Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochem Pharmacol ; 210: 115457, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36806583

RESUMEN

NOD-like receptor protein 3 (NLRP3) inflammasomes trigger the inflammatory cascades and participate in various inflammatory diseases, including noise-induced hearing loss (NIHL) caused by oxidative stress. Recently, the anti-inflammatory traditional medicine oridonin (Ori) has been reported to provide hearing protection in mice after noise exposure by blocking the NLRP3-never in mitosis gene A-related kinase 7 (NEK7)-inflammasome complex assembly. Using RNA sequencing analysis, we further elucidated that interleukin 1 receptor type 2 (IL1R2) may be another crucial factor regulated by Ori to protect NIHL. We observed that IL1R2 expression was localized in spiral ganglion neurons, inner and outer hair cells, in Ori-treated mouse cochleae. Additionally, we confirmed that ectopic overexpression of IL1R2 in the inner ears of healthy mice using an adeno-associated virus delivery system significantly reduced noise-induced ribbon synapse lesions and hearing loss by blocking the "cytokine storm" in the inner ear. This study provides a novel theoretical foundation for guiding the clinical treatment of NIHL.


Asunto(s)
Oído Interno , Pérdida Auditiva Provocada por Ruido , Otitis , Ratones , Animales , Pérdida Auditiva Provocada por Ruido/tratamiento farmacológico , Pérdida Auditiva Provocada por Ruido/etiología , Pérdida Auditiva Provocada por Ruido/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Oído Interno/metabolismo , Oído Interno/patología , Inflamación/complicaciones , Antiinflamatorios/farmacología , Otitis/complicaciones , Receptores de Interleucina-1
2.
Sci Rep ; 10(1): 18063, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33093490

RESUMEN

Noise-induced hearing loss (NIHL) is a common health concern with significant social, psychological, and cognitive implications. Moderate levels of acoustic overstimulation associated with tinnitus and impaired speech perception cause cochlear synaptopathy, characterized physiologically by reduction in wave I of the suprathreshold auditory brainstem response (ABR) and reduced number of synapses between sensory hair cells and auditory neurons. The unfolded protein response (UPR), an endoplasmic reticulum stress response pathway, has been implicated in the pathogenesis and treatment of NIHL as well as neurodegeneration and synaptic damage in the brain. In this study, we used the small molecule UPR modulator Integrated Stress Response InhiBitor (ISRIB) to treat noise-induced cochlear synaptopathy in a mouse model. Mice pretreated with ISRIB prior to noise-exposure were protected against noise-induced synapse loss. Male, but not female, mice also exhibited ISRIB-mediated protection against noise-induced suprathreshold ABR wave-I amplitude reduction. Female mice had higher baseline wave-I amplitudes but greater sensitivity to noise-induced wave-I reduction. Our results suggest that the UPR is implicated in noise-induced cochlear synaptopathy, and can be targeted for treatment.


Asunto(s)
Acetamidas/farmacología , Acetamidas/uso terapéutico , Estimulación Acústica/efectos adversos , Cóclea/patología , Ciclohexilaminas/farmacología , Ciclohexilaminas/uso terapéutico , Pérdida Auditiva Provocada por Ruido/patología , Pérdida Auditiva Provocada por Ruido/prevención & control , Caracteres Sexuales , Sinapsis/patología , Respuesta de Proteína Desplegada/efectos de los fármacos , Respuesta de Proteína Desplegada/fisiología , Animales , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Femenino , Células Ciliadas Auditivas , Pérdida Auditiva Provocada por Ruido/etiología , Pérdida Auditiva Provocada por Ruido/terapia , Masculino , Ratones Endogámicos CBA , Percepción del Habla , Acúfeno
3.
Neurosci Lett ; 725: 134910, 2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32171805

RESUMEN

OBJECTIVE: Nicotinamide riboside (NR) has been proved to protect the hearing. To achieve animal models of temporary threshold shift (TTS) and permanent threshold shift (PTS) respectively, evaluate the dynamic change of ribbon synapse before and after NR administration. METHODS: Mice were divided into control group, noise exposure (NE) group and NR group. The noise was exposed to NE and NR group, and NR was injected before noise exposure. Auditory brainstem response (ABR), ribbon synapse count and cochlear morphology were tested, as well as the concentration of hydrogen peroxide (H2O2) and ATP. RESULTS: Ribbon synapse count decrease with the intensity of noise exposure, and the cochlear morphology remains stable during TTS and was damaged during PTS. NR promotes the oxidation resistance to protect the synapse and the inner ear morphology. CONCLUSION: Our findings suggest that TTS mice are more vulnerable to noise, and NR can promote the recovery of the synapse count to protect the animals' hearing.


Asunto(s)
Estimulación Acústica/efectos adversos , Células Ciliadas Auditivas Internas/fisiología , Pérdida Auditiva Provocada por Ruido/prevención & control , Niacinamida/análogos & derivados , Compuestos de Piridinio/uso terapéutico , Recuperación de la Función/fisiología , Sinapsis/fisiología , Animales , Células Ciliadas Auditivas Internas/efectos de los fármacos , Células Ciliadas Auditivas Internas/patología , Pérdida Auditiva Provocada por Ruido/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Niacinamida/farmacología , Niacinamida/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Compuestos de Piridinio/farmacología , Sinapsis/efectos de los fármacos , Sinapsis/patología
4.
Trends Hear ; 23: 2331216519877301, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31558119

RESUMEN

Although there is strong histological evidence for age-related synaptopathy in humans, evidence for the existence of noise-induced cochlear synaptopathy in humans is inconclusive. Here, we sought to evaluate the relative contributions of age and noise exposure to cochlear synaptopathy using a series of electrophysiological and behavioral measures. We extended an existing cohort by including 33 adults in the age range 37 to 60, resulting in a total of 156 participants, with the additional older participants resulting in a weakening of the correlation between lifetime noise exposure and age. We used six independent regression models (corrected for multiple comparisons), in which age, lifetime noise exposure, and high-frequency audiometric thresholds were used to predict measures of synaptopathy, with a focus on differential measures. The models for auditory brainstem responses, envelope-following responses, interaural phase discrimination, and the co-ordinate response measure of speech perception were not statistically significant. However, both age and noise exposure were significant predictors of performance on the digit triplet test of speech perception in noise, with greater noise exposure (unexpectedly) predicting better performance in the 80 dB sound pressure level (SPL) condition and greater age predicting better performance in the 40 dB SPL condition. Amplitude modulation detection thresholds were also significantly predicted by age, with older listeners performing better than younger listeners at 80 dB SPL. Overall, the results are inconsistent with the predicted effects of synaptopathy.


Asunto(s)
Cóclea/patología , Pérdida Auditiva Provocada por Ruido/patología , Estimulación Acústica , Adulto , Factores de Edad , Audiometría de Tonos Puros , Umbral Auditivo/fisiología , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ruido , Percepción del Habla
5.
Hear Res ; 379: 59-68, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31096078

RESUMEN

The TLR-4/NF-κB signaling pathway is involved in innate immunity and inflammation induced by trauma. The present study aimed to investigate possible TLR-4/NF-κB signaling pathway activation in the cochlea associated with acoustic trauma that might induce cochlear inflammation. A total of 72 rats were exposed to white noise at 120 dB SPL for 8 h per day repeated over 2 successive days. Auditory brainstem responses (ABR) were measured in animals before noise exposure and 0 d (PE0), 1 d (PE1), 3 d (PE3), 7 d (PE7), and 14 d (PE14) after noise exposure. At each defined time point, animals were sacrificed, and cochleae were collected to evaluate the expression levels of TLR4, MyD88, cytoplasmic NF-κB p65, IκBα, TNF-α, and IL-1ß using western blotting and NF-κB p65 transcriptional activity using an NF-κB p65 Transcription Factor Assay Kit. Cochlear localizations of TLR-4, TNF-α and IL-1ß were analyzed using immunohistochemistry in paraffin-embedded slices. The nuclear translocation of NF-κB p65 was evaluated using immunofluorescence staining in paraffin-embedded slices. DNA fragmentation was measured with a TUNEL assay in paraffin-embedded slices. We found a stable permanent threshold shift after noise exposure. After noise exposure, expression levels of TLR-4, MyD88, IκBα, TNF-α, and IL-1ß were significantly upregulated (PE3); DNA binding activity of NF-κB p65 was also significantly enhanced (PE3), while the cytoplasmic NF-κB p65 levels were unchanged. TLR-4, TNF-α, and IL-1ß immunostaining intensities were substantially enhanced in spiral ganglion cells and spiral ligament fibrocytes after noise exposure (PE3). In conclusion, the results of this study indicate that the TLR-4/NF-κB signaling pathway is activated in noise-exposed cochleae and that it participates in noise-induced cochlear inflammation.


Asunto(s)
Cóclea/metabolismo , Pérdida Auditiva Provocada por Ruido/metabolismo , Receptor Toll-Like 4/metabolismo , Factor de Transcripción ReIA/metabolismo , Estimulación Acústica , Animales , Umbral Auditivo , Cóclea/patología , Enfermedades Cocleares/metabolismo , Enfermedades Cocleares/patología , Fragmentación del ADN , Modelos Animales de Enfermedad , Potenciales Evocados Auditivos del Tronco Encefálico , Pérdida Auditiva Provocada por Ruido/patología , Pérdida Auditiva Provocada por Ruido/fisiopatología , Inmunohistoquímica , Inflamación/metabolismo , Inflamación/patología , Masculino , Ruido , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Factores de Tiempo
6.
Hear Res ; 370: 113-119, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30366194

RESUMEN

Cochlear synaptopathy, the loss of synaptic connections between inner hair cells (IHCs) and auditory nerve fibers, has been documented in animal models of aging, noise, and ototoxic drug exposure, three common causes of acquired sensorineural hearing loss in humans. In each of these models, synaptopathy begins prior to changes in threshold sensitivity or loss of hair cells; thus, this underlying injury can be hidden behind a normal threshold audiogram. Since cochlear synaptic loss cannot be directly confirmed in living humans, non-invasive assays will be required for diagnosis. In animals with normal auditory thresholds, the amplitude of wave 1 of the auditory brainstem response (ABR) is highly correlated with synapse counts. However, synaptopathy can also co-occur with threshold elevation, complicating the use of the ABR alone as a diagnostic measure. Using an age-graded series of mice and a partial least squares regression approach to model structure-function relationships, this study shows that the combination of a small number of ABR and distortion product otoacoustic emission (DPOAE) measurements can predict synaptic ribbon counts at various cochlear frequencies to within 1-2 synapses per IHC of their true value. In contrast, the model, trained using the age-graded series of mice, overpredicted synapse counts in a small sample of young noise-exposed mice, perhaps due to differences in the underlying pattern of damage between aging and noise-exposed mice. These results provide partial validation of a noninvasive approach to identify synaptic/neuronal loss in humans using ABRs and DPOAEs.


Asunto(s)
Cóclea/patología , Enfermedades Cocleares/diagnóstico , Potenciales Evocados Auditivos del Tronco Encefálico , Pérdida Auditiva Provocada por Ruido/diagnóstico , Sinapsis/patología , Estimulación Acústica , Factores de Edad , Oxidorreductasas de Alcohol , Animales , Umbral Auditivo , Biomarcadores/metabolismo , Proteínas Co-Represoras , Cóclea/metabolismo , Enfermedades Cocleares/metabolismo , Enfermedades Cocleares/patología , Enfermedades Cocleares/fisiopatología , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Pérdida Auditiva Provocada por Ruido/metabolismo , Pérdida Auditiva Provocada por Ruido/patología , Pérdida Auditiva Provocada por Ruido/fisiopatología , Inmunohistoquímica , Análisis de los Mínimos Cuadrados , Aprendizaje Automático , Masculino , Ratones Endogámicos CBA , Ruido , Fosfoproteínas/metabolismo , Valor Predictivo de las Pruebas , Receptores AMPA/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Sinapsis/metabolismo
7.
Sci Rep ; 8(1): 10740, 2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-30013117

RESUMEN

When exposed to continuous high-level noise, cochlear neurons are more susceptible to damage than hair cells (HCs): exposures causing temporary threshold shifts (TTS) without permanent HC damage can destroy ribbon synapses, permanently silencing the cochlear neurons they formerly activated. While this "hidden hearing loss" has little effect on thresholds in quiet, the neural degeneration degrades hearing in noise and may be an important elicitor of tinnitus. Similar sensory pathologies are seen after blast injury, even if permanent threshold shift (PTS) is minimal. We hypothesized that, as for continuous-noise, blasts causing only TTS can also produce cochlear synaptopathy with minimal HC loss. To test this, we customized a shock tube design to generate explosive-like impulses, exposed anesthetized chinchillas to blasts with peak pressures from 160-175 dB SPL, and examined the resultant cochlear dysfunction and histopathology. We found exposures that cause large >40 dB TTS with minimal PTS or HC loss often cause synapse loss of 20-45%. While synaptopathic continuous-noise exposures can affect large areas of the cochlea, blast-induced synaptopathy was more focal, with localized damage foci in midcochlear and basal regions. These results clarify the pathology underlying blast-induced sensory dysfunction, and suggest possible links between blast injury, hidden hearing loss, and tinnitus.


Asunto(s)
Traumatismos por Explosión/patología , Células Ciliadas Auditivas/patología , Pérdida Auditiva Provocada por Ruido/patología , Sinapsis/patología , Acúfeno/patología , Estimulación Acústica/efectos adversos , Estimulación Acústica/instrumentación , Estimulación Acústica/métodos , Animales , Audiometría , Traumatismos por Explosión/diagnóstico , Traumatismos por Explosión/etiología , Chinchilla , Modelos Animales de Enfermedad , Femenino , Pérdida Auditiva Provocada por Ruido/diagnóstico , Pérdida Auditiva Provocada por Ruido/etiología , Humanos , Acúfeno/diagnóstico , Acúfeno/etiología
8.
Hear Res ; 364: 142-151, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29680183

RESUMEN

In rodents, noise exposure can destroy synapses between inner hair cells and auditory nerve fibers ("cochlear synaptopathy") without causing hair cell loss. Noise-induced cochlear synaptopathy usually leaves cochlear thresholds unaltered, but is associated with long-term reductions in auditory brainstem response (ABR) amplitudes at medium-to-high sound levels. This pathophysiology has been suggested to degrade speech perception in noise (SPiN), perhaps explaining why SPiN ability varies so widely among audiometrically normal humans. The present study is the first to test for evidence of cochlear synaptopathy in humans with significant SPiN impairment. Individuals were recruited on the basis of self-reported SPiN difficulties and normal pure tone audiometric thresholds. Performance on a listening task identified a subset with "verified" SPiN impairment. This group was matched with controls on the basis of age, sex, and audiometric thresholds up to 14 kHz. ABRs and envelope-following responses (EFRs) were recorded at high stimulus levels, yielding both raw amplitude measures and within-subject difference measures. Past exposure to high sound levels was assessed by detailed structured interview. Impaired SPiN was not associated with greater lifetime noise exposure, nor with any electrophysiological measure. It is conceivable that retrospective self-report cannot reliably capture noise exposure, and that ABRs and EFRs offer limited sensitivity to synaptopathy in humans. Nevertheless, the results do not support the notion that noise-induced synaptopathy is a significant etiology of SPiN impairment with normal audiometric thresholds. It may be that synaptopathy alone does not have significant perceptual consequences, or is not widespread in humans with normal audiograms.


Asunto(s)
Cóclea/fisiopatología , Potenciales Evocados Auditivos del Tronco Encefálico , Pérdida Auditiva Provocada por Ruido/psicología , Ruido/efectos adversos , Enmascaramiento Perceptual , Percepción del Habla , Estimulación Acústica , Adolescente , Adulto , Audiometría de Tonos Puros , Audiometría del Habla , Umbral Auditivo , Estudios de Casos y Controles , Cóclea/patología , Cognición , Escolaridad , Femenino , Pérdida Auditiva Provocada por Ruido/patología , Pérdida Auditiva Provocada por Ruido/fisiopatología , Humanos , Masculino , Adulto Joven
9.
Hear Res ; 357: 33-45, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29175767

RESUMEN

This report explores the consequences of acoustic overexposures on hearing in noisy environments for two macaque monkeys trained to perform a reaction time detection task using a Go/No-Go lever release paradigm. Behavioral and non-invasive physiological assessments were obtained before and after narrowband noise exposure. Physiological measurements showed elevated auditory brainstem response (ABR) thresholds and absent distortion product otoacoustic emissions (DPOAEs) post-exposure relative to pre-exposure. Audiograms revealed frequency specific increases in tone detection thresholds, with the greatest increases at the exposure band frequency and higher. Masked detection was affected in a similar frequency specific manner: threshold shift rates (change of masked threshold per dB increase in noise level) were lower than pre-exposure values at frequencies higher than the exposure band. Detection thresholds in sinusoidally amplitude modulated (SAM) noise post-exposure showed no difference from those in unmodulated noise, whereas pre-exposure masked detection thresholds were lower in the presence of SAM noise compared to unmodulated noise. These frequency-dependent results were correlated with cochlear histopathological changes in monkeys that underwent similar noise exposure. These results reveal that behavioral and physiological effects of noise exposure in macaques are similar to those seen in humans and provide preliminary information on the relationship between noise exposure, cochlear pathology and perceptual changes in hearing within individual subjects.


Asunto(s)
Conducta Animal , Cóclea/fisiopatología , Pérdida Auditiva Provocada por Ruido/fisiopatología , Pérdida Auditiva Provocada por Ruido/psicología , Ruido/efectos adversos , Percepción de la Altura Tonal , Detección de Señal Psicológica , Estimulación Acústica , Animales , Umbral Auditivo , Cóclea/patología , Potenciales Evocados Auditivos del Tronco Encefálico , Pérdida Auditiva Provocada por Ruido/patología , Macaca , Masculino , Emisiones Otoacústicas Espontáneas , Distorsión de la Percepción , Enmascaramiento Perceptual
10.
Anat Rec (Hoboken) ; 300(12): 2220-2232, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28806500

RESUMEN

Neuronal damage in primary auditory cortex (A1) underlies complex manifestations of noise exposure, prevention of which is critical for health maintenance. Acid sphingomyelinase (ASM) catalyzes generation of ceramide (Cer) which if over-activated mediates neuronal disorders in various diseases. Tricyclic antidepressants (TCAs), by restraining ASM/Cer, benefits multiple neuronal anomalies, so we aimed to elucidate the effect of TCA on noise induced hearing loss and auditory cortex derangement, unraveling mechanism involved. The mice were exposed to noise with frequencies of 20-20 KHz and intensity of 95 dB. Doxepin hydrochloride (DOX), a kind of TCAs, was given intragastrically by 5 mg kg-1  days-1 . Morphology of neurons was examined using hematoxylin-eosin (HE) and Nissl staining. Apoptosis was assayed through transferase-mediated dUTP nick end labeling (TUNEL). The content of ASM, Cer or acid ceramidase (AC) was detected by western blot and immunohistochemistry analysis. We demonstrated intense, broad band noise caused upward shift of auditory brainstem response (ABR) threshold to sound over frequencies 4-32 KHz, with prominent morphologic changes and enhanced apoptosis in neurons of primary auditory cortex (A1) (P < 0.05). DOX partly restored noise-caused hearing loss alleviating morphologic changes or apoptosis remarkably (P < 0.05). Both ASM and Cer abundance were elevated significantly by noise which was reversed upon DOX treatment (P < 0.05), but neither noise nor DOX altered AC content. DOX had no influence on hearing, neuronal morphology or ASM/Cer in control mice. Our result suggests DOX palliates noise induced hearing loss and neuronal damage in auditory cortex by correcting over-activation of ASM/Cer without hampering intrinsic behavior of it. Anat Rec, 300:2220-2232, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Corteza Auditiva/metabolismo , Ceramidas/metabolismo , Doxepina/farmacología , Pérdida Auditiva Provocada por Ruido/metabolismo , Ruido/efectos adversos , Esfingomielina Fosfodiesterasa/metabolismo , Estimulación Acústica/efectos adversos , Animales , Antidepresivos Tricíclicos/farmacología , Antidepresivos Tricíclicos/uso terapéutico , Corteza Auditiva/efectos de los fármacos , Corteza Auditiva/patología , Ceramidas/antagonistas & inhibidores , Doxepina/uso terapéutico , Pérdida Auditiva Provocada por Ruido/tratamiento farmacológico , Pérdida Auditiva Provocada por Ruido/patología , Masculino , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Esfingomielina Fosfodiesterasa/antagonistas & inhibidores
11.
Med Sci Monit ; 22: 4623-4635, 2016 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-27893698

RESUMEN

BACKGROUND The goal of the fMRI experiment was to explore the involvement of central auditory structures in pathomechanisms of a behaviorally manifested auditory temporary threshold shift in humans. MATERIAL AND METHODS The material included 18 healthy volunteers with normal hearing. Subjects in the exposure group were presented with 15 min of binaural acoustic overstimulation of narrowband noise (3 kHz central frequency) at 95 dB(A). The control group was not exposed to noise but instead relaxed in silence. Auditory fMRI was performed in 1 session before and 3 sessions after acoustic overstimulation and involved 3.5-4.5 kHz sweeps. RESULTS The outcomes of the study indicate a possible effect of acoustic overstimulation on central processing, with decreased brain responses to auditory stimulation up to 20 min after exposure to noise. The effect can be seen already in the primary auditory cortex. Decreased BOLD signal change can be due to increased excitation thresholds and/or increased spontaneous activity of auditory neurons throughout the auditory system. CONCLUSIONS The trial shows that fMRI can be a valuable tool in acoustic overstimulation studies but has to be used with caution and considered complimentary to audiological measures. Further methodological improvements are needed to distinguish the effects of TTS and neuronal habituation to repetitive stimulation.


Asunto(s)
Corteza Auditiva/fisiología , Fatiga Auditiva/fisiología , Umbral Auditivo/fisiología , Estimulación Acústica , Acústica , Adulto , Corteza Auditiva/diagnóstico por imagen , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Femenino , Pérdida Auditiva Provocada por Ruido/diagnóstico por imagen , Pérdida Auditiva Provocada por Ruido/patología , Humanos , Imagen por Resonancia Magnética , Masculino , Ruido , Adulto Joven
12.
J Neurosci ; 36(28): 7497-510, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27413159

RESUMEN

UNLABELLED: Noise-induced hearing loss (NIHL) is a major unresolved public health problem. Here, we investigate pathomechanisms of sensory hair cell death and suggest a novel target for protective intervention. Cellular survival depends upon maintenance of energy homeostasis, largely by AMP-activated protein kinase (AMPK). In response to a noise exposure in CBA/J mice, the levels of phosphorylated AMPKα increased in hair cells in a noise intensity-dependent manner. Inhibition of AMPK via siRNA or the pharmacological inhibitor compound C attenuated noise-induced loss of outer hair cells (OHCs) and synaptic ribbons, and preserved auditory function. Additionally, noise exposure increased the activity of the upstream AMPK kinase liver kinase B1 (LKB1) in cochlear tissues. The inhibition of LKB1 by siRNA attenuated the noise-increased phosphorylation of AMPKα in OHCs, reduced the loss of inner hair cell synaptic ribbons and OHCs, and protected against NIHL. These results indicate that noise exposure induces hair cell death and synaptopathy by activating AMPK via LKB1-mediated pathways. Targeting these pathways may provide a novel route to prevent NIHL. SIGNIFICANCE STATEMENT: Our results demonstrate for the first time that the activation of AMP-activated protein kinase (AMPK) α in sensory hair cells is noise intensity dependent and contributes to noise-induced hearing loss by mediating the loss of inner hair cell synaptic ribbons and outer hair cells. Noise induces the phosphorylation of AMPKα1 by liver kinase B1 (LKB1), triggered by changes in intracellular ATP levels. The inhibition of AMPK activation by silencing AMPK or LKB1, or with the pharmacological inhibitor compound C, reduced outer hair cell and synaptic ribbon loss as well as noise-induced hearing loss. This study provides new insights into mechanisms of noise-induced hearing loss and suggests novel interventions for the prevention of the loss of sensory hair cells and cochlear synaptopathy.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Cóclea/patología , Células Ciliadas Auditivas/patología , Pérdida Auditiva Provocada por Ruido/etiología , Pérdida Auditiva Provocada por Ruido/patología , Ruido/efectos adversos , Estimulación Acústica , Oxidorreductasas de Alcohol , Animales , Muerte Celular/efectos de los fármacos , Proteínas Co-Represoras , Cóclea/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Relación Dosis-Respuesta a Droga , Vías de Administración de Medicamentos , Inhibidores Enzimáticos/uso terapéutico , Potenciales Evocados Auditivos del Tronco Encefálico/efectos de los fármacos , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Células Ciliadas Auditivas/metabolismo , Masculino , Ratones , Ratones Endogámicos CBA , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , ARN Interferente Pequeño/uso terapéutico , Receptores AMPA/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/fisiología
13.
J Neurosci ; 36(13): 3755-64, 2016 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-27030760

RESUMEN

Evidence from animal and human studies suggests that moderate acoustic exposure, causing only transient threshold elevation, can nonetheless cause "hidden hearing loss" that interferes with coding of suprathreshold sound. Such noise exposure destroys synaptic connections between cochlear hair cells and auditory nerve fibers; however, there is no clinical test of this synaptopathy in humans. In animals, synaptopathy reduces the amplitude of auditory brainstem response (ABR) wave-I. Unfortunately, ABR wave-I is difficult to measure in humans, limiting its clinical use. Here, using analogous measurements in humans and mice, we show that the effect of masking noise on the latency of the more robust ABR wave-V mirrors changes in ABR wave-I amplitude. Furthermore, in our human cohort, the effect of noise on wave-V latency predicts perceptual temporal sensitivity. Our results suggest that measures of the effects of noise on ABR wave-V latency can be used to diagnose cochlear synaptopathy in humans. SIGNIFICANCE STATEMENT: Although there are suspicions that cochlear synaptopathy affects humans with normal hearing thresholds, no one has yet reported a clinical measure that is a reliable marker of such loss. By combining human and animal data, we demonstrate that the latency of auditory brainstem response wave-V in noise reflects auditory nerve loss. This is the first study of human listeners with normal hearing thresholds that links individual differences observed in behavior and auditory brainstem response timing to cochlear synaptopathy. These results can guide development of a clinical test to reveal this previously unknown form of noise-induced hearing loss in humans.


Asunto(s)
Oído Interno/patología , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Pérdida Auditiva Provocada por Ruido/patología , Ruido , Tiempo de Reacción/fisiología , Sinapsis/patología , Estimulación Acústica , Adulto , Animales , Percepción Auditiva/fisiología , Umbral Auditivo/fisiología , Modelos Animales de Enfermedad , Electroencefalografía , Femenino , Pérdida Auditiva Provocada por Ruido/fisiopatología , Humanos , Masculino , Ratones , Emisiones Otoacústicas Espontáneas/fisiología , Adulto Joven
14.
Neuroscience ; 315: 228-45, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26701290

RESUMEN

The effects of intense noise exposure on the classical auditory pathway have been extensively investigated; however, little is known about the effects of noise-induced hearing loss on non-classical auditory areas in the brain such as the lateral amygdala (LA) and striatum (Str). To address this issue, we compared the noise-induced changes in spontaneous and tone-evoked responses from multiunit clusters (MUC) in the LA and Str with those seen in auditory cortex (AC) in rats. High-frequency octave band noise (10-20 kHz) and narrow band noise (16-20 kHz) induced permanent threshold shifts at high-frequencies within and above the noise band but not at low frequencies. While the noise trauma significantly elevated spontaneous discharge rate (SR) in the AC, SRs in the LA and Str were only slightly increased across all frequencies. The high-frequency noise trauma affected tone-evoked firing rates in frequency and time-dependent manner and the changes appeared to be related to the severity of noise trauma. In the LA, tone-evoked firing rates were reduced at the high-frequencies (trauma area) whereas firing rates were enhanced at the low-frequencies or at the edge-frequency dependent on severity of hearing loss at the high frequencies. The firing rate temporal profile changed from a broad plateau to one sharp, delayed peak. In the AC, tone-evoked firing rates were depressed at high frequencies and enhanced at the low frequencies while the firing rate temporal profiles became substantially broader. In contrast, firing rates in the Str were generally decreased and firing rate temporal profiles become more phasic and less prolonged. The altered firing rate and pattern at low frequencies induced by high-frequency hearing loss could have perceptual consequences. The tone-evoked hyperactivity in low-frequency MUC could manifest as hyperacusis whereas the discharge pattern changes could affect temporal resolution and integration.


Asunto(s)
Vías Auditivas/fisiopatología , Encéfalo/fisiopatología , Pérdida Auditiva Provocada por Ruido/fisiopatología , Plasticidad Neuronal/fisiología , Estimulación Acústica , Potenciales de Acción/fisiología , Animales , Vías Auditivas/patología , Umbral Auditivo/fisiología , Modelos Animales de Enfermedad , Potenciales Evocados Auditivos/fisiología , Células Ciliadas Auditivas/patología , Células Ciliadas Auditivas/fisiología , Pérdida Auditiva Provocada por Ruido/patología , Pruebas Auditivas , Ratas Sprague-Dawley , Índice de Severidad de la Enfermedad
15.
Anat Rec (Hoboken) ; 299(1): 103-10, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26452751

RESUMEN

This study was conducted to examine possible effects of noise trauma on olivocochlear (OC) neurons. Anesthetized rats were exposed to a continuous 10 kHz pure tone at 120 dB sound pressure level for 2 hrs. The effects of treatment were verified by recordings of auditory brainstem response and distortion product otoacoustic emission. Three or 8 days after acoustic trauma, rats received unilateral injections of an aqueous solution of the retrograde neuronal tracer Fluorogold (FG) into the scala tympani to identify OC neurons (OCN). Five days after FG injection, brains were perfusion-fixed, and brainstem sections were cut and analyzed with respect to FG-labeled neurons. We found that, in both groups, numbers of OCN were similar to that of controls. The incubation of a second set of sections with antibodies against choline-acetyltransferase (the enzyme responsible for acetylcholine synthesis) showed the cholinergic neurons of the brainstem, however, without suggesting differences between groups. Our study, the first to investigate noise trauma effects on identified OCN, revealed that no visible alterations occurred in 2 weeks following trauma, neither in identified OCN nor in choline-acetyltransferase-immunofluorescence. At this time, auditory brainstem response and distortion product otoacoustic emission measurements showed severe signs of hearing loss. The mechanisms leading to hearing loss upon noise trauma apparently do not involve degeneration of OCN.


Asunto(s)
Estimulación Acústica/efectos adversos , Cóclea/patología , Pérdida Auditiva Provocada por Ruido/etiología , Neuronas/patología , Ruido/efectos adversos , Núcleo Olivar/patología , Animales , Colina O-Acetiltransferasa/metabolismo , Cóclea/lesiones , Cóclea/metabolismo , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Técnica del Anticuerpo Fluorescente , Pérdida Auditiva Provocada por Ruido/metabolismo , Pérdida Auditiva Provocada por Ruido/patología , Masculino , Neuronas/metabolismo , Núcleo Olivar/metabolismo , Emisiones Otoacústicas Espontáneas/fisiología , Ratas , Ratas Wistar
16.
Int J Clin Exp Pathol ; 8(7): 8680-91, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26339457

RESUMEN

Recent studies have reported that noise exposure at relatively low intensities can cause temporary threshold shifts (TTS) in hearing. However, the mechanism underlying the TTS is still on debate. Here, we report that an acoustic stimulation (100 dB SPL, white noise) induced TTS in mice, with the maximal ABR threshold elevations seen on the 4(th) day after noise exposure. On the other hand, there were no significant morphological changes in the cochlea. Further, there were paralleled changes of pre-synaptic ribbons in both the number and postsynaptic density (PSDs) during this noise exposure. The numbers of presynaptic ribbon, postsynaptic density (PSDs), and colocalized puncta correlated with the shifts of ABR thresholds. Moreover, a complete recovery of ABR thresholds and synaptic puncta was seen on the 14(th) day after the noise stimulations. Thus, our study may indicate that noise exposure can cause a decline in cochlear ribbon synapses and result in consequent hearing loss. The reduction of synaptic puncta appears reversible and may contribute to hearing restoration in mice after noise exposure.


Asunto(s)
Fatiga Auditiva , Células Ciliadas Auditivas Internas , Pérdida Auditiva Provocada por Ruido/fisiopatología , Plasticidad Neuronal , Sinapsis , Estimulación Acústica , Oxidorreductasas de Alcohol , Animales , Proteínas Co-Represoras , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/ultraestructura , Pérdida Auditiva Provocada por Ruido/etiología , Pérdida Auditiva Provocada por Ruido/metabolismo , Pérdida Auditiva Provocada por Ruido/patología , Ratones Endogámicos C57BL , Microscopía Electrónica de Rastreo , Ruido , Emisiones Otoacústicas Espontáneas , Fosfoproteínas/metabolismo , Recuperación de la Función , Sinapsis/metabolismo , Sinapsis/ultraestructura , Factores de Tiempo
17.
Acta Otolaryngol ; 135(11): 1093-102, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26139555

RESUMEN

CONCLUSION: Noise exposure can cause a decline in cochlear ribbon synapses and result in consequent hearing loss. The reduction of synaptic puncta appears reversible and may contribute to hearing restoration in mice after noise exposure. OBJECTIVE: To detect whether noise induced reversible changes of cochlear ribbon synapses contribute to temporary hearing loss in C57BL/6J mice. METHODS: The mice were assigned randomly to five groups and exposed to white noise at 110 dB SPL for 2 h except the control group. ABR thresholds were acquired before noise exposure (control), immediately following exposure (Day 0), or on Days 4, 7, or 14 after noise exposure. Light microscopy, scanning emission microscopy, and whole mounts examination was utilized to study whether there is morphology change of outer hair cells (OHC), inner hair cells (IHC), or spiral ganglion cells (SGN) due to the 110 dB white noise. Moreover, experimental approaches, including immunostaining and confocal microcopy, were used to detect whether ribbon synapses were the primary targets of noise-induced temporary hearing loss. RESULT: Exposure to 110 dB white noise for 2 h induced TTS in mice, with the maximal ABR threshold elevations seen on the 4(th) day after noise exposure. There were no significant morphological changes in the cochlea. Paralleled changes of pre-synaptic ribbons in both the number and post-synaptic density (PSDs) during this noise exposure were detected. The number of pre-synaptic ribbon, post-synaptic density (PSDs), and co-localized puncta correlated with the shifts of ABR thresholds. Moreover, a complete recovery of ABR thresholds and synaptic puncta was seen on the 14(th) day after the noise stimulations.


Asunto(s)
Umbral Auditivo/fisiología , Cóclea/fisiopatología , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Células Ciliadas Auditivas Internas/ultraestructura , Células Ciliadas Auditivas Externas/ultraestructura , Pérdida Auditiva Provocada por Ruido/patología , Estimulación Acústica/efectos adversos , Animales , Cóclea/metabolismo , Cóclea/ultraestructura , Modelos Animales de Enfermedad , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Pérdida Auditiva Provocada por Ruido/metabolismo , Pérdida Auditiva Provocada por Ruido/fisiopatología , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Microscopía Electrónica de Rastreo , Plasticidad Neuronal , Ganglio Espiral de la Cóclea/metabolismo , Ganglio Espiral de la Cóclea/ultraestructura , Sinapsis
18.
Hear Res ; 327: 163-74, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26087114

RESUMEN

Hybrid or electro-acoustic stimulation (EAS) cochlear implants (CIs) are designed to provide high-frequency electric hearing together with residual low-frequency acoustic hearing. However, 30-50% of EAS CI recipients lose residual hearing after implantation. The objective of this study was to determine the mechanisms of EAS-induced hearing loss in an animal model with high-frequency hearing loss. Guinea pigs were exposed to 24 h of noise (12-24 kHz at 116 dB) to induce a high-frequency hearing loss. After recovery, two groups of animals were implanted (n = 6 per group), with one group receiving chronic acoustic and electric stimulation for 10 weeks, and the other group receiving no stimulation during this time frame. A third group (n = 6) was not implanted, but received chronic acoustic stimulation. Auditory brainstem responses were recorded biweekly to monitor changes in hearing. The organ of Corti was immunolabeled with phalloidin, anti-CtBP2, and anti-GluR2 to quantify hair cells, ribbons and post-synaptic receptors. The lateral wall was immunolabeled with phalloidin and lectin to quantify stria vascularis capillary diameters. Bimodal or trimodal diameter distributions were observed; the number and location of peaks were objectively determined using the Aikake Information Criterion and Expectation Maximization algorithm. Noise exposure led to immediate hearing loss at 16-32 kHz for all groups. Cochlear implantation led to additional hearing loss at 4-8 kHz; this hearing loss was negatively and positively correlated with minimum and maximum peaks of the bimodal or trimodal distributions of stria vascularis capillary diameters, respectively. After chronic stimulation, no significant group changes in thresholds were seen; however, elevated thresholds at 1 kHz in implanted, stimulated animals were significantly correlated with decreased presynaptic ribbon and postsynaptic receptor counts. Inner and outer hair cell counts did not differ between groups and were not correlated with threshold shifts at any frequency. As in the previous study in a normal-hearing model, stria vascularis capillary changes were associated with immediate hearing loss after implantation, while little to no hair cell loss was observed even in cochlear regions with threshold shifts as large as 40-50 dB. These findings again support a role of lateral wall blood flow changes, rather than hair cell loss, in hearing loss after surgical trauma, and implicate the endocochlear potential as a factor in implantation-induced hearing loss. Further, the analysis of the hair cell ribbons and post-synaptic receptors suggest that delayed hearing loss may be linked to synapse or peripheral nerve loss due to stimulation excitotoxicity or inflammation. Further research is needed to separate these potential mechanisms of delayed hearing loss.


Asunto(s)
Cóclea/fisiopatología , Implantación Coclear/efectos adversos , Implantes Cocleares/efectos adversos , Pérdida Auditiva Provocada por Ruido/terapia , Audición , Estimulación Acústica , Animales , Umbral Auditivo , Capilares/patología , Cóclea/irrigación sanguínea , Cóclea/patología , Implantación Coclear/instrumentación , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Estimulación Eléctrica , Potenciales Evocados Auditivos del Tronco Encefálico , Cobayas , Células Ciliadas Auditivas/patología , Pérdida Auditiva Provocada por Ruido/patología , Pérdida Auditiva Provocada por Ruido/fisiopatología , Masculino , Diseño de Prótesis , Estría Vascular/patología , Sinapsis/patología
19.
Noise Health ; 16(72): 257-64, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25209034

RESUMEN

Renexin, a compound of cilostazol and ginkgo biloba extract, has been reported to produce neuroprotective effects through antioxidant, antiplatelet, and vasodilatory mechanisms. This study was designed to investigate the protective effects of renexin on hearing, the organ of Corti (OC), and medial olivocochlear efferents against noise-induced damage. C57BL/6 mice were exposed to 110 dB SPL white noise for 60 min and then randomly divided into three groups: high- and low-dose renexin-treated groups and noise only group. Renexin were administered for 7 days: 90 mg/kg to the low-dose, and 180 mg/kg to the high-dose groups. All mice, including the controls underwent hearing tests on postnoise day 8 and were killed for cochlear harvest. We compared the hearing thresholds and morphology of the OC and cochlear efferents across the groups. The renexin-treated groups recovered from the immediate threshold shifts in a dose-dependent manner, while the noise group showed a permanent hearing loss. The renexin-treated ears demonstrated less degeneration of the OC. The diameters of the efferent terminals labeled with α-synuclein were preserved in the high-dose renexin-treated group. In the western blot assay of the cochlear homogenates, the treated groups displayed stronger expressions of α-synuclein than the noise and control groups, which may indicate that noise-induced enhanced activity of the cochlear efferent system was protected by renexin. Our results suggest that pharmacologic treatment with renexin is hopeful to reduce or prevent noise-induced hearing loss as a rescue regimen after noise exposure.


Asunto(s)
Modelos Animales de Enfermedad , Pérdida Auditiva Provocada por Ruido/fisiopatología , Extractos Vegetales/farmacología , Tetrazoles/farmacología , Animales , Western Blotting , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Cóclea/efectos de los fármacos , Cóclea/patología , Cóclea/fisiopatología , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/patología , Células Ciliadas Auditivas/fisiología , Pérdida Auditiva Provocada por Ruido/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Microscopía Electrónica de Rastreo , Órgano Espiral/efectos de los fármacos , Órgano Espiral/patología , Órgano Espiral/fisiopatología , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , alfa-Sinucleína/análisis
20.
Cell Death Dis ; 5: e1200, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24763057

RESUMEN

The overproduction of reactive oxygen species (ROS) and reactive nitrogen species (RNS) has been known to contribute to the pathogenesis of noise-induced hearing loss. In this study, we discovered that in BALB/c mice pretreatment with methylene blue (MB) for 4 consecutive days significantly protected against cochlear injury by intense broad-band noise for 3 h. It decreased both compound threshold shift and permanent threshold shift and, further, reduced outer hair cell death in the cochlea. MB also reduced ROS and RNS formation after noise exposure. Furthermore, it protected against rotenone- and antimycin A-induced cell death and also reversed ATP generation in the in vitro UB-OC1 cell system. Likewise, MB effectively attenuated the noise-induced impairment of complex IV activity in the cochlea. In addition, it increased the neurotrophin-3 (NT-3) level, which could affect the synaptic connections between hair cells and spiral ganglion neurons in the noise-exposed cochlea, and also promoted the conservation of both efferent and afferent nerve terminals on the outer and inner hair cells. These findings suggest that the amelioration of impaired mitochondrial electron transport and the potentiation of NT-3 expression by treatment with MB have a significant therapeutic value in preventing ROS-mediated sensorineural hearing loss.


Asunto(s)
Pérdida Auditiva Provocada por Ruido/tratamiento farmacológico , Azul de Metileno/uso terapéutico , Estimulación Acústica , Animales , Umbral Auditivo/efectos de los fármacos , Respiración de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cóclea/efectos de los fármacos , Cóclea/patología , Cóclea/fisiopatología , Cóclea/ultraestructura , Homólogo 4 de la Proteína Discs Large , Transporte de Electrón/efectos de los fármacos , Potenciales Evocados Auditivos del Tronco Encefálico/efectos de los fármacos , Guanilato-Quinasas/metabolismo , Células Ciliadas Auditivas Internas/efectos de los fármacos , Células Ciliadas Auditivas Internas/patología , Células Ciliadas Auditivas Internas/ultraestructura , Células Ciliadas Auditivas Externas/efectos de los fármacos , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/patología , Pérdida Auditiva Provocada por Ruido/patología , Pérdida Auditiva Provocada por Ruido/fisiopatología , Inmunohistoquímica , Masculino , Proteínas de la Membrana/metabolismo , Azul de Metileno/administración & dosificación , Azul de Metileno/farmacología , Ratones Endogámicos BALB C , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neurotrofina 3/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA