Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.581
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Toxins (Basel) ; 16(4)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38668596

RESUMEN

A random-effects meta-analysis was conducted to investigate the effect of mycotoxins (MT) without or with the inclusion of yeast cell wall extract (YCWE, Mycosorb®, Alltech, Inc., Nicholasville, KY, USA) on laying hen performance. A total of 25 trials were collected from a literature search, and data were extracted from 8 of these that met inclusion criteria, for a total of 12 treatments and 1774 birds. Laying hens fed MT had lower (p < 0.05) body weight (BW) by -50 g, egg production by -6.3 percentage points, and egg weight by -1.95 g than control fed hens (CTRL). Inclusion of YCWE during the mycotoxin challenges (YCWE + MT) resulted in numerically greater (p = 0.441) BW by 12.5 g, while egg production and egg weight were significantly (p < 0.0001) higher by 4.2 percentage points and 1.37 g, respectively. Furthermore, economic assessment calculations indicated that YCWE may not only support hen performance but also resulted in a positive return on investment. In conclusion, mycotoxins can play a role in negatively impacting laying hen performance and profitability. Inclusion of YCWE in feed with mycotoxin challenges provided benefits to egg production and egg weight and may support profitability. As such, the inclusion of YCWE could play an important role in minimizing mycotoxin effects and in turn aid farm efficiency and profitability.


Asunto(s)
Alimentación Animal , Pared Celular , Pollos , Micotoxinas , Animales , Micotoxinas/toxicidad , Pared Celular/efectos de los fármacos , Femenino , Levaduras , Reproducción/efectos de los fármacos , Suplementos Dietéticos
2.
Proc Natl Acad Sci U S A ; 121(15): e2321759121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38579009

RESUMEN

Adjacent plant cells are connected by specialized cell wall regions, called middle lamellae, which influence critical agricultural characteristics, including fruit ripening and organ abscission. Middle lamellae are enriched in pectin polysaccharides, specifically homogalacturonan (HG). Here, we identify a plant-specific Arabidopsis DUF1068 protein, called NKS1/ELMO4, that is required for middle lamellae integrity and cell adhesion. NKS1 localizes to the Golgi apparatus and loss of NKS1 results in changes to Golgi structure and function. The nks1 mutants also display HG deficient phenotypes, including reduced seedling growth, changes to cell wall composition, and tissue integrity defects. These phenotypes are comparable to qua1 and qua2 mutants, which are defective in HG biosynthesis. Notably, genetic interactions indicate that NKS1 and the QUAs work in a common pathway. Protein interaction analyses and modeling corroborate that they work together in a stable protein complex with other pectin-related proteins. We propose that NKS1 is an integral part of a large pectin synthesis protein complex and that proper function of this complex is important to support Golgi structure and function.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Adhesión Celular/genética , Pectinas/metabolismo , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Pared Celular/metabolismo
3.
Methods Mol Biol ; 2791: 71-80, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532093

RESUMEN

Immunocytochemical studies of the cell wall are used to visualize specific epitopes of pectins, arabinogalactan proteins, hemicelluloses, extensins, and other wall components using specific primary antibodies. This reaction, combined with calcofluor staining, allows to comprehend how the cell wall is rebuilt during the protoplast culture. In this protocol, the method of immunostaining using antibodies against cell wall components based on Fagopyrum esculentum and Fagopyrum tataricum protoplasts is described.


Asunto(s)
Fagopyrum , Pared Celular , Pectinas
4.
Methods Mol Biol ; 2791: 57-70, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532092

RESUMEN

Immunohistochemistry is a method that allows the detection of individual components of cell walls in an extremely precise way at the level of a single cell and wall domains. The cell wall antibodies detect specific epitopes of pectins, arabinogalactan proteins (AGP), hemicelluloses, and extensins. The presented method visualization of the selected pectic and AGP epitopes using antibodies directed to wall components is described. The method of the analysis of the chemical composition of the wall is present on the example of the shoot apical meristems of Fagopurum esculentum and Fagopyrum tataricum. Recommended protocols for immunostaining and examination on fluorescence microscopy level are presented.


Asunto(s)
Fagopyrum , Fagopyrum/química , Fagopyrum/metabolismo , Meristema/metabolismo , Pectinas/análisis , Inmunohistoquímica , Epítopos , Pared Celular/química
5.
J Environ Manage ; 357: 120691, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38554452

RESUMEN

Regions affected by heavy metal contamination frequently encounter phosphorus (P) deficiency. Numerous studies highlight crucial role of P in facilitating cadmium (Cd) accumulation in woody plants. However, the regulatory mechanism by which P affects Cd accumulation in roots remains ambiguous. This study aims to investigate the effects of phosphorus (P) deficiency on Cd accumulation, Cd subcellular distribution, and cell wall components in the roots of Salix caprea under Cd stress. The results revealed that under P deficiency conditions, there was a 35.4% elevation in Cd content in roots, coupled with a 60.1% reduction in Cd content in shoots, compared to the P sufficiency conditions. Under deficient P conditions, the predominant response of roots to Cd exposure was the increased sequestration of Cd in root cell walls. The sequestration of Cd in root cell walls increased from 37.1% under sufficient P conditions to 66.7% under P deficiency, with pectin identified as the primary Cd binding site under both P conditions. Among cell wall components, P deficiency led to a significant 31.7% increase in Cd content within pectin compared to P sufficiency conditions, but did not change the pectin content. Notably, P deficiency significantly increased pectin methylesterase (PME) activity by regulating the expression of PME and PMEI genes, leading to a 10.4% reduction in the degree of pectin methylesterification. This may elucidate the absence of significant changes in pectin content under P deficiency conditions and the concurrent increase in Cd accumulation in pectin. Fourier transform infrared spectroscopy (FTIR) results indicated an increase in carboxyl groups in the root cell walls under P deficiency compared to sufficient P treatment. The results provide deep insights into the mechanisms of higher Cd accumulation in root mediated by P deficiency.


Asunto(s)
Pectinas , Salix , Pectinas/química , Pectinas/metabolismo , Pectinas/farmacología , Cadmio/metabolismo , Salix/metabolismo , Raíces de Plantas/química , Pared Celular/metabolismo , Fósforo/análisis
6.
Plant Physiol Biochem ; 208: 108455, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38428157

RESUMEN

'Zaosu' pear fruit is prone to yellowing of the surface and softening of the flesh after harvest. This work was performed to assess the influences of L-glutamate treatment on the quality of 'Zaosu' pears and elucidate the underlying mechanisms involved. Results demonstrated that L-glutamate immersion reduced ethylene release, respiratory intensity, weight loss, brightness (L*), redness (a*), yellowness (b*), and total coloration difference (ΔE); enhanced ascorbic acid, soluble solids, and soluble sugar contents; maintained chlorophyll content and flesh firmness of pears. L-glutamate also restrained the activities of neutral invertase and acid invertase, while enhancing sucrose phosphate synthetase and sucrose synthase activities to facilitate sucrose accumulation. The transcriptions of PbSGR1, PbSGR2, PbCHL, PbPPH, PbRCCR, and PbNYC were suppressed by L-glutamate, resulting in a deceleration of chlorophyll degradation. L-glutamate concurrently suppressed the transcription levels and enzymatic activities of polygalacturonases, pectin methylesterases, cellulase, and ß-glucosidase. It restrained polygalacturonic acid trans-eliminase and pectin methyl-trans-eliminase activities as well as inhibited the transcription levels of PbPL and Pbß-gal. Moreover, the gene transcriptions and enzymatic activities of arginine decarboxylase, ornithine decarboxylase, S-adenosine methionine decarboxylase, glutamate decarboxylase, γ-aminobutyric acid transaminase, glutamine synthetase along with the PbSPDS transcription was promoted by L-glutamate. L-glutamate also resulted in the down-regulation of PbPAO, PbDAO, PbSSADH, PbGDH, and PbGOGAT transcription levels, while enhancing γ-aminobutyric acid, glutamate, and pyruvate acid contents in pears. These findings suggest that L-glutamate immersion can effectively maintain the storage quality of 'Zaosu' pears via modulating key enzyme activities and gene transcriptions involved in sucrose, chlorophyll, cell wall, and polyamine metabolism.


Asunto(s)
Carboxiliasas , Pyrus , Pyrus/genética , Pyrus/metabolismo , Sacarosa/metabolismo , Ácido Glutámico/metabolismo , Frutas/metabolismo , Clorofila/metabolismo , Pared Celular , Pectinas/metabolismo , Carboxiliasas/metabolismo , Ácido gamma-Aminobutírico/farmacología , Poliaminas/metabolismo
7.
Plant Physiol Biochem ; 208: 108495, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38452451

RESUMEN

Solanum lycopersicum (Tomato) leaves and stems are considered waste. Valorization of this waste can be achieved by for example the extraction of proteins. This prospect is promising but currently not feasible, since protein extraction yields from tomato leaves are low, amongst other due to the (physical) barrier formed by the plant cell walls. However, the molecular aspects of the relationship between cell wall properties and protein extractability from tomato leaves are currently not clear and thus objective of this study. To fill this knowledge gap the biochemical composition of plant cell walls was measured and related to protein extraction yields at different plant ages, leaf positions, and across different tomato accessions, including two Solanum lycopersicum cultivars and the wildtype species S. pimpinellifolium and S. pennellii. For all genotypes, protein extraction yields from tomato leaves were the highest in young tissues, with a decreasing trend towards older plant material. This decrease of protein extraction yield was accompanied by a significant increase of arabinose and galacturonic acid content and a decrease of galactose content in the cell walls of old-vs-young tissues. This resulted in strong negative correlations between protein extraction yield and the content of arabinose and galacturonic acid in the cell wall, and a positive correlation between the content of galactose and protein extraction yield. Overall, these results point to the importance of the pectin network on protein extractability, making pectin a potential breeding target for enhancing protein extractability from tomato leaves.


Asunto(s)
Ácidos Hexurónicos , Solanum lycopersicum , Solanum lycopersicum/genética , Arabinosa , Galactosa , Fitomejoramiento , Pared Celular/metabolismo , Hojas de la Planta/metabolismo , Pectinas/metabolismo
8.
J Food Sci ; 89(4): 2001-2016, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38369949

RESUMEN

Kiwifruit ripening and senescence after harvesting are closely related to its economic value. Transcriptome analysis and biochemical parameters were used to investigate the differences in gene expression levels and the potential regulation of cell wall metabolism in kiwifruit treated with ozone, thereby regulating fruit softening and prolonging postharvest life. Compared to the control group, the activities of the cell wall modification enzyme were lower under ozone treatment, the content of polysaccharide in the cell wall of primary pectin and cellulose was higher, and the content of soluble pectin was lower. Meanwhile, ozone treatment delayed the degradation of the cell wall mesosphere during storage. A total of 20 pectinesterase (PE)-related genes were identified by sequencing analysis. The data analysis and quantitative polymerase chain reaction results confirmed that cell wall modifying enzyme genes played an important role in softening and senescence after harvesting, which may reduce or induce the expression of certain genes affecting cell wall metabolism. Ozone treatment not only regulates active genes such as xyloglucan endo glycosyltransferase/hydrolase, cellulose synthase, polygalacturonase, and PE to maintain the quality of fruit after harvest but also acts synergically with cell wall modifying enzymes to inhibit the degradation of cell wall, resulting in changes in the ultrastructure of cell wall, thereby reducing the hardness of kiwifruit. In addition, according to the results of cis-acting elements, cell wall degradation is also related to downstream hormone signaling, especially PE-related genes. These results provide a theoretical basis for studying the mechanism of firmness and cell wall metabolism difference of kiwifruit and also lay a good foundation for further research.


Asunto(s)
Actinidia , Ozono , Humanos , Ozono/farmacología , Retraso del Tratamiento , Perfilación de la Expresión Génica , Pectinas/metabolismo , Actinidia/química , Pared Celular , Frutas/química
9.
Theor Appl Genet ; 137(3): 54, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38381205

RESUMEN

KEY MESSAGE: Integrated phenomics, ionomics, genomics, transcriptomics, and functional analyses present novel insights into the role of pectin demethylation-mediated cell wall Na+ retention in positively regulating salt tolerance in oilseed rape. Genetic variations in salt stress tolerance identified in rapeseed genotypes highlight the complicated regulatory mechanisms. Westar is ubiquitously used as a transgenic receptor cultivar, while ZS11 is widely grown as a high-production and good-quality cultivar. In this study, Westar was found to outperform ZS11 under salt stress. Through cell component isolation, non-invasive micro-test, X-ray energy spectrum analysis, and ionomic profile characterization, pectin demethylation-mediated cell wall Na+ retention was proposed to be a major regulator responsible for differential salt tolerance between Westar and ZS11. Integrated analyses of genome-wide DNA variations, differential expression profiling, and gene co-expression networks identified BnaC9.PME47, encoding a pectin methylesterase, as a positive regulator conferring salt tolerance in rapeseed. BnaC9.PME47, located in two reported QTL regions for salt tolerance, was strongly induced by salt stress and localized on the cell wall. Natural variation of the promoter regions conferred higher expression of BnaC9.PME47 in Westar than in several salt-sensitive rapeseed genotypes. Loss of function of AtPME47 resulted in the hypersensitivity of Arabidopsis plants to salt stress. The integrated multiomics analyses revealed novel insights into pectin demethylation-mediated cell wall Na+ retention in regulating differential salt tolerance in allotetraploid rapeseed genotypes. Furthermore, these analyses have provided key information regarding the rapid dissection of quantitative trait genes responsible for nutrient stress tolerance in plant species with complex genomes.


Asunto(s)
Arabidopsis , Brassica napus , Brassica rapa , Tolerancia a la Sal/genética , Brassica napus/genética , Pectinas , Estrés Salino , Pared Celular , Desmetilación
10.
Br Poult Sci ; 65(2): 129-136, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38416108

RESUMEN

1. This study evaluated the effectiveness of yeast (Saccharomyces cerevisiae) cell wall (YCW) supplementation on the growth performance, carcase characteristics, serum biomarkers, liver function, ileal histology and microbiota of broiler chickens challenged with Clostridium perfringens (C. perfringens).2. In a 35-d trial, 240 chicks aged 1-d-old were randomly assigned to one of four treatment groups, each with 10 replicates: control (CON) with no challenge or additives, challenged with C. perfringens (CHAL), CHAL and supplemented with YCW at either 0.25 g/kg (YCW0.25) or 0.5 g/kg (YCW0.5).3. In comparison to CON, the CHAL birds had reduced growth performance, survival rate, dressing percentage, breast meat yield, levels of total protein (TP), globulin (GLO), glucose (GLU), total antioxidant capacity (T-AOC) and total superoxide dismutase (T-SOD), as well as a decreased Lactobacillus population (P < 0.01). Additionally, this group showed elevated levels of glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and C. perfringens count (P < 0.01). Compared to CHAL, the YCW0.25 or YCW0.5 groups had improved growth performance, survival rate, dressing percentage, breast meat yield, levels of TP, GLO, GLU, and T-AOC, as well as the activities of T-SOD, GOT, and GPT, villus height, villus surface area, villus height to crypt depth ratio, and the populations of both Lactobacillus and C. perfringens; (P < 0.01).4. The data suggested that YCW supplementation at either 0.25 or 0.50 g/kg can restore the growth performance of broiler chickens during a C. perfringens challenge.


Asunto(s)
Infecciones por Clostridium , Clostridium perfringens , Animales , Saccharomyces cerevisiae , Pollos , Prebióticos , Infecciones por Clostridium/veterinaria , Infecciones por Clostridium/patología , Suplementos Dietéticos , Antioxidantes , Pared Celular , Superóxido Dismutasa , Alimentación Animal/análisis , Dieta/veterinaria
11.
J Agric Food Chem ; 72(8): 4195-4206, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38354398

RESUMEN

The increase of polysaccharides in the dark tea pile process is thought to be connected to the cell wall polysaccharides' breakdown. However, the relationship between tea polysaccharides (TPSs) and tea cell wall polysaccharides has not been further explored. In this study, the structural changes in the cell wall polysaccharides [e.g., cellulose, hemicellulose (HC), and pectin] in Liupao tea were characterized before and after traditional fermentation and tank fermentation. Additionally, the degradation mechanism of tea cell wall polysaccharides during fermentation was assessed. The results showed that cellulose crystallinity decreased by 11.9-49.6% after fermentation. The molar ratio of monosaccharides, such as arabinose, rhamnose, and glucose in HC, was significantly reduced, and the molecular weight decreased. The esterification degree and linearity of water-soluble pectin (WSP) were reduced. TPS content increases during pile fermentation, which may be due to HC degradation and the increase in WSP caused by cell wall structure damage. Microorganisms were shown to be closely associated with the degradation of cell wall polysaccharides during fermentation according to correlation analyses. Traditional fermentation had a greater effect on the cellulose structure, while tank fermentation had a more noticeable impact on HC and WSP.


Asunto(s)
Camellia sinensis , Polisacáridos , Fermentación , Polisacáridos/química , Camellia sinensis/química , Pectinas/química , Celulosa/metabolismo , Agua/metabolismo , Pared Celular/química , Té/química , China
12.
Med Mycol ; 62(3)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38389246

RESUMEN

Candida albicans is a dimorphic opportunistic pathogen in immunocompromised individuals. We have previously demonstrated that sodium houttuyfonate (SH), a derivative of medicinal herb Houttuynia cordata Thunb, was effective for antifungal purposes. However, the physical impediment of SH by C. albicans ß-glucan may weaken the antifungal activity of SH. In this study, the interactions of SH with cell wall (CW), extracellular matrix (EM), CW ß-glucan, and a commercial ß-glucan zymosan A (ZY) were inspected by XTT assay and total plate count in a standard reference C. albicans SC5314 as well as two clinical fluconazole-resistant strains Z4935 and Z5172. After treatment with SH, the content and exposure of CW ß-glucan, chitin, and mannan were detected, the fungal clearance by phagocytosis of RAW264.7 and THP-1 was examined, and the gene expressions and levels of cytokines TNF-ɑ and IL-10 were also monitored. The results showed that SH could be physically impeded by ß-glucan in CW, EM, and ZY. This impediment subsequently triggered the exposure of CW ß-glucan and chitin with mannan masked in a time-dependent manner. SH-induced ß-glucan exposure could significantly enhance the phagocytosis and inhibit the growth of C. albicans. Meanwhile, the SH-pretreated fungal cells could greatly stimulate the cytokine gene expressions and levels of TNF-ɑ and IL-10 in the macrophages. In sum, the strategy that the instant physical impediment of C. albicans CW to SH, which can induce the exposure of CW ß-glucan may be universal for C. albicans in response to physical deterrent by antifungal drugs.


Asunto(s)
Alcanos , Candida albicans , Sulfitos , beta-Glucanos , Humanos , Antifúngicos/uso terapéutico , beta-Glucanos/farmacología , Interleucina-10/metabolismo , Interleucina-10/farmacología , Factor de Necrosis Tumoral alfa , Mananos , Fagocitosis , Quitina/metabolismo , Pared Celular/metabolismo
13.
Environ Pollut ; 345: 123503, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38331243

RESUMEN

Methyl jasmonate (MeJA), a crucial phytohormone, which plays an important role in resistance to Cadmium (Cd) stress. The cell wall (CW) of root system is the main location of Cd and plays a key role in resistance to Cd toxicity. However, the mechanism effect of MeJA on the CW composition and Cd accumulation remain unclear. In this study, the contribution of MeJA in regulating CW structure, pectin composition and Cd accumulation was investigated in Cosmos bipinnatus. Phenotypic results affirm MeJA's significant role in reducing Cd-induced toxicity in C. bipinnatus. Notably, MeJA exerts a dual impact, reducing Cd uptake in roots while increasing Cd accumulation in the CW, particularly bound to pectin. The molecular structure of pectin, mainly uronic acid (UA), correlates positively with Cd content, consistent in HC1 and cellulose, emphasizing UA as pivotal for Cd binding. Furthermore, MeJA modulates pectin methylesterase (PME) activity under Cd stress, influencing pectin's molecular structure and homogalacturonan (HG) content affecting Cd-binding capacity. Chelate-soluble pectin (CSP) within soluble pectins accumulates a substantial Cd proportion, with MeJA regulating both UA content and the minor component 3-deoxy-oct-2-ulosonic acid (Kdo) in CSP. The study delves into the intricate regulation of pectin monosaccharide composition under Cd stress, revealing insights into the CW's physical defense and Cd binding. In summary, this research provides novel insights into MeJA-specific mechanisms alleviating Cd toxicity in C. bipinnatus, shedding light on complex interactions between MeJA, and Cd accumulation in CW pectin polysaccharide.


Asunto(s)
Acetatos , Asteraceae , Cadmio , Ciclopentanos , Oxilipinas , Cadmio/metabolismo , Raíces de Plantas/metabolismo , Polisacáridos/metabolismo , Polisacáridos/farmacología , Pectinas/química , Pared Celular/metabolismo , Asteraceae/metabolismo
14.
J Hazard Mater ; 467: 133738, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38350317

RESUMEN

Little information is available on how boron (B) supplementation affects plant cell wall (CW) remodeling under copper (Cu) excess. 'Xuegan' (Citrus sinensis) seedlings were submitted to 0.5 or 350 µM Cu × 2.5 or 25 µM B for 24 weeks. Thereafter, we determined the concentrations of CW materials (CWMs) and CW components (CWCs), the degree of pectin methylation (DPM), and the pectin methylesterase (PME) activities and PME gene expression levels in leaves and roots, as well as the Cu concentrations in leaves and roots and their CWMs (CWCs). Additionally, we analyzed the Fourier transform infrared (FTIR) and X-ray diffraction (XRD) spectra of leaf and root CWMs. Our findings suggested that adding B reduced the impairment of Cu excess to CWs by reducing the Cu concentrations in leaves and roots and their CWMs and maintaining the stability of CWs, thereby improving leaf and root growth. Cu excess increased the Cu fractions in leaf and root pectin by decreasing DPM due to increased PME activities, thereby contributing to citrus Cu tolerance. FTIR and XRD indicated that the functional groups of the CW pectin, hemicellulose, cellulose, and lignin could bind and immobilize Cu, thereby reducing Cu cytotoxicity in leaves and roots.


Asunto(s)
Citrus sinensis , Boro/toxicidad , Cobre/toxicidad , Plantones , Pared Celular , Hojas de la Planta , Pectinas/farmacología
15.
Carbohydr Polym ; 330: 121838, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38368088

RESUMEN

As a key component in cell walls of numerous organisms ranging from green algae to higher plants, AGPs play principal roles in many biological processes such as cell-cell adhesion and regulating Ca2+ signaling pathway as a Ca2+-capacitor. Consistently, AGP structures vary from species to species and from tissue to tissue. To understand the functions of AGPs, it is vital to know their structural differences relative to their location in the plant. Thus, AGPs were purified from different Arabidopsis tissues. Analyses of these AGPs demonstrated that the AGPs comprised covalently linked pectin and AGP, referred to as pectic-AGPs. Importantly, these pectic-AGPs were glycosylated with a remarkable variety of polysaccharides including homogalacturonan, rhamnogalacturonan-I, and type II arabinogalactan at different ratios and lengths. This result not only suggests that pectic-AGP is a major form of Arabidopsis AGPs, but also supports AGPs serve as crosslinkers covalently connecting pectins with structures tailored for tissue-specific functions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Mucoproteínas/metabolismo , Pectinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Pared Celular/química
16.
Plant Biol (Stuttg) ; 26(2): 282-291, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38194355

RESUMEN

The control of Huanglongbing (HLB), one of the most destructive pests of citrus, relies heavily on the reduction of Asian citrus psyllid (ACP), Diaphorina citri Kuwayama. An in-depth understanding of ACP feeding behaviours among citrus plants is urgent for comprehensive management of orchards. An investigation was conducted in 37 citrus orchards in HLB epidemic areas, sampling shoots in the area with aggregation feeding of ACP (ACPf) and shoots in a neighbouring area without ACP feeding (CK), to study the interaction between leaf chemical composition and ACP psyllid feeding behaviours. Results of FTIR showed a strong absorption peak intensity, mainly representing functional groups originating from cell wall components in the leaf with ACP feeding. As compared with the control, cell wall components, such as alkali-soluble pectin, water-soluble pectin, total soluble pectin, cellulose, and hemicellulose, of the cell wall of ACPf increased by 134.0%, 14.0%, 18.0%, 12.5%, and 20.35%, respectively. These results suggest that cell wall mechanical properties significantly decreased in the term of decreases in pectin performance and cellulose mechanical properties. In addition, there was a remarkably lower boron (B) content in leaves and cell wall components with ACP feeding. Further analysis indicated that leaf B content significantly affected leaf cell wall components. Taken together, we provide evidence to demonstrate that the regional distribution of nutrient imbalance in orchards could affect psyllid feeding behaviour by weakening the cell wall structure, resulting in epidemic variation in ACP. This could help us to understand the management of psyllid infections in orchards with unbalanced nutrition.


Asunto(s)
Citrus , Hemípteros , Animales , Hemípteros/fisiología , Boro , Conducta Alimentaria , Nutrientes , Pared Celular , Celulosa , Pectinas , Enfermedades de las Plantas
17.
Ann Bot ; 133(4): 547-558, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38180460

RESUMEN

BACKGROUND AND AIMS: The softening of ripening fruit involves partial depolymerization of cell-wall pectin by three types of reaction: enzymic hydrolysis, enzymic elimination (lyase-catalysed) and non-enzymic oxidative scission. Two known lyase activities are pectate lyase and rhamnogalacturonan lyase (RGL), potentially causing mid-chain cleavage of homogalacturonan and rhamnogalacturonan-I (RG-I) domains of pectin respectively. However, the important biological question of whether RGL exhibits action in vivo had not been tested. METHODS: We developed a method for specifically and sensitively detecting in-vivo RGL products, based on Driselase digestion of cell walls and detection of a characteristic unsaturated 'fingerprint' product (tetrasaccharide) of RGL action. KEY RESULTS: In model experiments, potato RG-I that had been partially cleaved in vitro by commercial RGL was digested by Driselase, releasing an unsaturated tetrasaccharide ('ΔUA-Rha-GalA-Rha'), taken as diagnostic of RGL action. This highly acidic fingerprint compound was separated from monosaccharides (galacturonate, galactose, rhamnose, etc.) by electrophoresis at pH 2, then separated from ΔUA-GalA (the fingerprint of pectate lyase action) by thin-layer chromatography. The 'ΔUA-Rha-GalA-Rha' was confirmed as 4-deoxy-ß-l-threo-hex-4-enopyranuronosyl-(1→2)-l-rhamnosyl-(1→4)-d-galacturonosyl-(1→2)-l-rhamnose by mass spectrometry and acid hydrolysis. Driselase digestion of cell walls from diverse ripe fruits [date, sea buckthorn, cranberry, yew (arils), mango, plum, blackberry, apple, pear and strawberry] yielded the same fingerprint compound, demonstrating that RGL had been acting in vivo in these fruits prior to harvest. The 'fingerprint' : (galacturonate + rhamnose) ratio in digests from ripe dates was approximately 1 : 72 (mol/mol), indicating that ~1.4 % of the backbone Rha→GalA bonds in endogenous RG-I had been cleaved by in-vivo RGL action. CONCLUSIONS: The results provide the first demonstration that RGL, previously known from studies of fruit gene expression, proteomic studies and in-vitro enzyme activity, exhibits enzyme action in the walls of soft fruits and may thus be proposed to contribute to fruit softening.


Asunto(s)
Pared Celular , Frutas , Pectinas , Polisacárido Liasas , Polisacárido Liasas/metabolismo , Frutas/enzimología , Pared Celular/metabolismo , Pectinas/metabolismo
18.
Plant Cell Environ ; 47(4): 1238-1254, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38173082

RESUMEN

The evolution of land flora was an epochal event in the history of planet Earth. The success of plants, and especially flowering plants, in colonizing all but the most hostile environments required multiple mechanisms of adaptation. The mainly polysaccharide-based cell walls of flowering plants, which are indispensable for water transport and structural support, are one of the most important adaptations to life on land. Thus, development of vasculature is regarded as a seminal event in cell wall evolution, but the impact of further refinements and diversification of cell wall compositions and architectures on radiation of flowering plant families is less well understood. We approached this from a glyco-profiling perspective and, using carbohydrate microarrays and monoclonal antibodies, studied the cell walls of 287 plant species selected to represent important evolutionary dichotomies and adaptation to a variety of habitats. The results support the conclusion that radiation of flowering plant families was indeed accompanied by changes in cell wall fine structure and that these changes can obscure earlier evolutionary events. Convergent cell wall adaptations identified by our analyses do not appear to be associated with plants with similar lifestyles but that are taxonomically distantly related. We conclude that cell wall structure is linked to phylogeny more strongly than to habitat or lifestyle and propose that there are many approaches of adaptation to any given ecological niche.


Asunto(s)
Plantas , Polisacáridos , Polisacáridos/análisis , Filogenia , Plantas/química , Pared Celular/química , Pectinas/análisis , Evolución Biológica
19.
Carbohydr Polym ; 327: 121693, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38171698

RESUMEN

Cell wall polysaccharides were isolated by sequential extractions from coffee pulp, the main solid waste from coffee processing. Extractions were conducted with distilled water at room and boiling temperatures, 0.5 % ammonium oxalate and 0.05 M Na2CO3 to obtain pectic fractions. Hemicelluloses were extracted by using 2 M and 4 M NaOH. The composition of the hemicellulose fractions suggested the presence of xyloglucans, galactomannans and arabinogalactan-proteins (AGPs). The main part of the cell wall polysaccharides recovered from coffee pulp were pectins branched with arabinogalactans. Coffee pulp pectic fractions were low-methoxylated with various amounts of protein (0.5-8.4 %) and phenolics (0.7-8.5 %). Detection at 280 nm in the HPSEC analyses and radial gel diffusion assay using Yariv reagent indicated the presence of AGPs in most of these fractions. NMR analyses of chelating agent (CSP) and dialyzed water (WSPD) extracted pectins were carried out. The results demonstrated that CSP contains only AG I. On the other hand, AG I and AG II are present in WSPD, probably covalently linked to the pectic portion. Comparison with the literature indicated similarities between the cell wall polysaccharides from coffee pulp and green coffee beans.


Asunto(s)
Coffea , Coffea/química , Polisacáridos/química , Pectinas/análisis , Agua/análisis , Pared Celular/química
20.
Proc Natl Acad Sci U S A ; 121(2): e2316396121, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38165937

RESUMEN

Plant epidermal cell walls maintain the mechanical integrity of plants and restrict organ growth. Mechanical analyses can give insights into wall structure and are inputs for mechanobiology models of plant growth. To better understand the intrinsic mechanics of epidermal cell walls and how they may accommodate large deformations during growth, we analyzed a geometrically simple material, onion epidermal strips consisting of only the outer (periclinal) cell wall, ~7 µm thick. With uniaxial stretching by >40%, the wall showed complex three-phase stress-strain responses while cyclic stretching revealed reversible and irreversible deformations and elastic hysteresis. Stretching at varying strain rates and temperatures indicated the wall behaved more like a network of flexible cellulose fibers capable of sliding than a viscoelastic composite with pectin viscosity. We developed an analytic framework to quantify nonlinear wall mechanics in terms of stiffness, deformation, and energy dissipation, finding that the wall stretches by combined elastic and plastic deformation without compromising its stiffness. We also analyzed mechanical changes in slightly dehydrated walls. Their extension became stiffer and more irreversible, highlighting the influence of water on cellulose stiffness and sliding. This study offers insights into the structure and deformation modes of primary cell walls and presents a framework that is also applicable to tissues and whole organs.


Asunto(s)
Pared Celular , Celulosa , Celulosa/química , Pared Celular/química , Membrana Celular , Pectinas , Epidermis de la Planta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA