Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 550
Filtrar
Más filtros

Intervalo de año de publicación
1.
Radiography (Lond) ; 30(3): 889-895, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38603992

RESUMEN

INTRODUCTION: Acoustic noise from magnetic resonance imaging (MRI) can cause hearing loss and needs to be mitigated to ensure the safety of patients and personnel. Capturing MR personnel's insights is crucial for guiding the development and future applications of noise-reduction technology. This study aimed to explore how MR radiographers manage acoustic noise in clinical MR settings. METHODS: Using a qualitative design, we conducted semi-structured individual interviews with fifteen MR radiographers from fifteen hospitals around Sweden. We focused on the clinical implications of participants' noise management, using an interpretive description approach. We also identified sociotechnical interactions between People, Environment, Tools, and Tasks (PETT) by adopting a Human Factors/Ergonomics framework. Interview data were analyzed inductively with thematic analysis (Braun and Clarke). RESULTS: The analysis generated three main themes regarding MR radiographers' noise management: (I) Navigating Occupational Noise: Risk Management and Adaptation; (II) Protecting the Patient and Serving the Exam, and (III) Establishing a Safe Healthcare Environment with Organizational Support. CONCLUSION: This study offers insights into radiographers' experiences of managing acoustic noise within MRI, and the associated challenges. Radiographers have adopted multiple strategies to protect patients and themselves from adverse noise-related effects. However, they require tools and support to manage this effectively, suggesting a need for organizations to adopt more proactive, holistic approaches to safety initiatives. IMPLICATIONS FOR PRACTICE: The radiographers stressed the importance of a soundproofed work environment to minimize occupational adverse health effects and preserve work performance. They acknowledge noise as a common contributor to patient distress and discomfort. Providing options like earplugs, headphones, mold putty, software-optimized "quiet" sequences, and patient information were important tools. Fostering a safety culture requires proactive safety efforts and support from colleagues and management.


Asunto(s)
Entrevistas como Asunto , Imagen por Resonancia Magnética , Ruido en el Ambiente de Trabajo , Investigación Cualitativa , Humanos , Suecia , Femenino , Masculino , Adulto , Persona de Mediana Edad , Pérdida Auditiva Provocada por Ruido/prevención & control , Exposición Profesional/prevención & control , Gestión de Riesgos
2.
ACS Nano ; 18(8): 6298-6313, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38345574

RESUMEN

Noise-induced hearing loss (NIHL) often accompanies cochlear synaptopathy, which can be potentially reversed to restore hearing. However, there has been little success in achieving complete recovery of sensorineural deafness using nearly noninvasive middle ear drug delivery before. Here, we present a study demonstrating the efficacy of a middle ear delivery system employing brain-derived neurotrophic factor (BDNF)-poly-(dl-lactic acid-co-glycolic acid) (PLGA)-loaded hydrogel in reversing synaptopathy and restoring hearing function in a mouse model with NIHL. The mouse model achieved using the single noise exposure (NE, 115 dBL, 4 h) exhibited an average 20 dBL elevation of hearing thresholds with intact cochlear hair cells but a loss of ribbon synapses as the primary cause of hearing impairment. We developed a BDNF-PLGA-loaded thermosensitive hydrogel, which was administered via a single controllable injection into the tympanic cavity of noise-exposed mice, allowing its presence in the middle ear for a duration of 2 weeks. This intervention resulted in complete restoration of NIHL at frequencies of click, 4, 8, 16, and 32 kHz. Moreover, the cochlear ribbon synapses exhibited significant recovery, whereas other cochlear components (hair cells and auditory nerves) remained unchanged. Additionally, the cochlea of NE treated mice revealed activation of tropomyosin receptor kinase B (TRKB) signaling upon exposure to BDNF. These findings demonstrate a controllable and minimally invasive therapeutic approach that utilizes a BDNF-PLGA-loaded hydrogel to restore NIHL by specifically repairing cochlear synaptopathy. This tailored middle ear delivery system holds great promise for achieving ideal clinical outcomes in the treatment of NIHL and cochlear synaptopathy.


Asunto(s)
Sordera , Glicolatos , Pérdida Auditiva Provocada por Ruido , Animales , Ratones , Factor Neurotrófico Derivado del Encéfalo/uso terapéutico , Pérdida de Audición Oculta , Hidrogeles , Estimulación Acústica/efectos adversos , Umbral Auditivo , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Pérdida Auditiva Provocada por Ruido/etiología , Sordera/complicaciones , Oído Medio
3.
Adv Sci (Weinh) ; 11(12): e2305682, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38225752

RESUMEN

There are no Food and Drug Administration-approved drugs for treating noise-induced hearing loss (NIHL), reflecting the absence of clear specific therapeutic targets and effective delivery strategies. Noise trauma is demonstrated results in nicotinamide adenine dinucleotide (NAD+) downregulation and mitochondrial dysfunction in cochlear hair cells (HCs) and spiral ganglion neurons (SGNs) in mice, and NAD+ boosted by nicotinamide (NAM) supplementation maintains cochlear mitochondrial homeostasis and prevents neuroexcitatory toxic injury in vitro and ex vivo, also significantly ameliorated NIHL in vivo. To tackle the limited drug delivery efficiency due to sophisticated anatomical barriers and unique clearance pathway in ear, personalized NAM-encapsulated porous gelatin methacryloyl (PGMA@NAM) are developed based on anatomy topography of murine temporal bone by micro-computed tomography and reconstruction of round window (RW) niche, realizing hydrogel in situ implantation completely, NAM sustained-release and long-term auditory preservation in mice. This study strongly supports personalized PGMA@NAM as NIHL protection drug with effective inner ear delivery, providing new inspiration for drug-based treatment of NIHL.


Asunto(s)
Gelatina , Pérdida Auditiva Provocada por Ruido , Metacrilatos , Ratones , Animales , Pérdida Auditiva Provocada por Ruido/tratamiento farmacológico , Pérdida Auditiva Provocada por Ruido/prevención & control , Niacinamida/uso terapéutico , NAD , Preparaciones de Acción Retardada/uso terapéutico , Porosidad , Microtomografía por Rayos X
4.
Otolaryngol Head Neck Surg ; 170(3): 776-787, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37811692

RESUMEN

OBJECTIVE: Investigate the prevalence of hearing protection (HP) use and behavioral motivations and barriers among adults attending music venues. STUDY DESIGN: Cross-sectional online survey study. SETTING: Noise exposure levels at popular social music venues often exceed national guidelines. METHODS: Surveys were distributed on online music communities. Respondents (n = 2352) were asked about demographics, HP use at music venues, knowledge about noise exposure impact, and perceptions of HP use. Data were characterized through descriptive statistics. Multivariable regression analysis explored differences in knowledge and perception between HP users and nonusers. RESULTS: In this cohort (mean age 29 ± 7 years, 61% male), HP users were significantly more aware of the impact of music venues on hearing (P < .01), believed their hearing ability had decreased after attending music venues (P < 0.01), and believed HP could protect from hearing loss (P < .01) than non-HP users. HP nonusers most frequently cited never considering HP (14.45%) and apathy about it affecting music quality (12.71%). Common sources of HP information were recommended by a friend/peer. Multivariable regression analysis accounting for demographics, medical history, and attendance characteristics found belief that HP use at music venues could protect from hearing loss (ß = 0.64, 95% confidence interval [CI] = [0.49-0.78]) and HP use (ß = 1.73, 95% CI = [1.47-1.98]) were significantly associated with increased subjective enjoyment while wearing HP. CONCLUSION: HP users and nonusers have significantly different perceptions of HP use and its impact. Our findings have implications for understanding motivations and barriers related to HP use and developing strategies to promote HP use at music venues.


Asunto(s)
Sordera , Pérdida Auditiva Provocada por Ruido , Música , Adulto , Humanos , Masculino , Adulto Joven , Femenino , Pérdida Auditiva Provocada por Ruido/prevención & control , Pérdida Auditiva Provocada por Ruido/epidemiología , Estudios Transversales , Pruebas Auditivas , Audición
5.
Int J Occup Med Environ Health ; 36(5): 672-684, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37767777

RESUMEN

OBJECTIVES: Hearing loss is a major worldwide health issue affecting an estimated 1.5 billion people. Causes of hearing loss include genetics, chemicals, medications, lifestyle habits such as smoking, and noise. Noise is probably the largest contributing factor for hearing loss. Noise arises from the workplace, ambient environment, and leisure activities. The easiest noise sources to control are workplace and environmental. Workplace noise is unique in that the employer is responsible for the noise and the worker. Also, workers may be exposed to much higher levels of noise than they would accept elsewhere. Employers follow the traditional hierarchy of controls (substitution/engineering, administrative, personal protective equipment [PPE]). Substituting or engineering a lower noise level actually reduces the hazard present to the worker but demand more capital investment. Administrative and PPE controls can be effective, but enforcement and motivation are essential to reducing risk and there is still some hearing loss for a portion of the workers. The challenge is to estimate the costs more clearly for managers. A systems engineering approach can help visualize factors affecting hearing health. MATERIAL AND METHODS: In this study, a systems engineering causal loop diagram (CLD) was developed to aid in understanding factors and their interrelationships. The CLD was then modeled in VenSim. The model was informed from the authors' expertise in hearing health and exposure science. Also, a case study was used to test the model. The model can be used to inform decision-makers of holistic costs for noise control options, with potentially better hearing health outcomes for workers. RESULTS: The CLD and cost model demonstrated a 4.3 year payback period for the engineered noise control in the case study. CONCLUSIONS: Systems thinking using a CLD and cost model for occupational hearing health controls can aid organizational managers in applying resources to control risk. Int J Occup Med Environ Health. 2023;36(5):672-84.


Asunto(s)
Pérdida Auditiva Provocada por Ruido , Ruido en el Ambiente de Trabajo , Enfermedades Profesionales , Exposición Profesional , Humanos , Pérdida Auditiva Provocada por Ruido/prevención & control , Pérdida Auditiva Provocada por Ruido/etiología , Ruido en el Ambiente de Trabajo/efectos adversos , Ruido en el Ambiente de Trabajo/prevención & control , Enfermedades Profesionales/etiología , Lugar de Trabajo , Exposición Profesional/efectos adversos , Análisis de Sistemas
6.
Noise Health ; 25(116): 1-7, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37006113

RESUMEN

Objectives: Noise-induced cochlear synaptopathy is studied extensively in animal models. The diagnosis of synaptopathy in humans is challenging and the roles of many noninvasive measures in identifying synaptopathy are being explored. The acoustic middle ear muscle reflex (MEMR) can be considered as a vital tool since noise exposure affects the low-spontaneous rate fibers that play an important role in elicitation of MEMR. The present study aimed at measuring MEMR threshold and MEMR strength. Design: The study participants were divided into two groups. All the participants had normal-hearing thresholds. The control group consisted of 25 individuals with no occupational noise exposure whereas noise exposure group had 25 individuals who were exposed to occupational noise of 85 dBA for a minimum period of 1 year. MEMR threshold and strength was assessed for pure tones (500 Hz and 1000 Hz) and broadband noise. Results: The results showed that the MEMR threshold was similar in both the groups. MEMR strength was reduced in noise exposure group compared to control group. Conclusions: The results of the study suggest that MEMR strength could be used as a sensitive measure in identifying cochlear synaptopathy with careful consideration of the stimulus characteristics.


Asunto(s)
Oído Medio , Pérdida Auditiva Provocada por Ruido , Ruido en el Ambiente de Trabajo , Animales , Humanos , Estimulación Acústica , Umbral Auditivo/fisiología , Cóclea , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Audición , Pérdida Auditiva Provocada por Ruido/diagnóstico , Pérdida Auditiva Provocada por Ruido/etiología , Músculos , Reflejo/fisiología , Ruido en el Ambiente de Trabajo/efectos adversos
7.
Ear Hear ; 44(5): 1078-1087, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36939709

RESUMEN

OBJECTIVES: The aim of this study is to present an explanatory model of hearing loss in the Bering Strait region of Alaska in order to contextualize the results of a cluster randomized trial and propose implications for regional hearing-related health care. DESIGN: To promote ecological validity, or the generalizability of trial findings to real world experiences, qualitative methods (focus groups and interviews) were used within a mixed methods cluster randomized trial evaluating school hearing screening and follow-up processes in 15 communities in the Bering Strait region of Alaska. Focus groups were held between April and August 2017, and semistructured interviews were conducted between December 2018 and August 2019. Convenience sampling was used for six of the 11 focus groups to capture broad community feedback. Purposive sampling was used for the remaining five focus groups and for all interviews to capture a variety of experiences with hearing loss. Audio recordings of focus groups and interviews were transcribed, and both notes and transcripts were deidentified. All notes and transcripts were included in the analysis. The constant comparative method was used to develop a codebook by iteratively moving between transcripts and preliminary themes. Researchers then used this codebook to code data from all focus groups and interviews using qualitative analysis software (NVIVO 12, QSR International) and conducted thematic analyses to distill the findings presented in this article. RESULTS: Participants in focus groups (n = 116) and interviews (n = 101) shared perspectives in three domains: etiology, impact, and treatment of hearing loss. Regarding etiology, participants emphasized noise-induced hearing loss but also discussed infection-related hearing loss and various causes of ear infections. Participants described the impact of hearing loss on subsistence activities, while also detailing social, academic, and economic consequences. Participants described burdensome treatment pathways that are repetitive and often travel and time intensive. Communication breakdowns within these pathways were also described. Some participants spoke positively of increased access via onsite hearing health care services in "field clinics" as well as via telemedicine services. Others described weaknesses in these processes (infrequent field clinics and communication delays in telemedicine care pathways). Participants also described home remedies and stigma surrounding the treatment for hearing loss. CONCLUSIONS: Patient-centered health care requires an understanding of context. Explanatory models of illness are context-specific ways in which patients and their networks perceive and describe the experience of an illness or disability. In this study, we documented explanatory models of hearing loss to foster ecological validity and better understand the relevance of research findings to real-life hearing-related experiences. These findings suggest several areas that should be addressed in future implementation of hearing health care interventions elsewhere in rural Alaska, including management of repetitious treatments, awareness of infection-mediated hearing loss, mistrust, and communication breakdowns. For hearing-related health care in this region, these findings suggest localized recommendations for approaches for prevention and treatment. For community-based hearing research, this study offers an example of how qualitative methods can be used to generate ecologically valid (i.e., contextually grounded) findings.


Asunto(s)
Sordera , Pérdida Auditiva Provocada por Ruido , Telemedicina , Humanos , Alaska/epidemiología , Atención a la Salud , Pérdida Auditiva Provocada por Ruido/epidemiología , Investigación Cualitativa
8.
Biochem Pharmacol ; 210: 115457, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36806583

RESUMEN

NOD-like receptor protein 3 (NLRP3) inflammasomes trigger the inflammatory cascades and participate in various inflammatory diseases, including noise-induced hearing loss (NIHL) caused by oxidative stress. Recently, the anti-inflammatory traditional medicine oridonin (Ori) has been reported to provide hearing protection in mice after noise exposure by blocking the NLRP3-never in mitosis gene A-related kinase 7 (NEK7)-inflammasome complex assembly. Using RNA sequencing analysis, we further elucidated that interleukin 1 receptor type 2 (IL1R2) may be another crucial factor regulated by Ori to protect NIHL. We observed that IL1R2 expression was localized in spiral ganglion neurons, inner and outer hair cells, in Ori-treated mouse cochleae. Additionally, we confirmed that ectopic overexpression of IL1R2 in the inner ears of healthy mice using an adeno-associated virus delivery system significantly reduced noise-induced ribbon synapse lesions and hearing loss by blocking the "cytokine storm" in the inner ear. This study provides a novel theoretical foundation for guiding the clinical treatment of NIHL.


Asunto(s)
Oído Interno , Pérdida Auditiva Provocada por Ruido , Otitis , Ratones , Animales , Pérdida Auditiva Provocada por Ruido/tratamiento farmacológico , Pérdida Auditiva Provocada por Ruido/etiología , Pérdida Auditiva Provocada por Ruido/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Oído Interno/metabolismo , Oído Interno/patología , Inflamación/complicaciones , Antiinflamatorios/farmacología , Otitis/complicaciones , Receptores de Interleucina-1
9.
J Acoust Soc Am ; 153(1): 436, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36732247

RESUMEN

The middle ear muscle reflex (MEMR) in humans is a bilateral contraction of the middle ear stapedial muscle in response to moderate-to-high intensity acoustic stimuli. Clinically, MEMR thresholds have been used for differential diagnosis of otopathologies for decades. More recently, changes in MEMR amplitude or threshold have been proposed as an assessment for noise-induced synaptopathy, a subclinical form of cochlear damage characterized by suprathreshold hearing problems that occur as a function of inner hair cell (IHC) synaptic loss, including hearing-in-noise deficits, tinnitus, and hyperacusis. In animal models, changes in wideband MEMR immittance have been correlated with noise-induced synaptopathy; however, studies in humans have shown more varied results. The discrepancies observed across studies could reflect the heterogeneity of synaptopathy in humans more than the effects of parametric differences or relative sensitivity of the measurement. Whereas the etiology and degree of synaptopathy can be carefully controlled in animal models, synaptopathy in humans likely stems from multiple etiologies and thus can vary greatly across the population. Here, we explore the evolving research evidence of the MEMR response in relation to subclinical noise-induced cochlear damage and the MEMR as an early correlate of suprathreshold deficits.


Asunto(s)
Pérdida Auditiva Provocada por Ruido , Animales , Humanos , Pérdida Auditiva Provocada por Ruido/diagnóstico , Pérdida Auditiva Provocada por Ruido/etiología , Umbral Auditivo/fisiología , Cóclea/fisiología , Oído Medio , Estimulación Acústica/efectos adversos , Reflejo , Músculos , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología
10.
J Occup Environ Med ; 65(1): 48-52, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35959911

RESUMEN

OBJECTIVE: The aim of this study is to examine the awareness, opinions, and use of individual fit testing of hearing protection devices (HPDs) among occupational medicine practitioners. METHODS: Members of the Michigan Occupational and Environmental Medicine Association completed a 21-question survey on individual fit testing of HPDs. RESULTS: The survey response rate was 67%, 53% reported having heard of individual fit testing of HPDs, and 24% reported that their clinic/site performed the testing. Major barriers to its use were perceived time to perform (63%), cost (51%), lack of an Occupational Safety and Health Administration requirement (51%), and lack of long-term studies of its effectiveness (20%). CONCLUSIONS: Further work to educate practitioners about the availability, implementation, and potential benefits of fit testing of HPDs is needed if use of this technology is to become more widespread.


Asunto(s)
Medicina Ambiental , Pérdida Auditiva Provocada por Ruido , Ruido en el Ambiente de Trabajo , Enfermedades Profesionales , Exposición Profesional , Humanos , Pérdida Auditiva Provocada por Ruido/prevención & control , Michigan , Enfermedades Profesionales/prevención & control , Dispositivos de Protección de los Oídos , Ruido en el Ambiente de Trabajo/efectos adversos , Ruido en el Ambiente de Trabajo/prevención & control , Exposición Profesional/prevención & control , Audición , Personal de Salud
11.
Environ Pollut ; 312: 119853, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35985436

RESUMEN

The installation of marine renewable energy devices (MREDs, wind turbines and converters of wave, tidal and ocean thermal energy) has increased quickly in the last decade. There is a lack of knowledge concerning the effects of MREDs on benthic invertebrates that live in contact with the seabed. The European common cuttlefish (Sepia officinalis) is the most abundant cephalopod in the Northeast Atlantic and one of the three most valuable resources for English Channel fisheries. A project to build an offshore wind farm in the French bay of Saint-Brieuc, near the English Channel, raised concern about the possible acoustic impact on local cuttlefish communities. In this study, consisting of six exposure experiments, three types of noise were considered: 3 levels of pile-driving and 3 levels of drilling. The objectives were to assess possible associated changes in hatching and larva survival, and behavioural and ultrastructural effects on sensory organs of all life stages of S. officinalis populations. After exposure, damage was observed in the statocyst sensory epithelia (hair cell extrusion) in adults compared to controls, and no anti-predator reaction was observed. The exposed larvae showed a decreased survival rate with an increasing received sound level when they were exposed to maximum pile-driving and drilling sound levels (170 dB re 1 µPa2 and 167 dB re 1 µPa2, respectively). However, sound pressure levels's lower than 163 dB re 1 µPa2 were not found to elicit severe damage. Simulating a scenario of immobile organisms, eggs were exposed to a combination of both pile driving and drilling as they would be exposed to all operations without a chance to escape. In this scenario a decrease of hatching success was observed with increasing received sound levels.


Asunto(s)
Pérdida Auditiva Provocada por Ruido , Estimulación Acústica , Animales , Decapodiformes , Larva , Ruido/efectos adversos , Sonido
12.
Nutrients ; 14(15)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35893868

RESUMEN

Noise trauma-induced loss of ribbon synapses at the inner hair cells (IHC) of the cochlea may lead to hearing loss (HL), resulting in tinnitus. We are convinced that a successful and sustainable therapy of tinnitus has to treat both symptom and cause. One of these causes may be the mentioned loss of ribbon synapses at the IHC of the cochlea. In this study, we investigated the possible preventive and curative effects of the Ginkgo biloba extract EGb 761® on noise-induced synaptopathy, HL, and tinnitus development in Mongolian gerbils (Meriones unguiculatus). To this end, 37 male animals received EGb 761® or placebo orally 3 weeks before (16 animals) or after (21 animals) a monaural acoustic noise trauma (2 kHz, 115 dB SPL, 75 min). Animals' hearing thresholds were determined by auditory brainstem response (ABR) audiometry. A possible tinnitus percept was assessed by the gap prepulse inhibition acoustic startle reflex (GPIAS) response paradigm. Synaptopathy was quantified by cochlear immunofluorescence histology, counting the ribbon synapses of 15 IHCs at 11 different cochlear frequency locations per ear. We found a clear preventive effect of EGb 761® on ribbon synapse numbers with the surprising result of a significant increase in synaptic innervation on the trauma side relative to placebo-treated animals. Consequently, animals treated with EGb 761® before noise trauma did not develop a significant HL and were also less affected by tinnitus compared to placebo-treated animals. On the other hand, we did not see a curative effect (EGb 761® treatment after noise trauma) of the extract on ribbon synapse numbers and, consequently, a significant HL and no difference in tinnitus development compared to the placebo-treated animals. Taken together, EGb 761® prevented noise-induced HL and tinnitus by protecting from noise trauma-induced cochlear ribbon synapse loss; however, in our model, it did not restore lost ribbon synapses.


Asunto(s)
Pérdida Auditiva Provocada por Ruido , Acúfeno , Animales , Masculino , Estimulación Acústica/efectos adversos , Cóclea , Gerbillinae , Ginkgo biloba , Pérdida Auditiva Provocada por Ruido/tratamiento farmacológico , Pérdida Auditiva Provocada por Ruido/prevención & control , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Sinapsis , Acúfeno/tratamiento farmacológico , Acúfeno/etiología , Acúfeno/prevención & control
13.
J Acoust Soc Am ; 151(6): 4252, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35778178

RESUMEN

Intense sound sources, such as pile driving, airguns, and military sonars, have the potential to inflict hearing loss in marine mammals and are, therefore, regulated in many countries. The most recent criteria for noise induced hearing loss are based on empirical data collected until 2015 and recommend frequency-weighted and species group-specific thresholds to predict the onset of temporary threshold shift (TTS). Here, evidence made available after 2015 in light of the current criteria for two functional hearing groups is reviewed. For impulsive sounds (from pile driving and air guns), there is strong support for the current threshold for very high frequency cetaceans, including harbor porpoises (Phocoena phocoena). Less strong support also exists for the threshold for phocid seals in water, including harbor seals (Phoca vitulina). For non-impulsive sounds, there is good correspondence between exposure functions and empirical thresholds below 10 kHz for porpoises (applicable to assessment and regulation of military sonars) and between 3 and 16 kHz for seals. Above 10 kHz for porpoises and outside of the range 3-16 kHz for seals, there are substantial differences (up to 35 dB) between the predicted thresholds for TTS and empirical results. These discrepancies call for further studies.


Asunto(s)
Pérdida Auditiva Provocada por Ruido , Phoca , Phocoena , Estimulación Acústica , Animales , Fatiga Auditiva , Pérdida Auditiva Provocada por Ruido/diagnóstico , Pérdida Auditiva Provocada por Ruido/etiología , Pérdida Auditiva Provocada por Ruido/veterinaria , Ruido/efectos adversos , Phocoena/fisiología , Psicoacústica , Espectrografía del Sonido
14.
Artículo en Inglés | MEDLINE | ID: mdl-35564973

RESUMEN

Offering hearing protection devices (HPDs) to workers exposed to hazardous noise is a noise control strategy often used to prevent noise-induced hearing loss (NIHL). However, HPDs are used incorrectly and inconsistently, which explains their limited efficiency. Numerous models based on social cognition theories identify the significant factors associated with inconsistent HPD use and aim to improve HPD training programs and to increase HPD use. However, these models do not detail (dis)comfort aspects originating from complex interactions between characteristics of the triad "environment/person/HPD" while these aspects are known to largely influence HPD (mis)use. This paper proposes a holistic model explaining HPD (mis)use, based on the integration of a comfort model adapted to HPDs into an existing behavioral model already developed for HPDs. The model also takes into account the temporal dimension, which makes it possible to capture the scope of change in HPD-related health behaviors. This holistic description of HPD use could be used as a tool for stakeholders involved in HPD use to effectively prevent NIHL among workers.


Asunto(s)
Pérdida Auditiva Provocada por Ruido , Ruido en el Ambiente de Trabajo , Exposición Profesional , Dispositivos de Protección de los Oídos , Audición , Pérdida Auditiva Provocada por Ruido/prevención & control , Humanos , Ruido en el Ambiente de Trabajo/efectos adversos , Ruido en el Ambiente de Trabajo/prevención & control , Exposición Profesional/análisis
15.
J Neurosci ; 42(8): 1477-1490, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-34983817

RESUMEN

Listeners with sensorineural hearing loss (SNHL) struggle to understand speech, especially in noise, despite audibility compensation. These real-world suprathreshold deficits are hypothesized to arise from degraded frequency tuning and reduced temporal-coding precision; however, peripheral neurophysiological studies testing these hypotheses have been largely limited to in-quiet artificial vowels. Here, we measured single auditory-nerve-fiber responses to a connected speech sentence in noise from anesthetized male chinchillas with normal hearing (NH) or noise-induced hearing loss (NIHL). Our results demonstrated that temporal precision was not degraded following acoustic trauma, and furthermore that sharpness of cochlear frequency tuning was not the major factor affecting impaired peripheral coding of connected speech in noise. Rather, the loss of cochlear tonotopy, a hallmark of NH, contributed the most to both consonant-coding and vowel-coding degradations. Because distorted tonotopy varies in degree across etiologies (e.g., noise exposure, age), these results have important implications for understanding and treating individual differences in speech perception for people suffering from SNHL.SIGNIFICANCE STATEMENT Difficulty understanding speech in noise is the primary complaint in audiology clinics and can leave people with sensorineural hearing loss (SNHL) suffering from communication difficulties that affect their professional, social, and family lives, as well as their mental health. We measured single-neuron responses from a preclinical SNHL animal model to characterize salient neural-coding deficits for naturally spoken speech in noise. We found the major mechanism affecting neural coding was not a commonly assumed factor, but rather a disruption of tonotopicity, the systematic mapping of acoustic frequency to cochlear place that is a hallmark of normal hearing. Because the degree of distorted tonotopy varies across hearing-loss etiologies, these results have important implications for precision audiology approaches to diagnosis and treatment of SNHL.


Asunto(s)
Pérdida Auditiva Provocada por Ruido , Pérdida Auditiva Sensorineural , Percepción del Habla , Estimulación Acústica/métodos , Animales , Umbral Auditivo/fisiología , Pérdida Auditiva Sensorineural/etiología , Humanos , Masculino , Ruido , Habla , Percepción del Habla/fisiología
16.
J Assoc Res Otolaryngol ; 23(1): 59-73, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34796410

RESUMEN

Experiments in rodent animal models help to reveal the characteristics and underlying mechanisms of pathologies related to hearing loss such as tinnitus or hyperacusis. However, a reliable understanding is still lacking. Here, four different rat strains (Sprague Dawley, Wistar, Long Evans, and Lister Hooded) underwent comparative analysis of electrophysiological (auditory brainstem responses, ABRs) and behavioral measures after noise trauma induction to differentiate between strain-dependent trauma effects and more consistent changes across strains, such as frequency dependence or systematic temporal changes. Several hearing- and trauma-related characteristics were clearly strain-dependent. Lister Hooded rats had especially high hearing thresholds and were unable to detect a silent gap in continuous background noise but displayed the highest startle amplitudes. After noise exposure, ABR thresholds revealed a strain-dependent pattern of recovery. ABR waveforms varied in detail among rat strains, and the difference was most prominent at later peaks arising approximately 3.7 ms after stimulus onset. However, changes in ABR waveforms after trauma were small compared to consistent strain-dependent differences between individual waveform components. At the behavioral level, startle-based gap-prepulse inhibition (gap-PPI) was used to evaluate the occurrence and characteristics of tinnitus after noise exposure. A loss of gap-PPI was found in 33% of Wistar, 50% of Sprague Dawley, and 75% of Long Evans rats. Across strains, the most consistent characteristic was a frequency-specific pattern of the loss of gap-PPI, with the highest rates at approximately one octave above trauma. An additional range exhibiting loss of gap-PPI directly below trauma frequency was revealed in Sprague Dawley and Long Evans rats. Further research should focus on these frequency ranges when investigating the underlying mechanisms of tinnitus induction.


Asunto(s)
Pérdida Auditiva Provocada por Ruido , Acúfeno , Estimulación Acústica , Animales , Umbral Auditivo/fisiología , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley , Ratas Wistar , Reflejo de Sobresalto/fisiología , Acúfeno/diagnóstico , Acúfeno/etiología
17.
Front Public Health ; 10: 1070023, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36726614

RESUMEN

Objectives: National Health Insurance claims data were used to compare the incidence of occupational diseases, avoidable hospitalization, and all-cause death standardized incidence ratio and hazard ratio between firefighters and non-firefighters. Methods: The observation period of the study was from 2006 to 2015 and a control group (general workers and national and regional government officers/public educational officers) and a firefighter group was established. The dependent variables were occupational diseases, avoidable hospitalization (AH), and all-cause death. The analysis was conducted in three stages. First, the standardized incidence ratios were calculated using the indirect standardization method to compare the prevalence of the disease between the groups (firefighter and non-firefighter groups). Second, propensity score matching was performed for each disease in the control group. Third, the Cox proportional hazards model was applied by matching the participants. Results: The standardized incidence ratio and Cox regression analyses revealed higher rates of noise-induced hearing loss, ischemic heart disease, asthma, chronic obstructive pulmonary disease, cancer, back pain, admission due to injury, mental illness, depression, and AH for firefighters than general workers. Similarly, the rates of noise-induced hearing loss, ischemic heart disease, asthma, chronic obstructive pulmonary disease, back pain, admission due to injury, mental illness, depression, and AH were higher in the firefighter group than in the national and regional government officer/public educational officer group. Conclusions: The standardized incidence ratios and hazard ratios for most diseases were high for firefighters. Therefore, besides the prevention and management of diseases from a preventive medical perspective, management programs, including social support and social prescriptions in the health aspect, are needed.


Asunto(s)
Asma , Pérdida Auditiva Provocada por Ruido , Isquemia Miocárdica , Enfermedades Profesionales , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Estudios de Cohortes , Pérdida Auditiva Provocada por Ruido/complicaciones , Enfermedades Profesionales/epidemiología , Enfermedades Profesionales/prevención & control , Asma/complicaciones , Programas Nacionales de Salud , Hospitalización
18.
Artículo en Chino | MEDLINE | ID: mdl-34628844

RESUMEN

Noise- induced hearing loss usually refers to auditory impairment which is caused by long-term exposure to noise. The occupational noise problem is serious and urgently needs to be addressed, along with the lack of effective treatments. Recent studies have shown that the imbalance between oxidation and antioxidation is the source of the disease. To correct the redox reaction imbalance and to maintain an equilibrium of the redox reaction have always been the research focus of the prevention and treatment in noise induced hearing loss. This article reviews antioxidant therapy and prevention in noise induced hearing loss, including antioxidants, antioxidant enzymes and herbal medicine.


Asunto(s)
Pérdida Auditiva Provocada por Ruido , Ruido en el Ambiente de Trabajo , Enfermedades Profesionales , Antioxidantes/uso terapéutico , Pérdida Auditiva Provocada por Ruido/prevención & control , Humanos , Ruido en el Ambiente de Trabajo/efectos adversos , Ruido en el Ambiente de Trabajo/prevención & control
19.
Mar Drugs ; 19(8)2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34436282

RESUMEN

One of the well-known causes of hearing loss is noise. Approximately 31.1% of Americans between the ages of 20 and 69 years (61.1 million people) have high-frequency hearing loss associated with noise exposure. In addition, recurrent noise exposure can accelerate age-related hearing loss. Phlorofucofuroeckol A (PFF-A) and dieckol, polyphenols extracted from the brown alga Ecklonia cava, are potent antioxidant agents. In this study, we investigated the effect of PFF-A and dieckol on the consequences of noise exposure in mice. In 1,1-diphenyl-2-picrylhydrazyl assay, dieckol and PFF-A both showed significant radical-scavenging activity. The mice were exposed to 115 dB SPL of noise one single time for 2 h. Auditory brainstem response(ABR) threshold shifts 4 h after 4 kHz noise exposure in mice that received dieckol were significantly lower than those in the saline with noise group. The high-PFF-A group showed a lower threshold shift at click and 16 kHz 1 day after noise exposure than the control group. The high-PFF-A group also showed higher hair cell survival than in the control at 3 days after exposure in the apical turn. These results suggest that noise-induced hair cell damage in cochlear and the ABR threshold shift can be alleviated by dieckol and PFF-A in the mouse. Derivatives of these compounds may be applied to individuals who are inevitably exposed to noise, contributing to the prevention of noise-induced hearing loss with a low probability of adverse effects.


Asunto(s)
Antioxidantes/uso terapéutico , Benzofuranos/uso terapéutico , Dioxinas/uso terapéutico , Pérdida Auditiva Provocada por Ruido/tratamiento farmacológico , Kelp , Extractos Vegetales/uso terapéutico , Animales , Antioxidantes/farmacología , Organismos Acuáticos , Benzofuranos/farmacología , Cóclea/efectos de los fármacos , Dioxinas/farmacología , Modelos Animales de Enfermedad , Potenciales Evocados Auditivos del Tronco Encefálico/efectos de los fármacos , Células Ciliadas Auditivas/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Fitoterapia , Extractos Vegetales/farmacología
20.
Artículo en Inglés | MEDLINE | ID: mdl-33922296

RESUMEN

BACKGROUND: Acute acoustic trauma (AAT) ranks, among others, as one common cause of inner ear function impairment, especially in terms of military personnel, who are at an increased exposure to impulse noises from firearms. AIM OF THIS STUDY: 1. We wanted to demonstrate whether early treatment of AAT means a higher chance for the patient to improve hearing after trauma. 2. We find the answer to the question of whether hyperbaric oxygen therapy (HBO2) has a positive effect in the treatment of AAT. METHODS: We retrospectively analyzed data for the period 2004-2019 in patients with AAT. We evaluated the therapeutic success of corticosteroids and HBO2 in a cohort of patients with AAT n = 108 patients/n = 141 affected ears. RESULTS: Hearing improvement after treatment was recorded in a total of 111 ears (79%). In terms of the data analysis we were able to ascertain, utilizing success of treatment versus timing: within 24 h following the onset of therapy in 56 (40%) ears-54 (96%) ears had improved; within seven days following the onset the therapy was used in 55 (39%) ears-41 (74%) ears had improved; after seven days the therapy started in 30 (21%) ears-16 (53%) ears had improved. Parameter latency of the beginning of the treatment of AAT was statistically significant (p = 0.001 and 0.017, respectively). The success of the medical protocols was apparent in both groups-group I (treated without HBO2): n = 61 ears, of which 50 (82%) improved, group II (treated with HBO2): n = 73 ears, of which 56 (77%) improved. Group II shows improvement at most frequencies (500-2000 Hz). The most serious sensorineural hearing loss after AAT was at a frequency of 6000 Hz. CONCLUSION: Analysis of our data shows that there is a statistically significant higher rate of improvement if AAT treatment was initiated within the first seven days after acoustic trauma. Early treatment of AAT leads to better treatment success. HBO2 is considered a rescue therapy for the treatment of AAT. According to our recommendation, it is desirable to start corticosteroid therapy immediately after acoustic trauma. If hearing does not improve during the first seven days of corticosteroid therapy, then HBO2 treatment should be initiated.


Asunto(s)
Pérdida Auditiva Provocada por Ruido , Oxigenoterapia Hiperbárica , Servicios de Salud Militares , Corticoesteroides/uso terapéutico , República Checa , Pérdida Auditiva Provocada por Ruido/tratamiento farmacológico , Humanos , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA