Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Leg Med (Tokyo) ; 67: 102335, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37951808

RESUMEN

The effects of a PPAR-γ agonist, pioglitazone and Zataria multiflora (Z. multiflora) on inhaled paraquat (PQ)-induced lung oxidative stress, inflammation, pathological changes and tracheal responsiveness were examined. The study was carried out in control rats exposed to normal aerosol of saline, PQl and PQh groups exposed to aerosols of 27 and 54 mg/m3 PQ, groups exposed to high PQ concentration (PQh) and treated with 200 and 800 mg/kg/day Z. multiflora, 5 and 10 mg/kg/day pioglitazone, low doses of Z. multiflora + pioglitazone, and 0.03 mg/kg/day dexamethasone. Increased tracheal responsiveness, transforming growth factor beta (TGF-ß) and lung pathological changes due to PQh were significantly improved by high doses of Z. multiflora and pioglitazone, dexamethasone and extract + pioglitazone, (p < 0.05 to p < 0.001). In group treated with low doses of the extract + pioglitazone, the improvements of most measured variables were significantly higher than the low dose of two agents alone (p < 0.05 to p < 0.001). Z. multiflora improved lung injury induced by inhaled PQ similar to dexamethasone and pioglitazone which could be mediated by PPAR-γ receptor.


Asunto(s)
Lesión Pulmonar , Paraquat , Animales , Ratas , Dexametasona/farmacología , Pulmón/metabolismo , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Paraquat/toxicidad , Pioglitazona/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , PPAR gamma/agonistas , PPAR gamma/metabolismo
2.
J Biomol Struct Dyn ; 41(21): 11373-11393, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36576222

RESUMEN

Peroxisome proliferator-activated receptor gamma (PPARγ) agonists are potent insulin sensitizers in treating type 2 diabetes. Despite being very effective in the fight against diabetes-mediated complications, PPARγ agonists are accompanied by severe side effects leading to complicated health problems, making the discovery of novel safe ligands highly pertinent. A significant intense research effort is in progress to explore the PPARγ activating potential of a wide range of natural compounds. Lemon (Citrus limon) contains various bioactive flavonoids, and eriocitrin is the major flavonoid. It possesses substantial antioxidant and anticancer, lipid-lowering activities and prevents obesity-associated metabolic diseases. Eriocitrin is metabolized to eriodictyol in the intestine, and the absorbed eriodictyol undergoes conversion to numerous metabolites in vivo. It is unclear if eriocitrin or its metabolites are responsible for their beneficial effects. We have used molecular docking, ADMET properties, drug-likeness score and molecular dynamics simulation study to find if eriocitrin and its metabolites are potent binders for PPARγ. Docking studies revealed that eriocitrin binds to PPARγ with the highest binding energy, but ADMET properties and in vivo studies show that the bioavailability of eriocitrin is very poor. Molecular dynamics studies were carried out to validate the docking results, and multiple parameters like RMSD, RMSF, Radius of gyration, SASA, hydrogen bond analysis, interaction energy, principal component analysis, Gibbs free energy and MM-PBSA were calculated. Based on our studies, eriodictyol, eriodictyol 7-O-glucuronide, eriodictyol 3'-O-glucuronide, homoeriodictyol and homoeriodictyol 7-O-glucuronide which are metabolites of eriocitrin appear to be potent partial agonists of PPARγ under physiological conditions.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Citrus , Diabetes Mellitus Tipo 2 , Humanos , PPAR gamma/agonistas , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Glucurónidos , Flavonoides/farmacología , Suplementos Dietéticos
3.
J Med Food ; 25(6): 588-596, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35708636

RESUMEN

Insulin secretion and GLUT4 expression are two critical events in glucose regulation. The receptors G-protein-coupled receptor 40 (GPR40) and peroxisome proliferator-activated receptor-gamma (PPARγ) modulate these processes, and they represent potential therapeutic targets for new antidiabetic agent's design. Cucurbita ficifolia fruit is used in traditional medicine for diabetes control. Previous studies demonstrated several effects: a hypoglycemic effect mediated by an insulin secretagogue action, antihyperglycemic effect, and promoting liver glycogen storage. Anti-inflammatory and antioxidant effects were also reported. Moreover, some of its phytochemicals have been described, including d-chiro-inositol. However, to understand these effects integrally, other active principles should be investigated. The aim was to perform a chemical fractionation guided by bioassay to isolate and identify other compounds from C. ficifolia fruit that explain its hypoglycemic action as insulin secretagogue, its antihyperglycemic effect by PPARγ activation, and on liver glycogen storage. Three different preparations of C. ficifolia were tested in vivo. Ethyl acetate fraction derived from aqueous extract showed antihyperglycemic effect in an oral glucose tolerance test and was further fractioned. The insulin secretagogue action was tested in RINm5F cells. For the PPARγ activation, C2C12 myocytes were treated with the fractions, and GLUT4 mRNA expression was measured. Chemical fractionation resulted in the isolation and identification of ß-sitosterol and 4-hydroxybenzoic acid (4-HBA), which increased insulin secretion, GLUT4, PPARγ, and adiponectin mRNA expression, in addition to an increase in glycogen storage. 4-HBA exhibited an antihyperglycemic effect, while ß-sitosterol showed hypoglycemic effect, confirming the wide antidiabetic related results we found in our in vitro models. An in silico study revealed that 4-HBA and ß-sitosterol have potential as dual agonists on PPARγ and GPR40 receptors. Both compounds should be considered in the development of new antidiabetic drug development.


Asunto(s)
Cucurbita , Diabetes Mellitus Experimental , Animales , Cucurbita/química , Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Insulina/metabolismo , Glucógeno Hepático , PPAR gamma/agonistas , PPAR gamma/genética , Parabenos , Extractos Vegetales/química , ARN Mensajero , Secretagogos/uso terapéutico , Sitoesteroles
4.
Bioorg Med Chem Lett ; 59: 128567, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35063634

RESUMEN

Novel PPARδ agonists, 2-(1-piperidinyl)-1,3-benzothiazole derivatives were discovered by our proprietary docking-based virtual screening technique. Compound 1 as the initial hit was effectively modified to acquire PPARδ agonist activity, resulting in the discovery of compound 12 with high agonistic potency for PPARδ and selectivity over PPARα and PPARγ. Compound 12 also had good ADME profiles and showed in vivo efficacy as a lead.


Asunto(s)
Benzotiazoles/farmacología , Descubrimiento de Drogas , PPAR delta/agonistas , Benzotiazoles/síntesis química , Benzotiazoles/química , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Humanos , Estructura Molecular , PPAR alfa/agonistas , PPAR gamma/agonistas , Relación Estructura-Actividad
5.
Sci Rep ; 12(1): 449, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013417

RESUMEN

Therapeutic approach for NAFLD is limited and there are no approved drugs. Pioglitazone (PGZ), a thiazolidinedione (TZD) that acts via peroxisome proliferator activated receptor gamma (PPARγ) is the only agent that has shown consistent benefit and efficacy in clinical trials. However, the mechanism of its therapeutic effect on NAFLD remains unclear. The poor understanding may be due to problems with mouse, a species most used for animal experiments. TZDs exacerbate fatty liver in mouse models while they improve it in rat models like in human patients. Therefore, we compared the effects of TZDs including PGZ and rosiglitazone (RGZ) in ob/ob mice and Lepmkyo/Lepmkyo rats, models of leptin-deficient obesity, and A-ZIP/F-1 mice and seipin knockout (SKO) rats, models of generalized lipodystrophy. Pparg mRNA expression was markedly upregulated in fatty livers of mouse models while it was unchanged in rat models. TZDs exacerbated fatty liver in ob/ob and A-ZIP/F-1 mice, improved it in Lepmkyo/Lepmkyo rats and showed no effect in SKO rats. Gene expression analyses of Pparg and its target gene, Fsp27 revealed that PPARγ in the adipose tissue is the exclusive therapeutic target of TZDs in rats but PPARγ in the liver in addition to the adipose tissue is also a major site of actions for TZDs in mice. Although the response to TZDs in mice is the complete opposite of that in human patients, no report has pointed out the problem with TZD studies using mouse models so far. The present study might provide useful suggestions in research on TZDs.


Asunto(s)
Hígado Graso/tratamiento farmacológico , Metabolismo de los Lípidos/efectos de los fármacos , PPAR gamma/metabolismo , Pioglitazona/uso terapéutico , Tiazolidinedionas/uso terapéutico , Animales , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Hígado Graso/etiología , Hígado Graso/metabolismo , Leptina/deficiencia , Lipodistrofia/complicaciones , Masculino , Ratones Endogámicos C57BL , Obesidad/complicaciones , PPAR gamma/agonistas , Pioglitazona/farmacología , Ratas Transgénicas , Tiazolidinedionas/farmacología
6.
J Ethnopharmacol ; 285: 114883, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34861363

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Medicinal plants have been used by the people of developing countries to treat various diseases. WHO also recommends the use of medicines from plants source. In that, diabetes also one of the diseases that have been treated traditionally by several people all over the world. In India, Toddalia asiatica (L.) Lam. (Rutaceae) is also a medicinal plant used traditionally for the treatment of diabetes in Ayurveda. Moreover, T. asiatica is also used in a polyherbal formulation to treat diabetes. AIM OF THE STUDY: This study examined the antidiabetic with antilipidemic and antioxidant effects of flindersine isolated from T. asiatica leaves. MATERIALS AND METHODS: Diabetes was induced in Wistar rats by feeding a high-fat diet (HFD) for 15 days and injecting a single dose of 40 mg/kg b. wt. of Streptozotocin (STZ). Five days post-injection, the grouped diabetic rats were treated with 20 and 40 mg/kg of flindersine. RESULTS: Flindersine resulted in a clear decline of blood glucose levels during 28 days of treatment in two different doses. Flindersine also significantly (P ≤ 0.05; P ≤ 0.005) reduced the body weight gain, plasma insulin concentration, urea, creatinine, total cholesterol (TC), triglycerides (TG) and free fatty acids (FFA) levels and significantly increased (P ≤ 0.05; P ≤ 0.005) the total protein level, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities compared to the standard drug, pioglitazone. Additionally, flindersine restored the glucose transporter protein 4 (GLUT4), adenosine monophosphate protein kinase (AMPK) and peroxisome proliferator-activated receptor γ (PPARγ) expressions in adipose tissues and skeletal muscles. CONCLUSION: It has been found that flindersine has potent antilipidemic and antidiabetic activities by improving insulin sensitivity by enhancing the phosphorylation of AMPK, GLUT4 translocation, and PPARγ agonism on adipose tissue and skeletal muscles of diabetic rats.


Asunto(s)
Diabetes Mellitus Tipo 2/inducido químicamente , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Transportador de Glucosa de Tipo 4/metabolismo , Compuestos Heterocíclicos con 3 Anillos/farmacología , Hipoglucemiantes/farmacología , PPAR gamma/agonistas , Animales , Antioxidantes/química , Antioxidantes/farmacología , Glucemia/efectos de los fármacos , Catalasa , Diabetes Mellitus Experimental , Dieta Alta en Grasa/efectos adversos , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/genética , Glutatión Peroxidasa , Compuestos Heterocíclicos con 3 Anillos/administración & dosificación , Compuestos Heterocíclicos con 3 Anillos/química , Hipoglucemiantes/química , Hipolipemiantes/química , Hipolipemiantes/farmacología , Masculino , Estructura Molecular , PPAR gamma/genética , PPAR gamma/metabolismo , Fitoterapia , Extractos Vegetales/química , Extractos Vegetales/farmacología , Ratas , Ratas Wistar , Rutaceae/química , Superóxido Dismutasa
7.
Biol Pharm Bull ; 44(5): 659-668, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33952822

RESUMEN

Peroxisome proliferator-activated receptor γ (PPARγ) modulators are expected to exert anti-diabetic effects without PPARγ-related adverse effects, such as fluid retention, weight gain, and bone loss. The present study showed that the novel tetrazole derivative KY-903 exerted similar selective PPARγ partial agonist properties to INT-131, a known PPARγ modulator, in transactivation assays, and decreased plasma glucose and triglyceride levels with increases in adiponectin levels in diabetic KK-Ay mice. These effects were similar to those of pioglitazone. Pioglitazone, but not KY-903, increased adipose tissue and heart weights. In pre-adipocytes (3T3-L1), KY-903, in contrast to pioglitazone, increased adiponectin mRNA levels without adipocyte differentiation, indicating anti-diabetic effects via adiponectin without adipogenesis. In ovariectomized rats fed a high-fat diet (OVX/HFD), KY-903 and pioglitazone decreased plasma triglyceride and non-esterified fatty acid levels and increased adiponectin levels, indicating insulin sensitization via adiponectin. KY-903 reduced body weight gain and adipose tissue weight, while pioglitazone increased heart weight and markedly reduced bone mineral density. In mesenchymal stem cell-like ST2 cells, KY-903 slightly reduced osteoblast differentiation without adipocyte differentiation, while pioglitazone markedly reduced it with adipocyte differentiation. In conclusion, KY-903 is a novel PPARγ modulator that exerts anti-diabetic effects without body weight gain or cardiac hypertrophy in diabetic mice and anti-obesity effects with minor bone loss in OVX/HFD, possibly due to increases in adiponectin levels without adipogenesis.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/farmacología , Obesidad/tratamiento farmacológico , PPAR gamma/agonistas , Células 3T3-L1 , Adipogénesis/efectos de los fármacos , Adiponectina/análisis , Adiponectina/metabolismo , Animales , Glucemia/efectos de los fármacos , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/genética , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Femenino , Hipoglucemiantes/uso terapéutico , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos , Obesidad/sangre , Obesidad/etiología , PPAR gamma/metabolismo , Pioglitazona/farmacología , Pioglitazona/uso terapéutico , Ratas , Tetrazoles/química , Triglicéridos/sangre , Triglicéridos/metabolismo , Aumento de Peso/efectos de los fármacos
8.
Metab Brain Dis ; 36(7): 1903-1915, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34043126

RESUMEN

Alzheimer's Disease (AD), the most prevalent neurodegenerative disorder among elderly people, is ordinarily associated with progressive cognitive decline. Peroxisome proliferator-activated receptors-gamma (PPAR-γ) agonists can be targeted as a beneficial therapeutic strategy against AD. In the present study, we aimed to investigate the preventive and therapeutic effects of rice bran extract (RBE) as a possible PPAR-γ agonist on the microglial phenotype modulation in AD in mice compared to the effects of pioglitazone. This study included 64 adult male Swiss Albino mice divided into 8 groups, each group comprised 8 mice; control group, RBE group, lipopolysaccharide-induced neurodegeneration (a) (LPSa) group, (LPSb) group, RBE-preventive group (RBE + LPSa), pioglitazone-preventive group (PG + LPSa), RBE-treated group (RBE + LPSb), and pioglitazone-treated group (PG + LPSb). Cognitive functions were assessed by Y-maze and Morris water maze tests. The expression of PPAR-γ, CD45, arginase1, CD36, and CD163 genes was assessed by real time qPCR and the estimation of NF-kß protein level was done by Western blot technique. Moreover, the assessment of Aß42 and P-tau levels was performed by ELISA. Histopathological examination of brain tissues was performed for all the studied groups. Our results showed that RBE and pioglitazone could modulate microglial phenotype from M1 to M2 where they significantly decreased the expression of NF-κß and the pro-inflammatory microglial marker (CD45) in parallel with increasing the expression of the anti-inflammatory microglial and phagocytic markers (arginase1, CD163, and CD36). In addition, RBE and pioglitazone significantly increased PPAR-γ expression and reduced Aß42 deposition as well as p-tau protein levels. In conclusion, our study identified the possible role of PPAR-γ agonistic activity of RBE as a preventive and therapeutic agent in the treatment of the neuro-inflammation associated with AD.


Asunto(s)
Enfermedad de Alzheimer , Oryza , Tiazolidinedionas , Anciano , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Humanos , Masculino , Ratones , Microglía/metabolismo , Oryza/metabolismo , PPAR gamma/agonistas , PPAR gamma/metabolismo , Extractos Vegetales/farmacología , Tiazolidinedionas/uso terapéutico
9.
Biomed Pharmacother ; 138: 111455, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33711553

RESUMEN

BACKGROUND: Women with postpartum psychiatric disorders are prone to severe anorexia. Clinical studies have revealed the efficacy of 919 syrup, a traditional Chinese medicine mixture against postpartum illnesses, such as in regulating maternal mood and improving postpartum anorexia. AIM: This study investigated the mechanisms through which 919 syrup improved anorexia induced by postpartum stress, focussing on the combined peroxisome proliferator-activated receptor gamma (PPARγ) and leptin signalling pathway, and its effects on the structure of the gut flora. METHODS: Mice were randomly divided into five groups-control group, immobilisation stressed (IS) group (normal saline), pioglitazone (Piog; western medicine control) group, 919 syrup low-dose (TJD; 13.5 g/kg) group, and 919 syrup high-dose (TJG; 27.0 g/kg) group. The control group was housed normally. The other groups received IS for 3 h daily for 21 days. The treatments were initiated following the first postnatal day and were administered by gastric gavage. All mice were sacrificed under anaesthesia on postnatal day 22. Blood, hypothalamus, stomach, and faecal specimens were collected. Gene and protein expression levels of components of the PPARγ-leptin signalling pathway in the serum, hypothalamus, and stomach were determined. Immunofluorescence staining for proopiomelanocortin (POMC), phosphorylated signal transducer and activator of transcription 3 (pSTAT3), and leptin was performed to observe their spatial distributions in the hypothalamus and stomach. 16s rRNA gene sequencing and bioinformatics analysis of fecal specimens were performed. RESULTS: After IS, postpartum mice showed significantly reduced appetite and body weight, accompanied by abnormalities in the structure of the gut flora. Treatment with 919 syrup (27.0 g/kg) downregulated malondialdehyde and upregulated catalase, glutathione peroxidase, and superoxide dismutase by activating PPARγ, thereby affecting the expression of leptin signalling pathway components (leptin, leptin receptor, pSTAT3, POMC, and cocaine and amphetamine-related transcript and neuropeptide Y), and modulated the gut flora in stressed mice. CONCLUSION: 919 syrup improved appetite in mice with postnatal stress by activating PPARγ to induce crosstalk with the leptin signalling pathway, this mechanism was similar to that of PPARγ agonists. 919 syrup also improved gut flora structure, and the changes in the relative abundances of the gut flora strongly correlated with the expression levels of PPARγ and leptin pathway components.


Asunto(s)
Anorexia/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Leptina/toxicidad , PPAR gamma/metabolismo , Extractos Vegetales/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Actinidia , Animales , Anorexia/inducido químicamente , Anorexia/tratamiento farmacológico , Apetito/efectos de los fármacos , Apetito/fisiología , Peso Corporal/efectos de los fármacos , Peso Corporal/fisiología , Femenino , Microbioma Gastrointestinal/fisiología , Masculino , Ratones , PPAR gamma/agonistas , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Periodo Posparto/efectos de los fármacos , Periodo Posparto/metabolismo , Embarazo
10.
Int J Mol Sci ; 22(3)2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33573189

RESUMEN

Hyperglycemia alters the function of cerebral endothelial cells from the blood-brain barrier, increasing the risk of cerebrovascular complications during diabetes. This study evaluated the protective effect of polyphenols on inflammatory and permeability markers on bEnd3 cerebral endothelial cells exposed to high glucose concentration. Results show that hyperglycemic condition increased nuclear factor kappa B (NFκB) activity, deregulated the expression of interleukin-1 beta (IL-1ß), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-10 (IL-10) and endothelial-leukocyte adhesion molecule (E-selectin) genes, raised MCP-1 secretion and elevated monocyte adhesion and transendothelial migration. High glucose decreased occludin, claudin-5, zona occludens-1 (ZO-1) and zona occludens-2 (ZO-2) tight junctions production and altered the endothelial permeability. Characterized polyphenolic extracts from the French medicinal plants Antirhea borbonica, Ayapana triplinervis, Dodonaea viscosa and Terminalia bentzoe, and their major polyphenols quercetin, caffeic, chlorogenic and gallic acids limited the pro-inflammatory and permeability alterations caused by high glucose. Peroxisome proliferator-activated receptor gamma (PPARγ) agonist also attenuated these damages while PPARγ antagonist aggravated them, suggesting PPARγ protective action. Interestingly, polyphenols improved PPARγ gene expression lowered by high glucose. Moreover, polyphenols were detected at the intracellular level or membrane-bound to cells, with evidence for breast cancer resistance protein (BCRP) efflux transporter role. Altogether, these findings emphasize the ability of polyphenols to protect cerebral endothelial cells in hyperglycemic condition and their relevance for pharmacological strategies aiming to limit cerebrovascular disorders in diabetes.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Trastornos Cerebrovasculares/prevención & control , Hiperglucemia/inmunología , Extractos Vegetales/farmacología , Polifenoles/farmacología , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Animales , Glucemia/metabolismo , Barrera Hematoencefálica/citología , Barrera Hematoencefálica/inmunología , Barrera Hematoencefálica/patología , Permeabilidad Capilar/efectos de los fármacos , Permeabilidad Capilar/inmunología , Línea Celular , Trastornos Cerebrovasculares/etiología , Trastornos Cerebrovasculares/inmunología , Trastornos Cerebrovasculares/patología , Evaluación Preclínica de Medicamentos , Células Endoteliales/inmunología , Células Endoteliales/patología , Endotelio Vascular/citología , Endotelio Vascular/inmunología , Endotelio Vascular/patología , Humanos , Hiperglucemia/sangre , Hiperglucemia/complicaciones , Ratones , Monocitos/efectos de los fármacos , Monocitos/inmunología , FN-kappa B/metabolismo , PPAR gamma/agonistas , PPAR gamma/antagonistas & inhibidores , PPAR gamma/metabolismo , Extractos Vegetales/uso terapéutico , Polifenoles/uso terapéutico , Transducción de Señal/efectos de los fármacos , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/inmunología , Uniones Estrechas/patología
11.
Int J Mol Sci ; 22(2)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467433

RESUMEN

Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily that regulate the expression of genes related to lipid and glucose metabolism and inflammation. There are three members: PPARα, PPARß or PPARγ. PPARγ have several ligands. The natural agonists are omega 9, curcumin, eicosanoids and others. Among the synthetic ligands, we highlight the thiazolidinediones, clinically used as an antidiabetic. Many of these studies involve natural or synthetic products in different pathologies. The mechanisms that regulate PPARγ involve post-translational modifications, such as phosphorylation, sumoylation and ubiquitination, among others. It is known that anti-inflammatory mechanisms involve the inhibition of other transcription factors, such as nuclear factor kB(NFκB), signal transducer and activator of transcription (STAT) or activator protein 1 (AP-1), or intracellular signaling proteins such as mitogen-activated protein (MAP) kinases. PPARγ transrepresses other transcription factors and consequently inhibits gene expression of inflammatory mediators, known as biomarkers for morbidity and mortality, leading to control of the exacerbated inflammation that occurs, for instance, in lung injury/acute respiratory distress. Many studies have shown the therapeutic potentials of PPARγ on pulmonary diseases. Herein, we describe activities of the PPARγ as a modulator of inflammation, focusing on lung injury and including definition and mechanisms of regulation, biological effects and molecular targets, and its role in lung diseases caused by inflammatory stimuli, bacteria and virus, and molecular-based therapy.


Asunto(s)
Inflamación/metabolismo , Enfermedades Pulmonares/metabolismo , PPAR gamma/metabolismo , Transducción de Señal/fisiología , Animales , Curcumina/metabolismo , Curcumina/farmacología , Eicosanoides/metabolismo , Eicosanoides/farmacología , Humanos , Ligandos , Enfermedades Pulmonares/tratamiento farmacológico , PPAR gamma/agonistas , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
12.
Alcohol Alcohol ; 56(2): 240-249, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33401299

RESUMEN

BACKGROUND AND AIMS: Andrographis paniculata is an annual herbaceous plant which belongs to the Acanthaceae family. Extracts from this plant have shown hepatoprotective, anti-inflammatory and antidiabetic properties, at least in part, through activation of the nuclear receptor Peroxisome Proliferator-Activated Receptor-gamma (PPAR γ). Recent evidence has demonstrated that activation of PPARγ reduces alcohol drinking and seeking in Marchigian Sardinian (msP) alcohol-preferring rats. METHODS: The present study evaluated whether A. paniculata reduces alcohol drinking and relapse in msP rats by activating PPARγ. RESULTS: Oral administration of an A. paniculata dried extract (0, 15, 150 mg/kg) lowered voluntary alcohol consumption in a dose-dependent manner and achieved ~65% reduction at the dose of 450 mg/kg. Water and food consumption were not affected by the treatment. Administration of Andrographolide (5 and 10 mg/kg), the main active component of A. paniculata, also reduced alcohol drinking. This effect was suppressed by the selective PPARγ antagonist GW9662. Subsequently, we showed that oral administration of A. paniculata (0, 150, 450 mg/kg) prevented yohimbine- but not cues-induced reinstatement of alcohol seeking. CONCLUSIONS: Results point to A. paniculata-mediated PPARγactivation as a possible therapeutic strategy to treat alcohol use disorder.


Asunto(s)
Consumo de Bebidas Alcohólicas/tratamiento farmacológico , Andrographis/química , Diterpenos/farmacología , PPAR gamma/agonistas , Extractos Vegetales/farmacología , Anilidas/metabolismo , Animales , Diterpenos/aislamiento & purificación , Etanol/metabolismo , Masculino , Extractos Vegetales/aislamiento & purificación , Ratas , Autoadministración
13.
J Ethnopharmacol ; 261: 113133, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-32673708

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Combretum micranthum G. Don (CM) is extensively used in traditional medicine throughout West Africa and commonly known as "long-life herbal tea" or "plant to heal". Further, traditional healers frequently use the title plant to mitigate of renal disorders. AIM OF THE STUDY: To explore the nephroprotective property of standardised hydroalcoholic extract of Combretum micranthum in nicotinamide-streptozotocin induced diabetic nephropathy in rats. In addition, in-silico computational experiments were performed with bioactive compounds of the title plant against PPARα and PPARγ. MATERIAL AND METHODS: Male rats were made diabetic by a single intraperitoneal (ip) injection of STZ (50 mg/kg), 15 min after ip administration of NA (100 mg/kg) dissolved in normal saline. The diabetic rats received CM extract (200 and 400 mg/kg p.o.) daily, for eight weeks. Body weights and blood glucose (non-fasting and fasting) of rats were measured weekly. Daily food and water consumption were also measured. After 8 weeks of treatment, urine biochemical parameters such as N-Acetyl-ß-D-Glucosaminidase (NAG), urea (UR), uric acid (UA), creatinine (CRE), and serum markers of diabetes, kidney damage and liver damage such as insulin, lipid parameters), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transferase (γGT), albumin (Alb), magnesium (Mg2+), calcium (Ca2+), phosphorus (P), were estimated. Blood glycosylated hemoglobin (HbA1C) were also estimated. kidney and liver were used for biochemical estimation of oxidative stress markers such as lipid peroxidation, superoxide dismutase (SOD) activity and glutathione peroxidase (GPx) activity. The kidney and pancreas were used for histopathological study. Further, HPLC chemoprofiling of CM extract and in-silico molecular simulation experiments were performed. RESULTS: At the end of eight weeks, renal damage induced by the consequence of prolong diabetic condition was confirmed by altered levels of serum and urine kidney and liver function markers, oxidative stress markers and histopathological variations in kidney. Treatment with CM extract ameliorated the diabetes mellitus-induced renal biochemical parameters and histopathological changes. Further, HPLC-UV & MS experiments revealed that CM extract contains several bioactive compounds including hyperozide (62.35 µg/mg of extract) and quercitrin (19.07 µg/mg of extract). In-silico experiment exhibited cianidanol (-17.133), epicatechin (-15.107) exhibited higher docking score against PPARα and luteoforol (-11.038), epigallocatechin (-10.736) against PPARγ. Based on docking and drug likeness score, four bioactive compounds were selected for molecular dynamic experiments. Cianidanol and epigallocatechin out of the 30 compounds are concluded as a potential candidate for the treatment of DN through activating PPARα and PPARγ target protein. CONCLUSIONS: Taken together, the present study provided the scientific footage for the traditional use of Combretum micranthum.


Asunto(s)
Glucemia/efectos de los fármacos , Combretum , Diabetes Mellitus Experimental/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Hipoglucemiantes/farmacología , Riñón/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Biomarcadores/sangre , Glucemia/metabolismo , Catequina/análogos & derivados , Catequina/aislamiento & purificación , Catequina/farmacología , Combretum/química , Diabetes Mellitus Experimental/inducido químicamente , Nefropatías Diabéticas/inducido químicamente , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Hipoglucemiantes/aislamiento & purificación , Riñón/metabolismo , Riñón/patología , Masculino , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Niacinamida , Estrés Oxidativo/efectos de los fármacos , PPAR alfa/agonistas , PPAR alfa/metabolismo , PPAR gamma/agonistas , PPAR gamma/metabolismo , Extractos Vegetales/aislamiento & purificación , Ratas Wistar , Transducción de Señal , Estreptozocina
14.
Cell Host Microbe ; 28(2): 273-284.e6, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32668218

RESUMEN

The clinical spectra of irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD) intersect to form a scantily defined overlap syndrome, termed pre-IBD. We show that increased Enterobacteriaceae and reduced Clostridia abundance distinguish the fecal microbiota of pre-IBD patients from IBS patients. A history of antibiotics in individuals consuming a high-fat diet was associated with the greatest risk for pre-IBD. Exposing mice to these risk factors resulted in conditions resembling pre-IBD and impaired mitochondrial bioenergetics in the colonic epithelium, which triggered dysbiosis. Restoring mitochondrial bioenergetics in the colonic epithelium with 5-amino salicylic acid, a PPAR-γ (peroxisome proliferator-activated receptor gamma) agonist that stimulates mitochondrial activity, ameliorated pre-IBD symptoms. As with patients, mice with pre-IBD exhibited notable expansions of Enterobacteriaceae that exacerbated low-grade mucosal inflammation, suggesting that remediating dysbiosis can alleviate inflammation. Thus, environmental risk factors cooperate to impair epithelial mitochondrial bioenergetics, thereby triggering microbiota disruptions that exacerbate inflammation and distinguish pre-IBD from IBS.


Asunto(s)
Antibacterianos/efectos adversos , Dieta Alta en Grasa/efectos adversos , Disbiosis/patología , Metabolismo Energético/fisiología , Enfermedades Inflamatorias del Intestino/microbiología , Síndrome del Colon Irritable/microbiología , Animales , Antiinflamatorios no Esteroideos/uso terapéutico , Disbiosis/inducido químicamente , Enterobacteriaceae/crecimiento & desarrollo , Microbioma Gastrointestinal , Humanos , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Complejo de Antígeno L1 de Leucocito/metabolismo , Mesalamina/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , PPAR gamma/agonistas
15.
Neuroreport ; 31(13): 952-958, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32568773

RESUMEN

We investigated a central antihypertensive effect of acupuncture in rostral ventrolateral medulla (RVLM) in spontaneously hypertensive rats (SHRs). In total, 56 rats were randomly divided into seven groups as follows: the SHR group, SHR+acupuncture (SHR+Acu) group, SHR+nonacupuncture (SHR+Non-acu) group, GW9662+acupuncture (GW9662+Acu) group, GW9662+GW1929 group, GW9662 group, and 2% DMSO group (n = 8 per group). The whole eight Wistar-Kyoto rats were assigned to the WKY group. The acupuncture treatment lasting for 14 days was performed at the Taichong acupoint (LR3) or at a nonacupoint (non-acu) once daily. The peroxisome proliferator-activated receptor (PPAR)-γ agonist GW1929 and the PPAR-γ inhibitor GW9662 were microinjected by the brain stereotactic technique. Blood pressure was measured by the tail-cuff method. Sympathetic vasomotor activity was determined by implanting in a telemetry electrocardiogram radio transmitter. The expression of PPARs in the RVLM of the rats was detected using Western blot. We demonstrated that acupuncture attenuated blood pressure, heart rate, and sympathetic vasomotor activity in SHRs. The protein expression of PPAR-γ was significantly increased in SHRs treated with acupuncture. The antihypertensive effects of acupuncture in SHRs were abrogated by microinjection bilaterally into RVLM of GW9662. Microinjection of GW1929 mimicked the antihypertensive effect of acupuncture. PPAR-γ expression was negatively correlated with blood pressure and sympathetic vasomotor activity in SHRs treated with acupuncture. These results suggested that acupuncture promoted a central antihypertensive effect by increasing the expression of PPAR-γ in RVLM of SHRs.


Asunto(s)
Terapia por Acupuntura , Presión Sanguínea/fisiología , Frecuencia Cardíaca/fisiología , Bulbo Raquídeo/metabolismo , PPAR gamma/metabolismo , Sistema Vasomotor/fisiología , Anilidas/farmacología , Animales , Benzofenonas/farmacología , Presión Sanguínea/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/fisiología , Frecuencia Cardíaca/efectos de los fármacos , Bulbo Raquídeo/efectos de los fármacos , Bulbo Raquídeo/fisiología , Microinyecciones , PPAR gamma/agonistas , PPAR gamma/antagonistas & inhibidores , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Tirosina/análogos & derivados , Tirosina/farmacología , Sistema Vasomotor/efectos de los fármacos
16.
Eur J Pharmacol ; 883: 173252, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32534078

RESUMEN

Type 2 diabetes (T2D) is a metabolic disease characterized by defects in glycemia regulation. This disease is associated with alterations in insulin action and lipid metabolism, generating hyperglycemia and dyslipidemias. Currently, it is necessary to develop new or known drugs that promote the sensitization of insulin action. Thus, activation of peroxisome proliferator-activated receptors (PPARs) is probably the key to doing this. PPARs participate in maintaining an energetic balance between storage and the expenditure of energy. The activation of PPARγ produces the storage of energy, mainly as glycogen and fat. Meanwhile, PPARα activation promotes lipid degradation. Oleanolic acid (OA), a pentacyclic triterpenoid of numerous edible and medicinal plants, decreases hyperglycemia and lipid accumulation. However, the effects on PPARs and their regulated genes are unknown. Our aim was to determine the effects of OA on PPAR γ/α expression and their regulated genes (adiponectin, type 4 glucose transporter, fatty acid transport protein, and long-chain acyl-CoA synthetase) in C2C12 myoblasts by RT-PCR, Western blot, GLUT-4 translocation, and lipid storage in 3T3-L1 adipocytes. In C2C12 myoblasts, OA increased the expression of mRNA in both PPARγ/α and their regulated genes; also, PPARγ, GLUT-4, and FATP-1 protein expression increased, as well as GLUT-4 translocation. In 3T3-L1, OA increased the expression of mRNA in both PPARγ/α and maintained lipid storage unchanged. In conclusion, OA exhibited a dual action on PPARγ/α, which might explain in part its antihyperglycemic effect. This compound represents an alternative for designing novel therapeutic strategies in the control of T2D.


Asunto(s)
Adipocitos/efectos de los fármacos , Transportador de Glucosa de Tipo 4/metabolismo , Hipoglucemiantes/farmacología , Hipolipemiantes/farmacología , Mioblastos Esqueléticos/efectos de los fármacos , Ácido Oleanólico/farmacología , PPAR alfa/agonistas , PPAR gamma/agonistas , Células 3T3-L1 , Adipocitos/metabolismo , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Dislipidemias/tratamiento farmacológico , Dislipidemias/metabolismo , Regulación de la Expresión Génica , Transportador de Glucosa de Tipo 4/genética , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Mioblastos Esqueléticos/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Transporte de Proteínas , Transducción de Señal
17.
Molecules ; 25(9)2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32365556

RESUMEN

The cytokine storm is an abnormal production of inflammatory cytokines, due to the over-activation of the innate immune response. This mechanism has been recognized as a critical mediator of influenza-induced lung disease, and it could be pivotal for COVID-19 infections. Thus, an immunomodulatory approach targeting the over-production of cytokines could be proposed for viral aggressive pulmonary disease treatment. In this regard, the peroxisome proliferator-activated receptor (PPAR)-γ, a member of the PPAR transcription factor family, could represent a potential target. Beside the well-known regulatory role on lipid and glucose metabolism, PPAR-γ also represses the inflammatory process. Similarly, the PPAR-γ agonist thiazolidinediones (TZDs), like pioglitazone, are anti-inflammatory drugs with ameliorating effects on severe viral pneumonia. In addition to the pharmacological agonists, also nutritional ligands of PPAR-γ, like curcuma, lemongrass, and pomegranate, possess anti-inflammatory properties through PPAR-γ activation. Here, we review the main synthetic and nutritional PPAR-γ ligands, proposing a dual approach based on the strengthening of the immune system using pharmacological and dietary strategies as an attempt to prevent/treat cytokine storm in the case of coronavirus infection.


Asunto(s)
Infecciones por Coronavirus/patología , PPAR gamma/agonistas , Plantas Medicinales/química , Neumonía Viral/patología , Tiazolidinedionas/farmacología , Animales , COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/inmunología , Citocinas/antagonistas & inhibidores , Aceites de Pescado/farmacología , Humanos , Ligandos , Pandemias , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/inmunología , Alimentos Marinos/análisis , Especias/análisis
18.
Oncol Rep ; 43(4): 1309-1318, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32323796

RESUMEN

Ovarian cancer is the most lethal gynecological cancer worldwide. To date, the therapeutic approaches available for the treatment of ovarian cancer are still very limited. The present study first demonstrated that the Chinese herb, Oroxylin A, exerts inhibitory effects on both the migratory ability and viability of ovarian cancer cells. Notably, the inhibitory effects of the drug occurred in a dose­dependent manner. Oroxylin A only inhibited cell migration at the lower dose, whereas it induced early or late apoptosis at the middle or higher doses, respectively. Mechanistically, Oroxylin A increased peroxisome proliferator­activated receptor gamma (PPARγ) expression and altered the expression profile of progesterone receptor membrane component (PGRMC)1/2. Notably, PPARγ was revealed to play a central role in Oroxylin A­mediated anticancer activity. The silencing of PPARγ significantly abrogated Oroxylin A­induced apoptotic cell death and restored the expression profile of the PGRMC1/2 family in ovarian cancer cells. Collectively, the present study revealed that Oroxylin A exerted marked anticancer effects against ovarian cancer in vitro. Thus, Oroxylin A may have potential for use as a complementary therapy in the treatment of ovarian cancer.


Asunto(s)
Flavonoides/farmacología , Proteínas de la Membrana/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , PPAR gamma/agonistas , Receptores de Progesterona/metabolismo , Apoptosis , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Humanos , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Transducción de Señal
19.
J Nat Prod ; 83(4): 918-926, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32129622

RESUMEN

Oplopanax horridus and Panax ginseng are members of the plant family Araliaceae, which is rich in structurally diverse polyacetylenes. In this work, we isolated and determined structures of 23 aliphatic C17 and C18 polyacetylenes, of which five are new compounds. Polyacetylenes have a suitable scaffold for binding to PPARγ, a ligand-activated transcription factor involved in metabolic regulation. Using a reporter gene assay, their potential was investigated to activate PPARγ. The majority of the polyacetylenes showed at least some PPARγ activity, among which oplopantriol B 18-acetate (1) and oplopantriol B (2) were the most potent partial PPARγ activators. By employing in silico molecular docking and comparing the activities of structural analogues, features are described that are involved in PPARγ activation, as well as in cytotoxicity. It was found that the type of C-1 to C-2 bond, the polarity of the terminal alkyl chain, and the backbone flexibility can impact bioactivity of polyacetylenes, while diol structures with a C-1 to C-2 double bond showed enhanced cytotoxicity. Since PPARγ activators have antidiabetic and anti-inflammatory properties, the present results may help explain some of the beneficial effects observed in the traditional use of O. horridus extracts. Additionally, they might guide the polyacetylene-based design of future PPARγ partial agonists.


Asunto(s)
Oplopanax/química , PPAR gamma/agonistas , Panax/química , Poliinos/química , Poliinos/farmacología , Antiinflamatorios no Esteroideos/farmacología , Células HEK293 , Humanos , Hipoglucemiantes/farmacología , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología , Raíces de Plantas/química , Relación Estructura-Actividad
20.
Int Immunopharmacol ; 83: 106396, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32193103

RESUMEN

OBJECTIVE: To elucidate the effects of ISO-α-acids (IAAs), a PPAR-γ agonist, on ICH rats and its potential mechanism. MATERIAL AND METHODS: The Sprague Dawley rats ICH model was induced by stereotactic injecting of 100 µl autologous artery blood. Ninety male rats were randomly allocated to five groups: autologous blood and IAAs (IAA); received autologous blood, IAAs and PPAR-γ inhibitor (IAA + GW9662); autologous blood and normal Saline (Saline); only autologous blood (Mock); and only needle injection (Sham). Neurological functions were assessed by mNSS. Hematoma volume, brain water content, surface proteins and inflammatory factors were detected. The microglia anti-inflammatory abilities were also evaluated. RESULTS: IAAs were able to significantly decrease ICH rat's mNSS scores, alleviate brain water content, improve hematoma resolution than Saline, Mock (p < 0.05). More "M2" microglial/macrophage can be induced by IAAs. The expression of CD 36 was statistically higher in IAA than other groups (p < 0.05). Injection of IAAs led to a greatly increasing in CD 11b and CD 206 double-positive anti-inflammatory type microglial/macrophage, moreover, a reduction of inflammatory cytokines expression (p < 0.05). Such protective effects can be relieved by GW9662. CONCLUSIONS: This is the first study to elucidate the relationship between IAAs and ICH. IAAs were able to accelerate hematoma absorption, alleviate brain edema, suppress peri-hematoma inflammations and finally improved the outcome of ICH rats. The phenotype was due to the IAAs induction of "M2" microglial/macrophage via activating of PPAR-γ and increasing CD 36 expression.


Asunto(s)
Edema Encefálico/tratamiento farmacológico , Hemorragia Cerebral/tratamiento farmacológico , Hematoma/tratamiento farmacológico , Ácidos Indolacéticos/uso terapéutico , Microglía/inmunología , Extractos Vegetales/uso terapéutico , Animales , Antiinflamatorios/uso terapéutico , Antígenos CD36/genética , Antígenos CD36/metabolismo , Diferenciación Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Humulus/inmunología , Ácidos Indolacéticos/farmacología , PPAR gamma/agonistas , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Células Th2/inmunología , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA