Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.963
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1286-1294, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621976

RESUMEN

This study explored the specific mechanism by which tetrahydropalmatine(THP) inhibited mitophagy through the UNC-51-like kinase 1(ULK1)/FUN14 domain containing 1(FUNDC1) pathway to reduce hypoxia/reoxygenation(H/R) injury in H9c2 cells. This study used H9c2 cells as the research object to construct a cardiomyocyte H/R injury model. First, a cell viability detection kit was used to detect cell viability, and a micro-method was used to detect lactate dehydrogenase(LDH) leakage to evaluate the protective effect of THP on H/R injury of H9c2 cells. In order to evaluate the protective effect of THP on mitochondria, the chemical fluorescence method was used to detect intracellular reactive oxygen species, intramitochondrial reactive oxygen species, mitochondrial membrane potential, and autophagosomes, and the luciferin method was used to detect intracellular adenosine 5'-triphosphate(ATP) content. Western blot was further used to detect the ratio of microtubule-associated protein 1 light chain 3(LC3) membrane type(LC3-Ⅱ) and slurry type(LC3-Ⅰ) and activated cleaved caspase-3 expression level. In addition, ULK1 expression level and its phosphorylation degree at Ser555 site, as well as the FUNDC1 expression level and its phosphorylation degree of Ser17 site were detected to explore its specific mechanism. The results showed that THP effectively reduced mitochondrial damage in H9c2 cells after H/R. THP protected mitochondria by reducing the level of reactive oxygen species in cells and mitochondria, increasing mitochondrial membrane potential, thereby increasing cellular ATP production, enhancing cellular activity, reducing cellular LDH leakage, and finally alleviating H/R damage in H9c2 cells. Further studies have found that THP could reduce the production of autophagosomes, reduce the LC3-Ⅱ/LC3-Ⅰ ratio, and lower the expression of the apoptosis-related protein, namely cleaved caspase-3, indicating that THP could reduce apoptosis by inhibiting autophagy. In-depth studies have found that THP could inhibit the activation of the ULK1/FUNDC1 pathway of mitophagy and the occurrence of mitophagy by reducing the phosphorylation degree of ULK1 at Ser555 and FUNDC1 at Ser17. The application of ULK1 agonist BL-918 reversely verified the effect of THP on reducing the phosphorylation of ULK1 and FUNDC1. In summary, THP inhibited mitophagy through the ULK1/FUNDC1 pathway to reduce H/R injury in H9c2 cells.


Asunto(s)
Alcaloides de Berberina , Hipoxia , Mitofagia , Fenilacetatos , Humanos , Mitofagia/fisiología , Caspasa 3 , Especies Reactivas de Oxígeno/metabolismo , Apoptosis , Adenosina Trifosfato/farmacología , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales
2.
Chin J Nat Med ; 22(4): 318-328, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38658095

RESUMEN

Double cortin-like kinase 1 (DCLK1) exhibits high expression levels across various cancers, notably in human colorectal cancer (CRC). Diacerein, a clinically approved interleukin (IL)-1ß inhibitor for osteoarthritis treatment, was evaluated for its impact on CRC proliferation and migration, alongside its underlying mechanisms, through both in vitro and in vivo analyses. The study employed MTT assay, colony formation, wound healing, transwell assays, flow cytometry, and Hoechst 33342 staining to assess cell proliferation, migration, and apoptosis. Additionally, proteome microarray assay and western blotting analyses were conducted to elucidate diacerein's specific mechanism of action. Our findings indicate that diacerein significantly inhibits DCLK1-dependent CRC growth in vitro and in vivo. Through high-throughput proteomics microarray and molecular docking studies, we identified that diacerein directly interacts with DCLK1. Mechanistically, the suppression of p-STAT3 expression following DCLK1 inhibition by diacerein or specific DCLK1 siRNA was observed. Furthermore, diacerein effectively disrupted the DCLK1/STAT3 signaling pathway and its downstream targets, including MCL-1, VEGF, and survivin, thereby inhibiting CRC progression in a mouse model, thereby inhibiting CRC progression in a mouse model.


Asunto(s)
Antraquinonas , Proliferación Celular , Neoplasias Colorrectales , Quinasas Similares a Doblecortina , Péptidos y Proteínas de Señalización Intracelular , Proteínas Serina-Treonina Quinasas , Factor de Transcripción STAT3 , Transducción de Señal , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Humanos , Transducción de Señal/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Animales , Ratones , Proliferación Celular/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Antraquinonas/farmacología , Línea Celular Tumoral , Reposicionamiento de Medicamentos , Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Ratones Endogámicos BALB C , Ratones Desnudos
3.
Int Immunopharmacol ; 133: 112068, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38626545

RESUMEN

Pyroptosis is an inflammatory form of programmed cell death that plays an important role in regulating tumor progression. Reniformin A (RA) is a natural compound isolated from the medicinal herb Isodon excisoides that has been applied as folk medicine in the treatment of esophageal cancer. However, whether RA has an individual function in cancer and the molecular mechanisms remain unclear. Here, we show that in non-small-cell lung cancer (NSCLC), RA inhibits tumor growth by functioning as a pyroptosis inducer to promote TLR4/NLRP3/caspase-1/GSDMD axis. Specially, RA treatment increased Toll-like receptor 4 (TLR4) protein expression level by enhancing the TLR4 stability. Based on the molecular docking, we identified that RA directly bound to TLR4 to activate the NLRP3 inflammasome and promote pyroptosis in A549 cells. Moreover, TLR4 is essential for RA-induced pyroptosis, and loss of TLR4 abolished RA-induced pyroptosis and further reduced the inhibitory effect of RA on NSCLC. In vivo experiments confirmed that RA inhibited the growth of lung tumors in mice by affecting pyroptosis in a dose-dependent manner. Furthermore, TLR4 knockdown abolished RA-induced pyroptosis and inhibited the effect of RA chemotherapy in vivo. In conclusion, we propose that RA has a significant anticancer effect in NSCLC by inducing TLR4/NLRP3/caspase-1/GSDMD-mediated pyroptosis, which may provide a potential strategy for the treatment of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Caspasa 1 , Neoplasias Pulmonares , Proteína con Dominio Pirina 3 de la Familia NLR , Proteínas de Unión a Fosfato , Piroptosis , Receptor Toll-Like 4 , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptor Toll-Like 4/metabolismo , Piroptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Animales , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Caspasa 1/metabolismo , Ratones , Células A549 , Proteínas de Unión a Fosfato/metabolismo , Proteínas de Unión a Fosfato/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Transducción de Señal/efectos de los fármacos , Ratones Endogámicos C57BL , Progresión de la Enfermedad , Gasderminas
4.
Phytomedicine ; 128: 155333, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38518633

RESUMEN

BACKGROUND: Targeting long non-coding RNAs (LncRNAs) is a novel and promising approach in cancer therapy. In our previous study, we investigated the effects of ailanthone (aila), the main active compound derived from the stem barks of Ailanthus altissima (Mill.) Swingle, on the growth of non-small cell lung cancer (NSCLC) cells. Although we observed significant inhibition of NSCLC cell growth of aila, the underlying mechanisms involving LncRNAs, specifically LncRNA growth arrest specific 5 (GAS5), remain largely unknown. METHODS: To further explore the impact of aila on NSCLC, we performed a series of experiments. Firstly, we confirmed the inhibitory effect of aila on NSCLC cell growth using multiple assays, including MTT, wound healing, transwell assay, as well as subcutaneous and metastasis tumor mice models in vivo. Next, we utilized cDNA microarray and RT-QPCR to identify GAS5 as the primary target of aila. To verify the importance of GAS5 in aila-induced tumor inhibition, we manipulated GAS5 expression levels by constructing GAS5 over-expression and knockdown NSCLC cell lines. Furthermore, we investigated the upstream and downstream signaling pathways of GAS5 through western blot and RT-QPCR analysis. RESULTS: Our results showed that aila effectively increased GAS5 expression, as determined by microarray analysis. We also observed that aila significantly enhanced GAS5 expression in a dose- and time-dependent manner across various NSCLC cell lines. Notably, over-expression of GAS5 led to a significant suppression of NSCLC cell tumor growth; while aila had minimal inhibitory effect on GAS5-knockdown NSCLC cells. Additionally, we discovered that aila inhibited ULK1 and autophagy, and this inhibition was reversed by GAS5 knockdown. Moreover, we found that aila up-regulated GAS5 expression by suppressing UPF1-mediated nonsense-mediated mRNA decay (NMD). CONCLUSION: In summary, our findings suggest that aila promotes GAS5 expression by inhibiting UPF1-mediated NMD, leading to the repression of ULK1-mediated autophagy and subsequent inhibitory effects on NSCLC cells. These results indicate that aila is a potent enhancer of GAS5 and holds promising potential for application in NSCLC therapy. However, our research is currently focused only on NSCLC. It remains to be determined whether aila can also inhibit the growth of other types of tumors through the UPF1/GAS5/ULK1 signaling pathway. In future studies, we can further investigate the mechanisms by which aila suppresses other types of tumors and potentially broaden the scope of its application in cancer therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , ARN Largo no Codificante , Transducción de Señal , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , ARN Largo no Codificante/genética , Humanos , Animales , Neoplasias Pulmonares/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ratones , Ratones Desnudos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Transactivadores/genética , Transactivadores/metabolismo , Ailanthus/química , Antineoplásicos Fitogénicos/farmacología , Ratones Endogámicos BALB C , Cuassinas/farmacología , ARN Helicasas/metabolismo
5.
Endocrinology ; 165(5)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38368624

RESUMEN

Glucoprivic feeding is one of several counterregulatory responses (CRRs) that facilitates restoration of euglycemia following acute glucose deficit (glucoprivation). Our previous work established that glucoprivic feeding requires ventrolateral medullary (VLM) catecholamine (CA) neurons that coexpress neuropeptide Y (NPY). However, the connections by which VLM CA/NPY neurons trigger increased feeding are uncertain. We have previously shown that glucoprivation, induced by an anti-glycolygic agent 2-deoxy-D-glucose (2DG), activates perifornical lateral hypothalamus (PeFLH) neurons and that expression of NPY in the VLM CA/NPY neurons is required for glucoprivic feeding. We therefore hypothesized that glucoprivic feeding and possibly other CRRs require NPY-sensitive PeFLH neurons. To test this, we used the ribosomal toxin conjugate NPY-saporin (NPY-SAP) to selectively lesion NPY receptor-expressing neurons in the PeFLH of male rats. We found that NPY-SAP destroyed a significant number of PeFLH neurons, including those expressing orexin, but not those expressing melanin-concentrating hormone. The PeFLH NPY-SAP lesions attenuated 2DG-induced feeding but did not affect 2DG-induced increase in locomotor activity, sympathoadrenal hyperglycemia, or corticosterone release. The 2DG-induced feeding response was also significantly attenuated in NPY-SAP-treated female rats. Interestingly, PeFLH NPY-SAP lesioned male rats had reduced body weights and decreased dark cycle feeding, but this effect was not seen in female rats. We conclude that a NPY projection to the PeFLH is necessary for glucoprivic feeding, but not locomotor activity, hyperglycemia, or corticosterone release, in both male and female rats.


Asunto(s)
Conducta Alimentaria , Hipotálamo , Neuronas , Neuropéptido Y , Ratas Sprague-Dawley , Animales , Femenino , Masculino , Ratas , Desoxiglucosa/farmacología , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Conducta Alimentaria/efectos de los fármacos , Glucosa/metabolismo , Área Hipotalámica Lateral/metabolismo , Área Hipotalámica Lateral/efectos de los fármacos , Hormonas Hipotalámicas/metabolismo , Hipotálamo/metabolismo , Hipotálamo/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Melaninas/metabolismo , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Neuropéptido Y/metabolismo , Neuropéptido Y/farmacología , Neuropéptidos/metabolismo , Orexinas/metabolismo , Hormonas Hipofisarias/metabolismo , Receptores de Neuropéptido Y/metabolismo , Receptores de Neuropéptido Y/genética , Proteínas Inactivadoras de Ribosomas Tipo 1/farmacología , Saporinas/farmacología
6.
Aging (Albany NY) ; 16(2): 1145-1160, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38284902

RESUMEN

Lumbar disc degeneration (LDD) is a prevalent clinical spinal disease characterized by the calcification and degeneration of the cartilage endplate (CEP), which significantly reduces nutrient supply to the intervertebral disc. Traditional Chinese medicine offers a conservative and effective approach for treating LDD. We aimed to investigate the molecular mechanisms underlying the therapeutic effects of Sesamin in LDD treatment. Transcriptome sequencing was used to analyze the effect of Sesamin on LPS-induced ATDC5. We explored the role of BECN2, a target gene of Sesamin, in attenuating LPS-induced degeneration of ATDC5 cells. Our results revealed the identification of 117 differentially expressed genes (DEGs), with 54 up-regulated and 63 down-regulated genes. Notably, Sesamin significantly increased the expression of BECN2 in LPS-induced ATDC5 cell degeneration. Overexpressed BECN2 enhanced cell viability and inhibited cell apoptosis in LPS-induced ATDC5 cells, while BECN2 knockdown reduced cell viability and increased apoptosis. Furthermore, BECN2 played a crucial role in attenuating chondrocyte degeneration by modulating autophagy and inflammation. Specifically, BECN2 suppressed autophagy by reducing the expression of ATG14, VPS34, and GASP1, and alleviated the inflammatory response by decreasing the expression of inflammasome proteins NLRP3, NLRC4, NLRP1, and AIM2. In vivo experiments further supported the beneficial effects of Sesamin in mitigating LDD. This study provides novel insights into the potential molecular mechanism of Sesamin in treating LDD, highlighting its ability to mediate autophagy and inflammation inhibition via targeting the BECN2. This study provides a new therapeutic strategy for the treatment of LDD, as well as a potential molecular target for LDD.


Asunto(s)
Dioxoles , Degeneración del Disco Intervertebral , Péptidos y Proteínas de Señalización Intracelular , Lignanos , Autofagia , Cartílago/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lipopolisacáridos/farmacología , Animales , Ratones
7.
Med Oncol ; 41(3): 66, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38281254

RESUMEN

Targeting programmed cell death (PCD) has been emerging as a promising therapeutic strategy in cancer. Pyroptosis, as a type of PCDs, leads to the cleavage of the gasdermin family and the secretion of pro-inflammatory factors. Gasdermin D (GSDMD) and gasdermin E (GSDME) are the two main executors of pyroptosis. Pyroptosis in tumor and immune cells is essential for tumor progression. Natural products, especially Chinese medicinal herb and their bioactive compounds have recently been regarded as anti-tumor agents that regulate cell pyroptosis under different circumstances. Here, we review the underlying mechanisms of natural products that activate pyroptosis in tumor cells and inhibit pyroptosis in immune cells. Pyroptosis activation in tumor cells leads to tumor cell death, yet pyroptosis inhibition in immune cells may prevent tumor occurrence. Elucidation of the signaling pathways involved in pyroptosis contributes to the understanding of the anti-tumor role of natural products and their potential clinical applications. Therefore, we outline a promising strategy for cancer therapy and prevention using natural products via modulation of pyroptosis.


Asunto(s)
Productos Biológicos , Neoplasias , Humanos , Piroptosis , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Gasderminas , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Apoptosis , Neoplasias/tratamiento farmacológico , Neoplasias/prevención & control , Neoplasias/metabolismo
8.
Exp Gerontol ; 182: 112305, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37797916

RESUMEN

Heart disease is a significant health concern for elderly individuals, with heart aging being the primary cause. Recent studies have shown that autophagy can play a protective role in preventing cardiac aging. Our previous research confirmed that Chikusetsu saponin IVa, a fundamental component of Saponins of Panax japonics (SPJ), can enhance basic autophagy levels in cardiomyocyte of isoproterenol induced cardiac fibrosis mice. However, it remains unclear whether SPJ possesses a protective effect on cardiac dysfunction during the natural aging process. Rats were randomly divided into four groups: adult control group (6 months old), aging group (24 months old), aging group treated with 10 mg/kg SPJ, and aging group treated with 30 mg/kg SPJ. The heart function, blood pressure, and heart mass index (HMI) were measured. Hematoxylin and eosin staining (H&E) and Wheat Germ Agglutinin (WGA) staining were used to observe the changes in morphology, while Masson staining was used to examine collagen deposition in the rat hearts and CD45 immunohistochemistry was conducted to examine the macrophage infiltration in heart tissues. TUNEL kit was used to detect apoptosis level of cardiomyocyte, and western blot was used to evaluate autophagy-related proteins as well as AMPK/mTOR/ULK1 pathway-related markers. SPJ treatment improved the cardiac function, reduced HMI, attenuated myocardial fiber disorder, inhibited inflammatory cell infiltration, and decreased collagen deposition and cardiomyocyte apoptosis in aging rats. Additionally, SPJ treatment decreased the expression of aging-related proteins and restored the expression of autophagy-related markers. SPJ activated autophagy through the activation of AMPK, which in turn increased the phosphorylation of ULK1(Ser555), while inhibited the phosphorylation of mTOR and ULK1(Ser757). Our study demonstrates that SPJ improves the cardiac function of aging rats by enhancing basal autophagy through the AMPK/mTOR/ULK1 pathway. These results offer a theoretical foundation and empirical evidence to support the clinical advancement of SPJ in enhancing age-related cardiac dysfunction.


Asunto(s)
Cardiomiopatías , Panax , Saponinas , Humanos , Ratas , Ratones , Animales , Anciano , Proteínas Quinasas Activadas por AMP/metabolismo , Panax/metabolismo , Miocitos Cardíacos , Serina-Treonina Quinasas TOR/metabolismo , Envejecimiento/metabolismo , Saponinas/farmacología , Autofagia , Colágeno , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Péptidos y Proteínas de Señalización Intracelular
9.
Phytother Res ; 37(12): 5473-5494, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37622684

RESUMEN

In recent years, the incidence of liver disease has increased, becoming a major cause of death. Various liver diseases are intricately linked to pyroptosis, which is one of the most common forms of programmed cell death. As a powerful weapon in the fight against liver diseases, traditional Chinese medicine (TCM) can affect pyroptosis via a number of routes, including the classical, nucleotide oligomerization domain-like receptors protein 3/caspase-1/gasdermin D (GSDMD) pathway, the nonclassical lipopolysaccharide/caspase-11/GSDMD pathway, the ROS/caspase-3/gasdermin E pathway, the caspase-9/caspase-3/GSDMD pathway, and the Apaf-1/caspase-11/caspase-3 pathway. In this review, we provide an overview of pyroptosis, the interplay between pyroptosis and liver diseases, and the mechanisms through which TCM regulates pyroptosis in liver diseases. The information used in the text was collected and compiled from the databases of PubMed, Web of Science, Scopus, CNKI, and Wanfang Data up to June 2023. The search was not limited with regard to the language and country of the articles. Research and review articles were included, and papers with duplicate results or unrelated content were excluded. We examined the current understanding of the relationship between pyroptosis and liver diseases as well as the advances in TCM interventions to provide a resource for the identification of potential targets for TCM in the treatment of liver diseases.


Asunto(s)
Hepatopatías , Piroptosis , Humanos , Piroptosis/fisiología , Caspasa 3/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Gasderminas , Medicina Tradicional China , Caspasas/metabolismo , Caspasa 1/metabolismo
10.
Adv Sci (Weinh) ; 10(27): e2301190, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37469018

RESUMEN

RNA-binding proteins (RBPs) play essential roles in tumorigenesis and progression, but their functions in gastric cancer (GC) remain largely elusive. Here, it is reported that Pumilio 1 (PUM1), an RBP, induces metabolic reprogramming through post-transcriptional regulation of DEP domain-containing mammalian target of rapamycin (mTOR)-interacting protein (DEPTOR) in GC. In clinical samples, elevated expression of PUM1 is associated with recurrence, metastasis, and poor survival. In vitro and in vivo experiments demonstrate that knockdown of PUM1 inhibits the proliferation and metastasis of GC cells. In addition, RNA-sequencing and bioinformatics analyses show that PUM1 is enriched in the glycolysis gene signature. Metabolomics studies confirm that PUM1 deficiency suppresses glycolytic metabolism. Mechanistically, PUM1 binds directly to DEPTOR mRNA pumilio response element to maintain the stability of the transcript and prevent DEPTOR degradation through post-transcriptional pathway. PUM1-mediated DEPTOR upregulation inhibits mTORC1 and alleviates the inhibitory feedback signal transmitted from mTORC1 to PI3K under normal conditions, thus activating the PI3K-Akt signal and glycolysis continuously. Collectively, these results reveal the critical epigenetic role of PUM1 in modulating DEPTOR-dependent GC progression. These conclusions support further clinical investigation of PUM1 inhibitors as a metabolic-targeting treatment strategy for GC.


Asunto(s)
Transducción de Señal , Neoplasias Gástricas , Humanos , Fosfatidilinositol 3-Quinasas , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Gástricas/genética , Serina-Treonina Quinasas TOR/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
11.
Cell Biol Int ; 47(9): 1488-1490, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37366569

RESUMEN

Laccase domain-containing 1 (LACC1) protein is an enzyme highly expressed in inflammatory macrophages, and studies have shown that it has a key role in diseases such as inflammatory bowel disease, arthritis, and microbial infections. Therefore, in this review, we focus on LACC1-mediated catalysis. In detail, LACC1 converts l-CITrulline (l-CIT) to l-ORNithine (l-ORN) and isocyanic acid in mice and humans and acts as a bridge between proinflammatory nitric oxide synthase (NOS2) and polyamine immunometabolism, thus exerting anti-inflammatory and antibacterial effects. Considering the actions of LACC1, targeting LACC1 may be a potent therapeutic avenue for inflammation-related diseases and microbial infection diseases.


Asunto(s)
Artritis , Enfermedades Inflamatorias del Intestino , Humanos , Ratones , Animales , Lacasa/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrófagos/metabolismo , Artritis/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Óxido Nítrico/metabolismo
12.
J Clin Invest ; 133(13)2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37166978

RESUMEN

Deciphering the crosstalk between metabolic reprogramming and epigenetic regulation is a promising strategy for cancer therapy. In this study, we discovered that the gluconeogenic enzyme PCK1 fueled the generation of S-adenosylmethionine (SAM) through the serine synthesis pathway. The methyltransferase SUV39H1 catalyzed SAM, which served as a methyl donor to support H3K9me3 modification, leading to the suppression of the oncogene S100A11. Mechanistically, PCK1 deficiency-induced oncogenic activation of S100A11 was due to its interaction with AKT1, which upregulated PI3K/AKT signaling. Intriguingly, the progression of hepatocellular carcinoma (HCC) driven by PCK1 deficiency was suppressed by SAM supplement or S100A11 KO in vivo and in vitro. These findings reveal the availability of the key metabolite SAM as a bridge connecting the gluconeogenic enzyme PCK1 and H3K9 trimethylation in attenuating HCC progression, thus suggesting a potential therapeutic strategy against HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , S-Adenosilmetionina/metabolismo , Neoplasias Hepáticas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Epigénesis Genética , Fosfoenolpiruvato Carboxiquinasa (GTP)/genética , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo
13.
Nutrients ; 15(10)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37242219

RESUMEN

Chronic heart failure (CHF) is one of principal health problems in industrialized countries. Despite therapeutical improvement, based on drugs and exercise training, it is still characterized by elevated mortality and morbidity. Data show that protein energy malnutrition, clinically evident primarily with sarcopenia, is present in more than 50% of CHF patients and is an independent factor of CHF prognosis. Several pathophysiological mechanisms, primarily due to the increase in blood hypercatabolic molecules, have been proposed to explain this phenomenon. Nutritional supplementation with proteins, amino acids, vitamins and antioxidants have all been used to treat malnutrition. However, the success and efficacy of these procedures are often contradictory and not conclusive. Interestingly, data on exercise training show that exercise reduces mortality and increases functional capacity, although it also increases the catabolic state with energy expenditure and nitrogen-providing substrate needs. Therefore, this paper discusses the molecular mechanisms of specific nutritional supplementation and exercise training that may improve anabolic pathways. In our opinion, the relationship between exercise and the mTOR complex subunit as Deptor and/or related signaling proteins, such as AMPK or sestrin, is pivotal. Consequently, concomitantly with traditional medical therapies, we have proposed a combination of personalized and integrated nutritional supplementation, as well as exercise to treat malnutrition, and anthropometric and functional CHF-related disorders.


Asunto(s)
Insuficiencia Cardíaca , Desnutrición , Sarcopenia , Humanos , Ejercicio Físico/fisiología , Insuficiencia Cardíaca/tratamiento farmacológico , Suplementos Dietéticos , Péptidos y Proteínas de Señalización Intracelular
14.
Proc Natl Acad Sci U S A ; 120(19): e2220911120, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126681

RESUMEN

Narcolepsy with cataplexy is a sleep disorder caused by deficiency in the hypothalamic neuropeptide hypocretin/orexin (HCRT), unanimously believed to result from autoimmune destruction of hypocretin-producing neurons. HCRT deficiency can also occur in secondary forms of narcolepsy and be only temporary, suggesting it can occur without irreversible neuronal loss. The recent discovery that narcolepsy patients also show loss of hypothalamic (corticotropin-releasing hormone) CRH-producing neurons suggests that other mechanisms than cell-specific autoimmune attack, are involved. Here, we identify the HCRT cell-colocalized neuropeptide QRFP as the best marker of HCRT neurons. We show that if HCRT neurons are ablated in mice, in addition to Hcrt, Qrfp transcript is also lost in the lateral hypothalamus, while in mice where only the Hcrt gene is inactivated Qrfp is unchanged. Similarly, postmortem hypothalamic tissues of narcolepsy patients show preserved QRFP expression, suggesting the neurons are present but fail to actively produce HCRT. We show that the promoter of the HCRT gene of patients exhibits hypermethylation at a methylation-sensitive and evolutionary-conserved PAX5:ETS1 transcription factor-binding site, suggesting the gene is subject to transcriptional silencing. We show also that in addition to HCRT, CRH and Dynorphin (PDYN) gene promoters, exhibit hypermethylation in the hypothalamus of patients. Altogether, we propose that HCRT, PDYN, and CRH are epigenetically silenced by a hypothalamic assault (inflammation) in narcolepsy patients, without concurrent cell death. Since methylation is reversible, our findings open the prospect of reversing or curing narcolepsy.


Asunto(s)
Cataplejía , Narcolepsia , Neuropéptidos , Ratones , Animales , Orexinas/metabolismo , Cataplejía/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neuropéptidos/metabolismo , Narcolepsia/genética , Hipotálamo/metabolismo , Epigénesis Genética , Hormona Liberadora de Corticotropina/genética , Hormona Liberadora de Corticotropina/metabolismo
15.
FASEB J ; 37(6): e22980, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37219490

RESUMEN

Cachexia is very common in cancer patients and predicts a poor prognosis; however, the molecular basis for progress in these individuals remains unclear, especially the effect of tumors on the hypothalamus energy regulation center. To investigate the regulatory pathway of tumors associated with hypothalamic pro-opiomelanocortin (POMC) neurons known as appetite-inhibiting neurons, we conducted observations both on patients and mice models. Results showed that the highly expressed exocrine semaphorin 3D (SEMA3D) both in cachexia patients and mice was positively related to the expression of POMC and its proteolytic peptide. Compared with the control group, mice inoculated with the SEMA3D-knockout C26 cell line decreased the activity of POMC neurons resulting in a 1.3-fold increase in food intake, a 22.2% increase in body weight, and reduced skeletal muscle and fat catabolism. The effect of SEMA3D on cachexia progression can be partially alleviated by knocking-down POMC expression in the brain. In terms of mechanism, SEMA3D enhances the activity of POMC neurons by activating the expression of NRP2 (membrane receptor) and PlxnD1 (intracellular receptor). Our research revealed the overexpression of SEMA3D in tumors works as an activator of POMC neurons, which may play a vital role in suppressing appetite and promoting catabolic metabolism.


Asunto(s)
Neoplasias , Semaforinas , Animales , Ratones , Caquexia , Hipotálamo , Péptidos y Proteínas de Señalización Intracelular , Glicoproteínas de Membrana , Neuronas , Proopiomelanocortina , Humanos
16.
Mol Biol Rep ; 50(5): 4565-4578, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36877351

RESUMEN

The transcriptional co-activators Yes-associated protein (YAP) and PDZ-binding domain (TAZ) are the known downstream effectors of the Hippo kinase cascade. YAP/TAZ have been shown to play important roles in cellular growth and differentiation, tissue development and carcinogenesis. Recent studies have found that, in addition to the Hippo kinase cascade, multiple non-Hippo kinases also regulate the YAP/TAZ cellular signaling and produce important effects on cellular functions, particularly on tumorigenesis and progression. In this article, we will review the multifaceted regulation of the YAP/TAZ signaling by the non-Hippo kinases and discuss the potential application of the non-Hippo kinase-regulated YAP/TAZ signaling for cancer therapy.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Serina-Treonina Quinasas , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Transactivadores/metabolismo , Proteínas Señalizadoras YAP , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Vía de Señalización Hippo , Fosfoproteínas/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Carcinogénesis
17.
J Neuroendocrinol ; 35(9): e13259, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36994677

RESUMEN

Seeking and ingesting nutrients is an essential cycle of life in all species. In classical neuropsychology these two behaviours are viewed as fundamentally distinct from each other, and known as appetitive and consummatory, respectively. Appetitive behaviour is highly flexible and diverse, but typically involves increased locomotion and spatial exploration. Consummatory behaviour, in contrast, typically requires reduced locomotion. Another long-standing concept is "rest and digest", a hypolocomotive response to calorie intake, thought to facilitate digestion and storage of energy after eating. Here, we note that the classical seek➔ingest➔rest behavioural sequence is not evolutionarily advantageous for all ingested nutrients. Our limited stomach capacity should be invested wisely, rather than spent on the first available nutrient. This is because nutrients are not simply calories: some nutrients are more essential for survival than others. Thus, a key choice that needs to be made soon after ingestion: to eat more and rest, or to terminate eating and search for better food. We offer a perspective on recent work suggesting how nutrient-specific neural responses shape this choice. Specifically, the hypothalamic hypocretin/orexin neurons (HONs) - cells that promote hyperlocomotive explorative behaviours - are rapidly and differentially modulated by different ingested macronutrients. Dietary non-essential (but not essential) amino acids activate HONs, while glucose depresses HONs. This nutrient-specific HON modulation engages distinct reflex arcs, seek➔ingest➔seek and seek➔ingest➔rest, respectively. We propose that these nutri-neural reflexes evolved to facilitate optimal nutrition despite the limitations of our body.


Asunto(s)
Neuropéptidos , Animales , Orexinas , Neuropéptidos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Hipotálamo/metabolismo , Conducta Apetitiva
18.
Phytomedicine ; 113: 154743, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36893672

RESUMEN

BACKGROUND: Pyroptosis is an inflammatory form of cell death that has been implicated in various infectious and non-infectious diseases. Gasdermin family proteins are the key executors of pyroptotic cell death, thus they are considered as novel therapeutic targets for inflammatory diseases. However, only limited gasdermin specific inhibitors have been identified to date. Traditional Chinese medicines have been applied in clinic for centuries and exhibit potential in anti-inflammation and anti-pyroptosis. We attempted to find candidate Chinese botanical drugs which specifically target gasdermin D (GSDMD) and inhibit pyroptosis. METHODS: In this study, we performed high-throughput screening using a botanical drug library to identify pyroptosis specific inhibitors. The assay was based on a cell pyroptosis model induced by lipopolysaccharides (LPS) and nigericin. Cell pyroptosis levels were then evaluated by cell cytotoxicity assay, propidium iodide (PI) staining and immunoblotting. We then overexpressed GSDMD-N in cell lines to investigate the direct inhibitory effect of the drug to GSDMD-N oligomerization. Mass spectrometry studies were applied to identify the active components of the botanical drug. Finally, a mouse model of sepsis and a mouse model of diabetic myocardial infarction were constructed to verify the protective effect of the drug in disease models of inflammation. RESULTS: High-throughput screening identified Danhong injection (DHI) as a pyroptosis inhibitor. DHI remarkably inhibited pyroptotic cell death in a murine macrophage cell line and bone marrow-derived macrophages. Molecular assays demonstrated the direct blockade of GSDMD-N oligomerization and pore formation by DHI. Mass spectrometry studies identified the major active components of DHI, and further activity assays revealed salvianolic acid E (SAE) as the most potent molecule among these components, and SAE has a strong binding affinity to mouse GSDMD Cys192. We further demonstrated the protective effects of DHI in mouse sepsis and mouse myocardial infarction with type 2 diabetes. CONCLUSION: These findings provide new insights for drug development from Chinese herbal medicine like DHI against diabetic myocardial injury and sepsis through blocking GSDMD-mediated macrophage pyroptosis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Medicamentos Herbarios Chinos , Infarto del Miocardio , Sepsis , Ratones , Animales , Piroptosis , Medicamentos Herbarios Chinos/farmacología , Gasderminas , Péptidos y Proteínas de Señalización Intracelular , Sepsis/tratamiento farmacológico
19.
Hepatol Commun ; 7(3): e0070, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36848094

RESUMEN

BACKGROUND: α1-antitrypsin deficiency is most commonly caused by a mutation in exon-7 of SERPINA1 (SA1-ATZ), resulting in hepatocellular accumulation of a misfolded variant (ATZ). Human SA1-ATZ-transgenic (PiZ) mice exhibit hepatocellular ATZ accumulation and liver fibrosis. We hypothesized that disrupting the SA1-ATZ transgene in PiZ mice by in vivo genome editing would confer a proliferative advantage to the genome-edited hepatocytes, enabling them to repopulate the liver. METHODS: To create a targeted DNA break in exon-7 of the SA1-ATZ transgene, we generated 2 recombinant adeno-associated viruses (rAAV) expressing a zinc-finger nuclease pair (rAAV-ZFN), and another rAAV for gene correction by targeted insertion (rAAV-TI). PiZ mice were injected i.v. with rAAV-TI alone or the rAAV-ZFNs at a low (7.5×1010vg/mouse, LD) or a high dose (1.5×1011vg/mouse, HD), with or without rAAV-TI. Two weeks and 6 months after treatment, livers were harvested for molecular, histological, and biochemical analyses. RESULTS: Two weeks after treatment, deep sequencing of the hepatic SA1-ATZ transgene pool showed 6%±3% or 15%±4% nonhomologous end joining in mice receiving LD or HD rAAV-ZFN, respectively, which increased to 36%±12% and 36%±12%, respectively, 6 months after treatment. Two weeks postinjection of rAAV-TI with LD or HD of rAAV-ZFN, repair by targeted insertion occurred in 0.10%±0.09% and 0.25%±0.14% of SA1-ATZ transgenes, respectively, which increased to 5.2%±5.0% and 33%±13%, respectively, 6 months after treatment. Six months after rAAV-ZFN administration, there was a marked clearance of ATZ globules from hepatocytes, and resolution of liver fibrosis, along with reduction of hepatic TAZ/WWTR1, hedgehog ligands, Gli2, a TIMP, and collagen content. CONCLUSIONS: ZFN-mediated SA1-ATZ transgene disruption provides a proliferative advantage to ATZ-depleted hepatocytes, enabling them to repopulate the liver and reverse hepatic fibrosis.


Asunto(s)
Edición Génica , Nucleasas con Dedos de Zinc , Humanos , Animales , Ratones , Cirrosis Hepática/genética , Cirrosis Hepática/terapia , Hepatocitos , Modelos Animales de Enfermedad , Péptidos y Proteínas de Señalización Intracelular
20.
Pharm Biol ; 61(1): 271-280, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36655371

RESUMEN

CONTEXT: Therapeutic effects of Qiangjing tablets (QJT) on sperm vitality and asthenozoospermia (AZS) have been confirmed. However, the mechanism of action remains unclear. OBJECTIVE: This study investigates the effects of QJT on AZS and the underlying mechanism of action. MATERIALS AND METHODS: Sixty Sprague-Dawley rats were randomly divided into six groups: Control, ORN (ornidazole; 200 mg/kg), ORN + QJT-low (0.17 g/mL), ORN + QJT-middle (0.33 g/mL), ORN + QJT-high (0.67 g/mL), and ORN + QJT + Radicicol (0.67 g/mL QJT and 20 mg/kg radicicol) groups. Pathological evaluation and analysis of mitophagy were conducted by H&E staining and transmission electron microscopy, respectively. Reactive oxygen species were detected by flow cytometry. Protein expression was determined by Western blotting. RESULTS: QJT significantly improved ORN-treated sperm motility and kinematic parameters, as well as the pathological symptoms of testicular and epididymal tissues. In particular, QJT mitigated impaired mitochondrial morphology, and increased the PHB, Beclin-1, LC3-II protein, and ROS levels (p < 0.05), and reduced the protein expression levels of LC3-I and p62 (p < 0.05). Mechanistically, QJT antagonized the downregulation of SCF and Parkin protein levels (p < 0.05). Furthermore, QJT significantly increased the protein expressions levels of LKB1, AMPKα, p-AMPKα, ULK1 and p-ULK1 (p < 0.05). The ameliorative effect of QJT on pathological manifestations, mitochondrial morphology, and the expressions of mitophagy and mitochondrial ubiquitination-related proteins was counteracted by radicicol. DISCUSSION AND CONCLUSIONS: QJT improved AZS via mitochondrial ubiquitination and mitophagy mediated by the LKB1/AMPK/ULK1 signaling pathway. Our study provides a theoretical basis for the treatment of AZS and male infertility.


Asunto(s)
Astenozoospermia , Medicamentos Herbarios Chinos , Animales , Masculino , Ratas , Proteínas Quinasas Activadas por AMP , Astenozoospermia/tratamiento farmacológico , Homólogo de la Proteína 1 Relacionada con la Autofagia , Medicamentos Herbarios Chinos/uso terapéutico , Péptidos y Proteínas de Señalización Intracelular/farmacología , Péptidos y Proteínas de Señalización Intracelular/uso terapéutico , Mitofagia , Ratas Sprague-Dawley , Semen , Motilidad Espermática , Comprimidos/uso terapéutico , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA