/sangre , Oxitocina/genética , Oxitocina/metabolismo , Neurohipófisis/patología , Neurohipófisis/fisiopatología , Ratas , Ratas Wistar , Convulsiones/genética , Convulsiones/metabolismo , Convulsiones/fisiopatología , Convulsiones/psicología , Vasopresinas/sangre , Vasopresinas/genética , Vasopresinas/metabolismo
5.
Int J Mol Sci ; 22(8)2021 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-33920546

RESUMEN

Xenobiotic exposure during pregnancy and lactation has been linked to perinatal changes in male reproductive outcomes and other endocrine parameters. This pilot study wished to assess whether brief maternal exposure of rats to xenobiotics dibutyl phthalate (DBP) or diethylstilbestrol (DES) might also cause long-term changes in hypothalamic gene expression or in reproductive behavior of the resulting offspring. Time-mated female Sprague Dawley rats were given either DBP (500 mg/kg body weight, every second day from GD14.5 to PND6), DES (125 µg/kg body weight at GD14.5 and GD16.5 only), or vehicle (n = 8-12 per group) and mild endocrine disruption was confirmed by monitoring postnatal anogenital distance. Hypothalamic RNA from male and female offspring at PND10, PND24 and PND90 was analyzed by qRT-PCR for expression of aromatase, oxytocin, vasopressin, ER-alpha, ER-beta, kisspeptin, and GnRH genes. Reproductive behavior was monitored in male and female offspring from PND60 to PND90. Particularly, DES treatment led to significant changes in hypothalamic gene expression, which for the oxytocin gene was still evident at PND90, as well as in sexual behavior. In conclusion, maternal xenobiotic exposure may not only alter endocrine systems in offspring but, by impacting on brain development at a critical time, can have long-term effects on male or female sexual behavior.


Asunto(s)
Dibutil Ftalato/toxicidad , Dietilestilbestrol/toxicidad , Estrógenos no Esteroides/farmacología , Hipotálamo/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/metabolismo , Conducta Sexual Animal , Animales , Aromatasa/genética , Aromatasa/metabolismo , Femenino , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Masculino , Oxitocina/genética , Oxitocina/metabolismo , Plastificantes/toxicidad , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Ratas , Ratas Sprague-Dawley , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Transcriptoma , Vasopresinas/genética , Vasopresinas/metabolismo
7.
Physiol Rep ; 8(17): e14558, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32914562

RESUMEN

We generated a transgenic rat line that expresses oxytocin (OXT)-monomeric red fluorescent protein 1 (mRFP1) fusion gene to visualize the dynamics of OXT. In this transgenic rat line, hypothalamic OXT can be assessed under diverse physiological and pathophysiological conditions by semiquantitative fluorometry of mRFP1 fluorescence intensity as a surrogate marker for endogenous OXT. Using this transgenic rat line, we identified the changes in hypothalamic OXT synthesis under various physiological conditions. However, few reports have directly examined hypothalamic OXT synthesis under hyperosmolality or hypovolemia. In this study, hypothalamic OXT synthesis was investigated using the transgenic rat line after acute osmotic challenge and acute hypovolemia induced by intraperitoneal (i.p.) administration of 3% hypertonic saline (HTN) and polyethylene glycol (PEG), respectively. The mRFP1 fluorescence intensity in the paraventricular (PVN) and supraoptic nuclei (SON) was significantly increased after i.p. administration of HTN and PEG, along with robust Fos-like immunoreactivity (co-expression). Fos expression showed neuronal activation in the brain regions that are associated with the hypothalamus and/or are involved in maintaining water and electrolyte homeostasis in HTN- and PEG-treated rats. OXT and mRFP1 gene expressions were dramatically increased after HTN and PEG administration. The plasma OXT level was extremely increased after HTN and PEG administration. Acute osmotic challenge and acute hypovolemia induced upregulation of hypothalamic OXT in the PVN and SON. These results suggest that not only endogenous arginine vasopressin (AVP) but also endogenous OXT has a key role in maintaining body fluid homeostasis to cope with hyperosmolality and hypovolemia.


Asunto(s)
Hipotálamo/metabolismo , Hipovolemia/metabolismo , Presión Osmótica , Oxitocina/genética , Animales , Hipovolemia/fisiopatología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Osmorregulación , Oxitocina/metabolismo , Ratas , Transgenes , Regulación hacia Arriba , Proteína Fluorescente Roja
8.
J Neuroendocrinol ; 32(8): e12892, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32761684

RESUMEN

Osteoarthritis (OA) causes chronic joint pain and significantly impacts daily activities. Hence, developing novel treatment options for OA has become an increasingly important area of research. Recently, studies have reported that exogenous, as well as endogenous, hypothalamic-neurohypophysial hormones, oxytocin (OXT) and arginine-vasopressin (AVP), significantly contribute to nociception modulation. Moreover, the parvocellular OXT neurone (parvOXT) extends its projection to the superficial spinal dorsal horn, where it controls the transmission of nociceptive signals. Meanwhile, AVP produced in the magnocellular AVP neurone (magnAVP) is released into the systemic circulation where it contributes to pain management at peripheral sites. The parvocellular AVP neurone (parvAVP), as well as corticotrophin-releasing hormone (CRH), suppresses inflammation via activation of the hypothalamic-pituitary adrenal (HPA) axis. Previously, we confirmed that the OXT/AVP system is activated in rat models of pain. However, the roles of endogenous hypothalamic-neurohypophysial hormones in OA have not yet been characterised. In the present study, we investigated whether the OXT/AVP system is activated in a knee OA rat model. Our results show that putative parvOXT is activated and the amount of OXT-monomeric red fluorescent protein 1 positive granules in the ipsilateral superficial spinal dorsal horn increases in the knee OA rat. Furthermore, both magnAVP and parvAVP are activated, concurrent with HPA axis activation, predominantly modulated by AVP, and not CRH. The OXT/AVP system in OA rats was similar to that in systemic inflammation models, including adjuvant arthritis; however, magnocellular OXT neurones (magnOXT) were not activated in OA. Hence, localised chronic pain conditions, such as knee OA, activate the OXT/AVP system without impacting magnOXT.


Asunto(s)
Arginina Vasopresina/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Osteoartritis de la Rodilla/metabolismo , Oxitocina/metabolismo , Animales , Arginina Vasopresina/genética , Artralgia/genética , Artralgia/metabolismo , Artralgia/patología , Modelos Animales de Enfermedad , Hipotálamo/metabolismo , Masculino , Neuronas/metabolismo , Nocicepción/fisiología , Osteoartritis de la Rodilla/genética , Osteoartritis de la Rodilla/patología , Oxitocina/genética , Ratas , Ratas Transgénicas , Ratas Wistar
9.
Artículo en Inglés | MEDLINE | ID: mdl-32117068

RESUMEN

Various types of acute/chronic nociceptive stimuli cause neuroendocrine responses such as activation of the hypothalamo-neurohypophysial [oxytocin (OXT) and arginine vasopressin (AVP)] system and hypothalamo-pituitary adrenal (HPA) axis. Chronic multiple-arthritis activates the OXT/AVP system, but the effects of acute mono-arthritis on the OXT/AVP system in the same animals has not been simultaneously evaluated. Further, AVP, not corticotropin-releasing hormone (CRH), predominantly activates the HPA axis in chronic multiple-arthritis, but the participation of AVP in HPA axis activation in acute mono-arthritis remains unknown. Therefore, we aimed to simultaneously evaluate the effects of acute mono-arthritis on the activity of the OXT/AVP system and the HPA axis. In the present study, we used an acute mono-arthritic model induced by intra-articular injection of carrageenan in a single knee joint of adult male Wistar rats. Acute mono-arthritis was confirmed by a significant increase in knee diameter in the carrageenan-injected knee and a significant decrease in the mechanical nociceptive threshold in the ipsilateral hind paw. Immunohistochemical analysis revealed that the number of Fos-immunoreactive (ir) cells in the ipsilateral lamina I-II of the dorsal horn was significantly increased, and the percentage of OXT-ir and AVP-ir neurons expressing Fos-ir in both sides of the supraoptic (SON) and paraventricular nuclei (PVN) was increased in acute mono-arthritic rats. in situ hybridization histochemistry revealed that levels of OXT mRNA and AVP hnRNA in the SON and PVN, CRH mRNA in the PVN, and proopiomelanocortin mRNA in the anterior pituitary were also significantly increased in acute mono-arthritic rats. Further, plasma OXT, AVP, and corticosterone levels were significantly increased in acute mono-arthritic rats. These results suggest that acute mono-arthritis activates ipsilateral nociceptive afferent pathways at the spinal level and causes simultaneous and integrative activation of the OXT/AVP system. In addition, the HPA axis is activated by both AVP and CRH in acute mono-arthritis with a distinct pattern compared to that in chronic multiple-arthritis.


Asunto(s)
Artritis/fisiopatología , Sistema Hipotálamo-Hipofisario/fisiopatología , Sistema Hipófiso-Suprarrenal/fisiopatología , Enfermedad Aguda , Vías Aferentes/fisiología , Animales , Arginina Vasopresina/sangre , Arginina Vasopresina/genética , Artritis/genética , Artritis/metabolismo , Artritis/patología , Hormona Liberadora de Corticotropina/sangre , Hormona Liberadora de Corticotropina/genética , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipotálamo-Hipofisario/patología , Masculino , Neuronas/fisiología , Dolor Nociceptivo/etiología , Dolor Nociceptivo/genética , Dolor Nociceptivo/metabolismo , Dolor Nociceptivo/fisiopatología , Osteoartritis de la Rodilla/genética , Osteoartritis de la Rodilla/metabolismo , Osteoartritis de la Rodilla/patología , Osteoartritis de la Rodilla/fisiopatología , Oxitocina/sangre , Oxitocina/genética , Sistema Hipófiso-Suprarrenal/metabolismo , Sistema Hipófiso-Suprarrenal/patología , Proopiomelanocortina/sangre , Proopiomelanocortina/genética , Ratas , Ratas Wistar
10.
Reprod Biol ; 20(2): 254-258, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32089503

RESUMEN

We examined the effects of metabolic hormones leptin and ghrelin, and the oil-related environmental contaminants toluene and xylene on the release of ovarian hormones by gravid and non-gravid cats, as well as the functional interrelationships between metabolic hormones and contaminants. Ovarian fragments of non-gravid cats were cultured with and without leptin and toluene. Next, ovarian fragments of either non-gravid or gravid animals were cultured with and without ghrelin and xylene. Oxytocin (OT) and prostaglandin F (PGF) release was measured using ELISA. We confirm ovarian OT and PGF production by feline ovary, demonstrate the involvement of leptin and ghrelin in controlling OT and PGF release, show the direct influence of toluene and xylene on feline ovarian secretory activity, indicate the ability of leptin and ghrelin to mimic and promote the main contaminant effects, demonstrate that oil-related contaminants can prevent and even invert the effects of leptin and ghrelin on the ovary, and suggest the gravidity-associated changes in ability of ghrelin to promote xylene action on PGF (but not to OT), but not in basic ovarian OT and PGF release and their response to ghrelin or xylene.


Asunto(s)
Ghrelina/farmacología , Leptina/farmacología , Ovario/efectos de los fármacos , Oxitocina/metabolismo , Prostaglandinas F/metabolismo , Tolueno/toxicidad , Animales , Gatos , Contaminantes Ambientales/toxicidad , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Ghrelina/administración & dosificación , Ghrelina/metabolismo , Humanos , Leptina/administración & dosificación , Leptina/metabolismo , Ovario/metabolismo , Oxitocina/genética , Petróleo/análisis , Embarazo , Xilenos/toxicidad
11.
Sci Rep ; 9(1): 11146, 2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31366942

RESUMEN

Targeting specific neuronal cell types is a major challenge for unraveling their function and utilizing specific cells for gene therapy strategies. Viral vector tools are widely used to target specific cells or circuits for these purposes. Here, we use viral vectors with short promoters of neuropeptide genes to target distinct neuronal populations in the hypothalamus of rats and mice. We show that lowering the amount of genomic copies is effective in increasing specificity of a melanin-concentrating hormone promoter. However, since too low titers reduce transduction efficacy, there is an optimal titer for achieving high specificity and sufficient efficacy. Other previously identified neuropeptide promoters as those for oxytocin and orexin require further sequence optimization to increase target specificity. We conclude that promoter-driven viral vectors should be used with caution in order to target cells specifically.


Asunto(s)
Vectores Genéticos/administración & dosificación , Hipotálamo/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuropéptidos/administración & dosificación , Regiones Promotoras Genéticas/genética , Animales , Hormonas Hipotalámicas/genética , Melaninas/genética , Ratones , Ratones Endogámicos C57BL , Orexinas/genética , Oxitocina/genética , Hormonas Hipofisarias/genética , Ratas , Ratas Long-Evans , Ratas Wistar
12.
Neuron ; 103(1): 133-146.e8, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31104950

RESUMEN

Oxytocin (OT) release by axonal terminals onto the central nucleus of the amygdala exerts anxiolysis. To investigate which subpopulation of OT neurons contributes to this effect, we developed a novel method: virus-delivered genetic activity-induced tagging of cell ensembles (vGATE). With the vGATE method, we identified and permanently tagged a small subpopulation of OT cells, which, by optogenetic stimulation, strongly attenuated contextual fear-induced freezing, and pharmacogenetic silencing of tagged OT neurons impaired context-specific fear extinction, demonstrating that the tagged OT neurons are sufficient and necessary, respectively, to control contextual fear. Intriguingly, OT cell terminals of fear-experienced rats displayed enhanced glutamate release in the amygdala. Furthermore, rats exposed to another round of fear conditioning displayed 5-fold more activated magnocellular OT neurons in a novel environment than a familiar one, possibly for a generalized fear response. Thus, our results provide first evidence that hypothalamic OT neurons represent a fear memory engram.


Asunto(s)
Miedo/fisiología , Hipotálamo/fisiología , Memoria/fisiología , Oxitocina/fisiología , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/fisiología , Animales , Ambiente , Extinción Psicológica/fisiología , Miedo/psicología , Femenino , Reacción Cataléptica de Congelación , Silenciador del Gen , Ácido Glutámico/metabolismo , Hipotálamo/citología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Optogenética , Oxitocina/genética , Ratas , Ratas Wistar
13.
Behav Brain Funct ; 15(1): 2, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30823929

RESUMEN

BACKGROUND: Signs of pervasive developmental disorder and social deficits were reported in toddlers and children whose mothers were exposed to organophosphate pesticides during pregnancy. Deficits in social preference were reported in adult male mice exposed to chlorpyrifos on gestational days 12-15. This study aimed (a) to test the hypothesis that adult female and male mice that were exposed prenatally to subtoxic doses of chlorpyrifos would be impaired in social behavior and (b) to determine if prenatal chlorpyrifos altered the expression of transcripts for oxytocin in the hypothalamus. Pregnant mice were treated by gavage with corn oil vehicle or 2.5 mg/kg or 5 mg/kg of CPF on gestational days 12-15. Social preference, social and non-social conditioned place preference tasks were tested in adults. Expression of oxytocin transcripts in hypothalamus was measured by qPCR. RESULTS: Chlorpyrifos (5 mg/kg on GD 12-15) reduced the innate preference for a conspecific in a dose and sex dependent manner. Adult males exposed prenatally to 5 mg/kg CPF showed a reduction in social preference. Socially conditioned place preference was impaired in offspring of dams treated with either dose of CPF. Non-social appetitive place conditioning was impaired in offspring of dams exposed to 2.5 mg/kg, but not to 5 mg/kg chlorpyrifos. Prenatal chlorpyrifos treatment did not alter the expression of the oxytocin mRNA in the hypothalamus, although expression was significantly lower in females. CONCLUSIONS: Prenatal chlorpyrifos induced innate and learned social deficits and non-specific conditioning deficits in adult mice in a sex-dependent manner. Males showed specific social deficits following the higher dose whereas both males and females showed a more generalized conditioning deficit following the intermediate dose.


Asunto(s)
Conducta Animal/efectos de los fármacos , Cloropirifos/efectos adversos , Animales , Femenino , Hipotálamo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Oxitocina/efectos de los fármacos , Oxitocina/genética , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Conducta Social
14.
Acta Histochem ; 121(3): 268-276, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30642627

RESUMEN

Dp71 is the major form of dystrophins (Dp) in the supraoptic nucleus (SON) and in the neural lobe of hypophysis (NL/HP). Dp71-null mice exhibit a hypo-osmolar status attributed to an altered osmosensitivity of the SON and to a perturbed vasopressinergic axis. Because oxytocin (OT) is implicated in osmoregulation via natriuresis, this study explored the oxytocinergic axis in Dp71-null mice after salt-loading (SL). Under normosmolar conditions, OT-mRNA expression was higher in the Dp71-null SON compared to wild-type (wt) and the OT peptide level has not changed. Dp-immunostaining was localized in astrocytes end-feet surrounding vessels in wt SON. This distribution changed in Dp71-null SON, Dp being detected in OT-soma of MCNs. nNOS and NADPH-diaphorase levels increased in the OT area of the Dp71-null SON compared to wt. In the NL/HP, OT level reduced in Dp71-null mice and Dp localization changed from pituicytes end-feet in wt SON to OT terminals in Dp71-null SON. Salt-Loading resulted in an increase of OT-mRNA and peptide levels in wt SON but had no effect in Dp71-null SON. In the NL/HP, OT content was reduced after SL. For Dp71-null mice, OT level, already low in control, was not modified by SL. Dp level was not affected by SL in the SON nor in the NL/HP. Our data confirmed the importance of Dp71 for the SON functionality in osmoregulation. The localization of Dp71 at the glial-vascular interface could be associated with SON osmosensitivity, leading to an adequate OT synthesis in the SON and release from the NL/HP upon plasmatic hyperosmolality.


Asunto(s)
Distrofina/deficiencia , Hipotálamo/metabolismo , Osmorregulación/fisiología , Oxitocina/metabolismo , Animales , Distrofina/metabolismo , Ratones Noqueados , NADPH Deshidrogenasa/metabolismo , Neuronas/metabolismo , Oxitocina/genética , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Supraóptico/metabolismo
15.
Peptides ; 112: 114-124, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30562556

RESUMEN

Kisspeptin (KP), known as a hypothalamic neuropeptide, plays a critical role in the regulation of not only reproduction but also food intake. The anorectic neuropeptides, nesfatin-1 and oxytocin (OXT), are expressed in central nervous system, particulaly in various hypothalamic nuclei, and peripheral tissue. We examined the effects of the intracerebroventricular (icv) administration of KP-10 on feeding and nesfatin-1-immunoreactive (ir) or OXT-ir neurons in the rat hypothalamus, using Fos double immunohistochemistry in male rats. Cumulative food intake was remarkably decreased 0.5-3 h after icv administration of KP-10 (6.0 µg) compared to the vehicle treated and the KP-10 (3.8 µg) treated group. The icv administration of KP-10 significantly increased the number of nesfatin-1-ir neurons expressing Fos in the supraoptic nucleus (SON), paraventricular nucleus (PVN), arcuate nucleus (ARC), dorsal raphe nucleus, locus coeruleus, and nucleus tractus solitarius. The decreased food intake induced by KP-10 was significantly attenuated by pretreatment with the icv administration of antisense RNA against nucleobindin-2. After icv administration of KP-10, the percentages of OXT-ir neurons expressing FOS were remarkably higher in the SON and PVN than for vehicle treatment. The KP-10-induced anorexia was partially abolished by pretreatment with OXT receptor antagonist (OXTR-A). The percentage of nesfatin-1-ir neurons expressing Fos-ir in the ARC was also decreased by OXTR-A pretreatment. These results indicate that central administration of KP-10 activates nesfatin-1- and OXT neurons, and may play an important role in the suppression of feeding in male rats.


Asunto(s)
Proteínas de Unión al Calcio/genética , Proteínas de Unión al ADN/genética , Ingestión de Alimentos/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Kisspeptinas/farmacología , Proteínas del Tejido Nervioso/genética , Oxitocina/genética , Animales , Anorexia , Regulación de la Expresión Génica , Infusiones Intraventriculares , Kisspeptinas/administración & dosificación , Kisspeptinas/metabolismo , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Nucleobindinas , Ratas
16.
BMC Res Notes ; 11(1): 852, 2018 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-30509318

RESUMEN

OBJECTIVE: In this study, empathy is quantified using a novel social test. Empathy and prosocial behavior are linked to the expression of oxytocin in humans and rodent models. Specifically, prosocial behavior in prairie voles (Microtus ochrogaster) has been linked to the expression of oxytocin in the paraventricular nucleus of the hypothalamus. The animal's behavior was considered empathic if it spends significantly more time attempting to remove a loos fitting restraint (tether) from the stimulus animal than time in contact with a, simultaneously presented, non-social object similar to the tether. The behavioral data was cross-referenced with the number of neurons expressing oxytocin and arginine vasopressin, as well as the density of dopaminergic neurons (identified by the expression of tyrosine hydroxylase), in the paraventricular nucleus of the hypothalamus. These proteins influence empathic behavior in humans, non-human primates, rats, mice, and prairie voles. RESULTS: The consistency between neuroanatomical mechanisms linked to empathy, and the durations of time spent engaging in empathic contact, support the prediction that the empathic contact in this test is a distinct prosocial behavior, lacking prior behavioral training or the naturally occurring ethological relevance of other prosocial behaviors, and is a measure of empathy.


Asunto(s)
Arginina Vasopresina/genética , Arvicolinae/psicología , Conducta Animal/fisiología , Conducta Cooperativa , Empatía/fisiología , Oxitocina/genética , Animales , Arginina Vasopresina/metabolismo , Arvicolinae/fisiología , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Femenino , Expresión Génica , Humanos , Hipotálamo/citología , Hipotálamo/metabolismo , Masculino , Modelos Animales , Oxitocina/metabolismo , Núcleo Hipotalámico Paraventricular/citología , Núcleo Hipotalámico Paraventricular/metabolismo , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo
17.
Horm Behav ; 105: 128-137, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30118729

RESUMEN

Multiple stimulatory and inhibitory neural circuits control eating, and these circuits are influenced by an array of hormonal, neuropeptide, and neurotransmitter signals. For example, estrogen and oxytocin (OT) both are known to decrease food intake, but the mechanisms by which these signal molecules influence eating are not fully understood. These studies investigated the interaction between estrogen and OT in the control of food intake. RT-qPCR studies revealed that 17ß-estradiol benzoate (EB)-treated rats showed a two-fold increase in OT mRNA in the paraventricular nucleus of the hypothalamus (PVN) compared to Oil-treated controls. Increased OT mRNA expression may increase OT protein levels, and immunohistochemistry studies showed that EB-treated rats had more intense OT labeling in the nucleus of the solitary tract (NTS), a region known to integrate signals for food intake. Food intake measurements showed that EB treatment reduced food intake, as expected. EB-treated rats lost weight over the course of the experiment, as expected, and EB-treated rats that received the highest dose of OT lost more weight than EB-treated rats that did not receive OT. Finally, OT antagonist administered to EB-treated rats reversed the effect of EB on food intake, suggesting that estrogen effects to decrease food intake may involve the oxytocinergic pathway.


Asunto(s)
Ingestión de Alimentos/efectos de los fármacos , Estradiol/análogos & derivados , Oxitocina/metabolismo , Animales , Regulación del Apetito/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Ingestión de Alimentos/fisiología , Estradiol/farmacología , Estrógenos/farmacología , Femenino , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Ovariectomía , Oxitocina/genética , Oxitocina/farmacología , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Oxitocina/antagonistas & inhibidores , Receptores de Oxitocina/genética , Receptores de Oxitocina/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Núcleo Solitario/efectos de los fármacos , Núcleo Solitario/metabolismo
18.
Sci Rep ; 8(1): 10415, 2018 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-29991705

RESUMEN

Oxytocin neurons in the paraventricular nucleus (PVN) of hypothalamus regulate energy metabolism and reproduction. Plasma oxytocin concentration is reduced in obese subjects with insulin resistance. These findings prompted us to hypothesize that insulin serves to promote oxytocin release. This study examined whether insulin activates oxytocin neurons in the PVN, and explored the underlying signaling. We generated the mice deficient of 3-phosphoinositide-dependent protein kinase-1 (PDK1), a major signaling molecule particularly for insulin, specifically in oxytocin neurons (Oxy Pdk1 KO). Insulin increased cytosolic calcium concentration ([Ca2+]i) in oxytocin neurons with larger (≧25 µm) and smaller (<25 µm) diameters isolated from PVN in C57BL/6 mice. In PDK1 Oxy Pdk1 KO mice, in contrast, this effect of insulin to increase [Ca2+]i was markedly diminished in the larger-sized oxytocin neurons, while it was intact in the smaller-sized oxytocin neurons. Furthermore, intracerebroventricular insulin administration induced oxytocin release into plasma in Oxy Cre but not Oxy Pdk1 KO mice. These results demonstrate that insulin PDK1-dependently preferentially activates PVN magnocellular oxytocin neurons to release oxytocin into circulation, possibly serving as a mechanism for the interaction between metabolism and perinatal functions.


Asunto(s)
Proteínas Quinasas Dependientes de 3-Fosfoinosítido/genética , Metabolismo Energético/genética , Insulina/administración & dosificación , Oxitocina/genética , Animales , Señalización del Calcio/genética , Hipotálamo/metabolismo , Insulina/sangre , Ratones , Ratones Noqueados , Neuronas/metabolismo , Oxitocina/sangre , Núcleo Hipotalámico Paraventricular/metabolismo
19.
Fish Physiol Biochem ; 44(3): 817-828, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29404822

RESUMEN

Most wrasses are protogynous species that swim to feed, reproduce during the daytime, and bury themselves under the sandy bottom at night. In temperate and subtropical wrasses, low temperature influences emergence from the sandy bottom in the morning, and induces a hibernation-like state in winter. We cloned and characterized the prohormone complementary DNAs (cDNAs) of arginine vasotocin (AVT) and isotocin (IT) in a temperate wrasse (Halichoeres tenuispinis) and examined the effects of day/night and temperature on their expression in the diencephalon, because these neurohypophysial peptides are related to the sex behavior of wrasses. The full-length cDNAs of pro-AVT and pro-IT were 938 base pairs (154 amino acids) and 759 base pairs (156 amino acids) in length, respectively. Both pro-peptides contained a signal sequence followed by the respective hormones and neurophysin connected by a Gly-Lys-Arg bridge. Reverse-transcription polymerase chain reaction (RT-PCR) revealed that pro-AVT mRNA expression was specifically observed in the diencephalon, whereas pro-IT mRNA expression was seen in the whole brain. Quantitative RT-PCR revealed that the mRNA abundance of pro-AVT and pro-IT was higher at midday (zeitgeber time 6; ZT6) than at midnight (ZT18) under 12 h light and 12 h darkness (LD 12:12) conditions, but not under constant light. Intraperitoneal injection of melatonin decreased the mRNA abundance of pro-AVT, but not of pro-IT. When fish were reared under LD 12:12 conditions at 25, 20, and 15 °C, day high and night low mRNA expressions of pro-AVT and pro-IT were maintained. A field survey revealed seasonal variation in the number of swimming fish at observatory sites; many fish emerged from the sandy bottom in summer, but not in winter, suggesting a hibernation-like state under the sandy bottom under low temperature conditions. We conclude that the day-night fluctuation of pro-AVT and pro-IT mRNA abundance in the brain is not affected by temperature and repeated under the sandy bottom in winter.


Asunto(s)
Diencéfalo/metabolismo , Peces/genética , Melatonina/farmacología , Oxitocina/análogos & derivados , Temperatura , Vasotocina/genética , Animales , Diencéfalo/efectos de los fármacos , Oxitocina/genética , Periodicidad , ARN Mensajero/metabolismo
20.
Gen Comp Endocrinol ; 256: 63-70, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28765073

RESUMEN

The National Institute for Environmental Studies (NIES) of Japan established a strain of Japanese quail (Coturnix japonica) known as NIES-L by rotation breeding in a closed colony for over 35years; accordingly, the strain has highly inbred-like characteristics. Another strain called NIES-Brn has been maintained by randomized breeding in a closed colony to produce outbred-like characteristics. The current study aimed to characterize intermale aggressive behaviors in both strains and to identify possible factors regulating higher aggression in the hypothalamus, such as sex hormone and neuropeptide expression. Both strains displayed a common set of intermale aggressive behaviors that included pecking, grabbing, mounting, and cloacal contact behavior, although NIES-Brn quail showed significantly more grabbing, mounting, and cloacal contact behavior than did NIES-L quail. We examined sex hormone levels in the blood and diencephalon in both strains. Testosterone concentrations were significantly higher in the blood and diencephalon of NIES-Brn quail compared to NIES-L quail. We next examined gene expression in the hypothalamus of both strains using an Agilent gene expression microarray and real-time RT-PCR and found that gene expression of mesotocin (an oxytocin homologue) was significantly higher in the hypothalamus of NIES-Brn quail compared to NIES-L quail. Immunohistochemistry of the hypothalamus revealed that numbers of large cells (cell area>500µm2) expressing mesotocin were significantly higher in the NIES-Brn strain compared to the NIES-L strain. Taken together, our findings suggest that higher testosterone and mesotocin levels in the hypothalamus may be responsible for higher aggression in the NIES-Brn quail strain.


Asunto(s)
Agresión/fisiología , Coturnix/fisiología , Animales , Coturnix/genética , Estradiol/sangre , Regulación de la Expresión Génica , Hipotálamo/metabolismo , Japón , Masculino , Oxitocina/análogos & derivados , Oxitocina/genética , Oxitocina/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especificidad de la Especie , Testosterona/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA