Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 326
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Toxins (Basel) ; 16(4)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38668596

RESUMEN

A random-effects meta-analysis was conducted to investigate the effect of mycotoxins (MT) without or with the inclusion of yeast cell wall extract (YCWE, Mycosorb®, Alltech, Inc., Nicholasville, KY, USA) on laying hen performance. A total of 25 trials were collected from a literature search, and data were extracted from 8 of these that met inclusion criteria, for a total of 12 treatments and 1774 birds. Laying hens fed MT had lower (p < 0.05) body weight (BW) by -50 g, egg production by -6.3 percentage points, and egg weight by -1.95 g than control fed hens (CTRL). Inclusion of YCWE during the mycotoxin challenges (YCWE + MT) resulted in numerically greater (p = 0.441) BW by 12.5 g, while egg production and egg weight were significantly (p < 0.0001) higher by 4.2 percentage points and 1.37 g, respectively. Furthermore, economic assessment calculations indicated that YCWE may not only support hen performance but also resulted in a positive return on investment. In conclusion, mycotoxins can play a role in negatively impacting laying hen performance and profitability. Inclusion of YCWE in feed with mycotoxin challenges provided benefits to egg production and egg weight and may support profitability. As such, the inclusion of YCWE could play an important role in minimizing mycotoxin effects and in turn aid farm efficiency and profitability.


Asunto(s)
Alimentación Animal , Pared Celular , Pollos , Micotoxinas , Animales , Micotoxinas/toxicidad , Pared Celular/efectos de los fármacos , Femenino , Levaduras , Reproducción/efectos de los fármacos , Suplementos Dietéticos
2.
J Enzyme Inhib Med Chem ; 37(1): 876-894, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35296203

RESUMEN

With increasing number of immunocompromised patients as well as drug resistance in fungi, the risk of fatal fungal infections in humans increases as well. The action of echinocandins is based on the inhibition of ß-(1,3)-d-glucan synthesis that builds the fungal cell wall. Caspofungin, micafungin, anidulafungin and rezafungin are semi-synthetic cyclic lipopeptides. Their specific chemical structure possess a potential to obtain novel derivatives with better pharmacological properties resulting in more effective treatment, especially in infections caused by Candida and Aspergillus species. In this review we summarise information about echinocandins with closer look on their chemical structure, mechanism of action, drug resistance and usage in clinical practice. We also introduce actual trends in modification of this antifungals as well as new methods of their administration, and additional use in viral and bacterial infections.


Asunto(s)
Antifúngicos/farmacología , Aspergillus/efectos de los fármacos , Candida/efectos de los fármacos , Diseño de Fármacos , Equinocandinas/farmacología , Antifúngicos/química , Aspergillus/metabolismo , Candida/metabolismo , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Equinocandinas/química , Glucanos/antagonistas & inhibidores , Glucanos/metabolismo , Pruebas de Sensibilidad Microbiana , Estructura Molecular
3.
Microbiol Spectr ; 10(1): e0087321, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35019680

RESUMEN

The limited number of available effective agents necessitates the development of new antifungals. We report that jervine, a jerveratrum-type steroidal alkaloid isolated from Veratrum californicum, has antifungal activity. Phenotypic comparisons of cell wall mutants, K1 killer toxin susceptibility testing, and quantification of cell wall components revealed that ß-1,6-glucan biosynthesis was significantly inhibited by jervine. Temperature-sensitive mutants defective in essential genes involved in ß-1,6-glucan biosynthesis, including BIG1, KEG1, KRE5, KRE9, and ROT1, were hypersensitive to jervine. In contrast, point mutations in KRE6 or its paralog SKN1 produced jervine resistance, suggesting that jervine targets Kre6 and Skn1. Jervine exhibited broad-spectrum antifungal activity and was effective against human-pathogenic fungi, including Candida parapsilosis and Candida krusei. It was also effective against phytopathogenic fungi, including Botrytis cinerea and Puccinia recondita. Jervine exerted a synergistic effect with fluconazole. Therefore, jervine, a jerveratrum-type steroidal alkaloid used in pharmaceutical products, represents a new class of antifungals active against mycoses and plant-pathogenic fungi. IMPORTANCE Non-Candida albicans Candida species (NCAC) are on the rise as a cause of mycosis. Many antifungal drugs are less effective against NCAC, limiting the available therapeutic agents. Here, we report that jervine, a jerveratrum-type steroidal alkaloid, is effective against NCAC and phytopathogenic fungi. Jervine acts on Kre6 and Skn1, which are involved in ß-1,6-glucan biosynthesis. The skeleton of jerveratrum-type steroidal alkaloids has been well studied, and more recently, their anticancer properties have been investigated. Therefore, jerveratrum-type alkaloids could potentially be applied as treatments for fungal infections and cancer.


Asunto(s)
Alcaloides/farmacología , Antifúngicos/farmacología , Pared Celular/metabolismo , Hongos/efectos de los fármacos , Extractos Vegetales/farmacología , Veratrum/química , beta-Glucanos/metabolismo , Alcaloides/aislamiento & purificación , Antifúngicos/aislamiento & purificación , Candida/efectos de los fármacos , Candida/genética , Candida/metabolismo , Pared Celular/efectos de los fármacos , Hongos/genética , Hongos/metabolismo , Humanos , Micosis/microbiología , Extractos Vegetales/aislamiento & purificación
4.
J Med Chem ; 64(21): 15912-15935, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34662122

RESUMEN

Due to the increased morbidity and mortality by fungal infections and the emergence of severe antifungal resistance, there is an urgent need for new antifungal agents. Here, we screened for antifungal activity in our in-house library through the minimum inhibitory concentration test and derived two hit compounds with moderate antifungal activities. The hit compounds' antifungal activities and drug-like properties were optimized by substituting various aryl ring, alkyl chain, and methyl groups. Among the optimized compounds, 22h was the most promising candidate with good drug-like properties and exhibited potent fast-acting fungicidal antifungal effects against various fungal pathogens and synergistic antifungal activities with some known antifungal drugs. Additionally, 22h was further confirmed to disturb fungal cell wall integrity by activating multiple cell wall integrity pathways. Furthermore, 22h exerted significant antifungal efficacy in both the subcutaneous infection mouse model and ex vivo human nail infection model.


Asunto(s)
Antifúngicos/uso terapéutico , Hongos/efectos de los fármacos , Micosis/tratamiento farmacológico , Animales , Antifúngicos/farmacocinética , Antifúngicos/farmacología , Antifúngicos/toxicidad , Pared Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Sinergismo Farmacológico , Femenino , Humanos , Masculino , Ratones , Pruebas de Sensibilidad Microbiana , Micosis/microbiología , Ratas Sprague-Dawley
5.
Molecules ; 26(18)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34576932

RESUMEN

Our study aimed to characterise the action mode of N-phenacyldibromobenzimidazoles against C. albicans and C. neoformans. Firstly, we selected the non-cytotoxic most active benzimidazoles based on the structure-activity relationships showing that the group of 5,6-dibromobenzimidazole derivatives are less active against C. albicans vs. 4,6-dibromobenzimidazole analogues (5e-f and 5h). The substitution of chlorine atoms to the benzene ring of the N-phenacyl substituent extended the anti-C. albicans action (5e with 2,4-Cl2 or 5f with 3,4-Cl2). The excellent results for N-phenacyldibromobenzimidazole 5h against the C. albicans reference and clinical isolate showed IC50 = 8 µg/mL and %I = 100 ± 3, respectively. Compound 5h was fungicidal against the C. neoformans isolate. Compound 5h at 160-4 µg/mL caused irreversible damage of the fungal cell membrane and accidental cell death (ACD). We reported on chitinolytic activity of 5h, in accordance with the patterns observed for the following substrates: 4-nitrophenyl-N-acetyl-ß-d-glucosaminide and 4-nitrophenyl-ß-d-N,N',N″-triacetylchitothiose. Derivative 5h at 16 µg/mL: (1) it affected cell wall by inducing ß-d-glucanase, (2) it caused morphological distortions and (3) osmotic instability in the C. albicans biofilm-treated. Compound 5h exerted Candida-dependent inhibition of virulence factors.


Asunto(s)
Antifúngicos/química , Antifúngicos/farmacología , Bencimidazoles/química , Animales , Antifúngicos/síntesis química , Antifúngicos/toxicidad , Bencimidazoles/síntesis química , Bencimidazoles/farmacología , Bencimidazoles/toxicidad , Biopelículas/efectos de los fármacos , Candida albicans/citología , Candida albicans/efectos de los fármacos , Pared Celular/efectos de los fármacos , Quitina/metabolismo , Chlorocebus aethiops , Cryptococcus neoformans/citología , Cryptococcus neoformans/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Pruebas de Sensibilidad Microbiana , Microscopía Confocal , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad , Células Vero
6.
mSphere ; 6(4): e0053921, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34406854

RESUMEN

Treatment of invasive mold infections is limited by the lack of adequate drug options that are effective against these fatal infections. High-throughput screening of molds using traditional antifungal assays of growth is problematic and has greatly limited our ability to identify new mold-active agents. Here, we present a high-throughput screening platform for use with Aspergillus fumigatus, the most common causative agent of invasive mold infections, for the discovery of novel mold-active antifungals. This assay detects cell lysis through the release of the cytosolic enzyme adenylate kinase and, thus, is not dependent on changes in biomass or metabolism to detect antifungal activity. The ability to specifically detect cell lysis is a unique aspect of this assay that allows identification of molecules that disrupt fungal cell integrity, such as cell wall-active molecules. We also found that germinating A. fumigatus conidia release low levels of adenylate kinase and that a reduction in this background allowed us to identify molecules that inhibit conidial germination, expanding the potential for discovery of novel antifungal compounds. Here, we describe the validation of this assay and proof-of-concept pilot screens that identified a novel antifungal compound, PIK-75, that disrupts cell wall integrity. This screening assay provides a novel platform for high-throughput screens with A. fumigatus for the identification of anti-mold drugs. IMPORTANCE Fungal infections caused by molds have the highest mortality rates of human fungal infections. These devastating infections are hard to treat and available antifungal drugs are often not effective. Therefore, the identification of new antifungal drugs with mold activity is critical. Drug screening with molds is challenging and there are limited assays available to identify new antifungal compounds directly with these organisms. Here, we present an assay suitable for use for high-throughput screening with a common mold pathogen. This assay has exciting future potential for the identification of new drugs to treat these fatal infections.


Asunto(s)
Antifúngicos/farmacología , Aspergillus fumigatus/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento/métodos , Adenilato Quinasa/antagonistas & inhibidores , Aspergilosis/tratamiento farmacológico , Aspergillus fumigatus/enzimología , Aspergillus fumigatus/crecimiento & desarrollo , Pared Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Humanos , Prueba de Estudio Conceptual , Bibliotecas de Moléculas Pequeñas/farmacología , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/enzimología
7.
Int J Mol Sci ; 22(12)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208198

RESUMEN

The role of auxin in the fruit-ripening process during the early developmental stages of commercial strawberry fruits (Fragaria x ananassa) has been previously described, with auxin production occurring in achenes and moving to the receptacle. Additionally, fruit softening is a consequence of the depolymerization and solubilization of cell wall components produced by the action of a group of proteins and enzymes. The aim of this study was to compare the effect of exogenous auxin treatment on the physiological properties of the cell wall-associated polysaccharide contents of strawberry fruits. We combined thermogravimetric (TG) analysis with analyses of the mRNA abundance, enzymatic activity, and physiological characteristics related to the cell wall. The samples did not show a change in fruit firmness at 48 h post-treatment; by contrast, we showed changes in the cell wall stability based on TG and differential thermogravimetric (DTG) analysis curves. Less degradation of the cell wall polymers was observed after auxin treatment at 48 h post-treatment. The results of our study indicate that auxin treatment delays the cell wall disassembly process in strawberries.


Asunto(s)
Biopolímeros/metabolismo , Pared Celular/metabolismo , Fragaria/metabolismo , Frutas/metabolismo , Ácidos Indolacéticos/farmacología , Pared Celular/efectos de los fármacos , Pared Celular/genética , Fragaria/efectos de los fármacos , Fragaria/genética , Frutas/efectos de los fármacos , Frutas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Temperatura , Termogravimetría , Transcripción Genética/efectos de los fármacos , Ácidos Triyodobenzoicos/farmacología
8.
ACS Appl Mater Interfaces ; 13(26): 30434-30457, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34161080

RESUMEN

In the face of the abundant production of various types of carbapenemases, the antibacterial efficiency of imipenem, seen as "the last line of defense", is weakening. Following, the incidence of carbapenem-resistant Acinetobacter baumannii (CRAB), which can generate antibiotic-resistant biofilms, is increasing. Based on the superior antimicrobial activity of silver nanoparticles against multifarious bacterial strains compared with common antibiotics, we constructed the IPM@AgNPs-PEG-NOTA nanocomposite (silver nanoparticles were coated with SH-PEG-NOTA as well as loaded by imipenem) whose core was a silver nanoparticle to address the current challenge, and IPM@AgNPs-PEG-NOTA was able to function as a novel smart pH-sensitive nanodrug system. Synergistic bactericidal effects of silver nanoparticles and imipenem as well as drug-resistance reversal via protection of the ß-ring of carbapenem due to AgNPs-PEG-NOTA were observed; thus, this nanocomposite confers multiple advantages for efficient antibacterial activity. Additionally, IPM@AgNPs-PEG-NOTA not only offers immune regulation and accelerates tissue repair to improve therapeutic efficacy in vivo but also can prevent the interaction of pathogens and hosts. Compared with free imipenem or silver nanoparticles, this platform significantly enhanced antibacterial efficiency while increasing reactive oxygen species (ROS) production and membrane damage, as well as affecting cell wall formation and metabolic pathways. According to the results of crystal violet staining, LIVE/DEAD backlight bacterial viability staining, and real-time quantitative polymerase chain reaction (RT-qPCR), this silver nanocomposite downregulated the levels of ompA expression to prevent formation of biofilms. In summary, this research demonstrated that the IPM@AgNPs-PEG-NOTA nanocomposite is a promising antibacterial agent of security, pH sensitivity, and high efficiency in reversing resistance and synergistically combatting carbapenem-resistant A. baumannii. In the future, various embellishments and selected loads for silver nanoparticles will be the focus of research in the domains of medicine and nanotechnology.


Asunto(s)
Infecciones por Acinetobacter/tratamiento farmacológico , Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/uso terapéutico , Portadores de Fármacos/química , Nanocompuestos/uso terapéutico , Plata/uso terapéutico , Acinetobacter baumannii/fisiología , Animales , Antibacterianos/química , Biopelículas/efectos de los fármacos , Línea Celular , Membrana Celular/efectos de los fármacos , Pared Celular/efectos de los fármacos , Liberación de Fármacos , Femenino , Compuestos Heterocíclicos con 1 Anillo/química , Imipenem/química , Imipenem/uso terapéutico , Nanopartículas del Metal/uso terapéutico , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Nanocompuestos/química , Polietilenglicoles/química , Especies Reactivas de Oxígeno/metabolismo , Plata/química , Resistencia betalactámica/efectos de los fármacos
9.
Phytomedicine ; 88: 153556, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33958276

RESUMEN

BACKGROUND: During the last three decades systemic fungal infections associated to immunosuppressive therapies have become a serious healthcare problem. Clinical development of new antifungals is an urgent requirement. Since fungal but not mammalian cells are encased in a carbohydrate-containing cell wall, which is required for the growth and viability of fungi, the inhibition of cell wall synthesizing machinery, such as ß(1,3)-D-glucan synthases (GS) and chitin synthases (CS) that catalyze the synthesis of ß(1-3)-D-glucan and chitin, respectively, represent an ideal mode of action of antifungal agents. Although the echinocandins anidulafungin, caspofungin and micafungin are clinically well-established GS inhibitors for the treatment of invasive fungal infections, much effort must still be made to identify inhibitors of other enzymes and processes involved in the synthesis of the fungal cell wall. PURPOSE: Since natural products (NPs) have been the source of several antifungals in clinical use and also have provided important scaffolds for the development of semisynthetic analogues, this review was devoted to investigate the advances made to date in the discovery of NPs from plants that showed capacity of inhibiting cell wall synthesis targets. The chemical characterization, specific target, discovery process, along with the stage of development are provided here. METHODS: An extensive systematic search for NPs against the cell wall was performed considering all the articles published until the end of 2020 through the following scientific databases: NCBI PubMed, Scopus and Google Scholar and using the combination of the terms "natural antifungals" and "plant extracts" with "fungal cell wall". RESULTS: The first part of this review introduces the state of the art of the structure and biosynthesis of the fungal cell wall and considers exclusively those naturally produced GS antifungals that have given rise to both existing semisynthetic approved drugs and those derivatives currently in clinical trials. According to their chemical structure, natural GS inhibitors can be classified as 1) cyclic lipopeptides, 2) glycolipids and 3) acidic terpenoids. We also included nikkomycins and polyoxins, NPs that inhibit the CS, which have traditionally been considered good candidates for antifungal drug development but have finally been discarded after enduring unsuccessful clinical trials. Finally, the review focuses in the most recent findings about the growing field of plant-derived molecules and extracts that exhibit activity against the fungal cell wall. Thus, this search yielded sixteen articles, nine of which deal with pure compounds and seven with plant extracts or fractions with proven activity against the fungal cell wall. Regarding the mechanism of action, seven (44%) produced GS inhibition while five (31%) inhibited CS. Some of them (56%) interfered with other components of the cell wall. Most of the analyzed articles refer to tests carried out in vitro and therefore are in early stages of development. CONCLUSION: This report delivers an overview about both existing natural antifungals targeting GS and CS activities and their mechanisms of action. It also presents recent discoveries on natural products that may be used as starting points for the development of potential selective and non-toxic antifungal drugs.


Asunto(s)
Antifúngicos/química , Antifúngicos/farmacología , Productos Biológicos/farmacología , Pared Celular/efectos de los fármacos , Hongos/citología , Caspofungina/farmacología , Pared Celular/química , Pared Celular/metabolismo , Quitina/biosíntesis , Equinocandinas/farmacocinética , Hongos/efectos de los fármacos , Glucanos/biosíntesis , Glucosiltransferasas/metabolismo , Humanos , Micosis/tratamiento farmacológico
11.
Int J Mol Sci ; 22(6)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809409

RESUMEN

Yellow lupine is a great model for abscission-related research given that excessive flower abortion reduces its yield. It has been previously shown that the EPIP peptide, a fragment of LlIDL (INFLORESCENCE DEFICIENT IN ABSCISSION) amino-acid sequence, is a sufficient molecule to induce flower abortion, however, the question remains: What are the exact changes evoked by this peptide locally in abscission zone (AZ) cells? Therefore, we used EPIP peptide to monitor specific modifications accompanied by early steps of flower abscission directly in the AZ. EPIP stimulates the downstream elements of the pathway-HAESA and MITOGEN-ACTIVATED PROTEIN KINASE6 and induces cellular symptoms indicating AZ activation. The EPIP treatment disrupts redox homeostasis, involving the accumulation of H2O2 and upregulation of the enzymatic antioxidant system including superoxide dismutase, catalase, and ascorbate peroxidase. A weakening of the cell wall structure in response to EPIP is reflected by pectin demethylation, while a changing pattern of fatty acids and acyl lipids composition suggests a modification of lipid metabolism. Notably, the formation of a signaling molecule-phosphatidic acid is induced locally in EPIP-treated AZ. Collectively, all these changes indicate the switching of several metabolic and signaling pathways directly in the AZ in response to EPIP, which inevitably leads to flower abscission.


Asunto(s)
Flores/crecimiento & desarrollo , Homeostasis , Lípidos/química , Lupinus/crecimiento & desarrollo , Pectinas/metabolismo , Péptidos/farmacología , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Flores/efectos de los fármacos , Homeostasis/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Lupinus/efectos de los fármacos , Oxidación-Reducción , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transducción de Señal/efectos de los fármacos , Superóxido Dismutasa/metabolismo
12.
Plant Physiol Biochem ; 159: 335-346, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33429191

RESUMEN

Aluminum oxide (Al2O3) nanoparticles (NPs) are among the nanoparticles most used industrially, but their impacts on living organisms are widely unknown. We evaluated the effects of 50-1000 mg L-1 Al2O3 NPs on the growth, metabolism of lignin and its monomeric composition in soybean plants. Al2O3 NPs did not affect the length of roots and stems. However, at the microscopic level, Al2O3 NPs altered the root surface inducing the formation of cracks near to root apexes and damage to the root cap. The results suggest that Al2O3 NPs were internalized and accumulated into the cytosol and cell wall of roots, probably interacting with organelles such as mitochondria. At the metabolic level, Al2O3 NPs increased soluble and cell wall-bound peroxidase activities in roots and stems but reduced phenylalanine ammonia-lyase activity in stems. Increased lignin contents were also detected in roots and stems. The Al2O3 NPs increased the p-hydroxyphenyl monomer levels in stems but reduced them in roots. The total phenolic content increased in roots and stems; cell wall-esterified p-coumaric and ferulic acids increased in roots, while the content of p-coumaric acid decreased in stems. In roots, the content of ionic aluminum (Al+3) was extremely low, corresponding to 0.0000252% of the aluminum applied in the nanoparticulate form. This finding suggests that all adverse effects observed were due to the Al2O3 NPs only. Altogether, these findings suggest that the structure and properties of the soybean cell wall were altered by the Al2O3 NPs, probably to reduce its uptake and phytotoxicity.


Asunto(s)
Óxido de Aluminio , Pared Celular , Glycine max , Lignina , Nanopartículas , Óxido de Aluminio/toxicidad , Pared Celular/efectos de los fármacos , Lignina/química , Lignina/metabolismo , Nanopartículas/toxicidad , Glycine max/efectos de los fármacos
13.
Food Chem ; 336: 127636, 2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-32805513

RESUMEN

Deposition of both lignin and cellulose accompanied by juice sac granulation is widespread in harvested citrus fruit. Hence, measures to suppress postharvest granulation of 'Majiayou' pummelo is of great importance. The fruit was treated with 1.5% chitosan and then stored at room temperature (20 ± 2 °C) for 150 d. As compared to the control fruits, chitosan coating significantly suppressed granulation index and maintained good quality. Chitosan coating inhibited lignification by suppressing the activities and expression levels of lignin synthesis-related enzymes (PAL, CAD and POD). By contrast, chitosan treatment enhanced the activities and expression levels of cell wall degrading enzymes, including PME, PG, Cx, XTH and ß-Gal, which might contribute to the decrease in cellulose. In a nutshell, chitosan coating can effectively suppress juice sac granulation and fruit senescence of pummelo fruits, and play a crucial role in maintaining the cell wall modification.


Asunto(s)
Pared Celular/efectos de los fármacos , Quitosano/farmacología , Citrus/efectos de los fármacos , Almacenamiento de Alimentos , Frutas/efectos de los fármacos , Pared Celular/química , Pared Celular/metabolismo , Celulosa/metabolismo , Citrus/metabolismo , Enzimas/genética , Enzimas/metabolismo , Conservantes de Alimentos/farmacología , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Lignina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análisis de Componente Principal , Temperatura
14.
J Appl Microbiol ; 131(1): 135-145, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33251637

RESUMEN

AIMS: The study was aimed to evaluate the antibacterial activity and efficacy of chestnut and quebracho wood extracts against Salmonella by in vitro assays and in vivo trials. METHODS AND RESULTS: The extracts showed inhibitory activity against Salmonella determined by the minimum inhibitory concentration method as well as on the adhesion and invasion of S. Gallinarum (SG) and S. Enteritidis (SE) in Caco-2 cells. Also, transmission electron microscopy revealed that extract-treated Salmonella showed disruption of cell walls and membranes, damage of the cytoplasm and tannin-protein aggregations. In addition, efficacy of the extracts to control SG and SE was evaluated in experimental infection trials in laying hens and broilers respectively. SE excretion was significantly reduced on days 5 (P < 0·01) and 12 (P < 0·025) only in the quebracho group. In the fowl typhoid infection model, hens that received the chestnut extract showed a significantly reduced mortality (P < 0·05). CONCLUSIONS: Our results evidence that these alternative natural products may be a useful tool to control Salmonella in poultry. SIGNIFICANCE AND IMPACT OF THE STUDY: Salmonella is a zoonotic pathogen usually associated with poultry production. This study provides information about the mechanism of antibacterial effects of chestnut and quebracho wood extracts to control Salmonella in poultry.


Asunto(s)
Pollos/microbiología , Extractos Vegetales/farmacología , Salmonelosis Animal/prevención & control , Salmonella/efectos de los fármacos , Taninos/farmacología , Animales , Antibacterianos/química , Antibacterianos/farmacología , Membrana Externa Bacteriana/efectos de los fármacos , Células CACO-2 , Pared Celular/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Enfermedades de las Aves de Corral/microbiología , Madera/química
15.
Molecules ; 25(24)2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33302377

RESUMEN

Due to the emergence of multidrug-resistant pathogens, it is necessary to develop options to fight infections caused by these agents. Lactoferrin (Lf) is a cationic nonheme multifunctional glycoprotein of the innate immune system of mammals that provides numerous benefits. Lf is bacteriostatic and/or bactericidal, can stimulate cell proliferation and differentiation, facilitate iron absorption, improve neural development and cognition, promote bone growth, prevent cancer and exert anti-inflammatory and immunoregulatory effects. Lactoferrin is present in colostrum and milk and is also produced by the secondary granules of polymorphonuclear leukocytes, which store this glycoprotein and release it at sites of infection. Lf is also present in many fluids and exocrine secretions, on the surfaces of the digestive, respiratory and reproductive systems that are commonly exposed to pathogens. Apo-Lf (an iron-free molecule) can be microbiostatic due to its ability to capture ferric iron, blocking the availability of host iron to pathogens. However, apo-Lf is mostly microbicidal via its interaction with the microbial surface, causing membrane damage and altering its permeability function. Lf can inhibit viral entry by binding to cell receptors or viral particles. Lf is also able to counter different important mechanisms evolved by microbial pathogens to infect and invade the host, such as adherence, colonization, invasion, production of biofilms and production of virulence factors such as proteases and toxins. Lf can also cause mitochondrial and caspase-dependent regulated cell death and apoptosis-like in pathogenic yeasts. All of these mechanisms are important targets for treatment with Lf. Holo-Lf (the iron-saturated molecule) can contain up to two ferric ions and can also be microbicidal against some pathogens. On the other hand, lactoferricins (Lfcins) are peptides derived from the N-terminus of Lf that are produced by proteolysis with pepsin under acidic conditions, and they cause similar effects on pathogens to those caused by the parental Lf. Synthetic analog peptides comprising the N-terminus Lf region similarly exhibit potent antimicrobial properties. Importantly, there are no reported pathogens that are resistant to Lf and Lfcins; in addition, Lf and Lfcins have shown a synergistic effect with antimicrobial and antiviral drugs. Due to the Lf properties being microbiostatic, microbicidal, anti-inflammatory and an immune modulator, it represents an excellent natural alternative either alone or as adjuvant in the combat to antibiotic multidrug-resistant bacteria and other pathogens. This review aimed to evaluate the data that appeared in the literature about the effects of Lf and its derived peptides on pathogenic bacteria, protozoa, fungi and viruses and how Lf and Lfcins inhibit the mechanisms developed by these pathogens to cause disease.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Lactoferrina/química , Lactoferrina/farmacología , Péptidos/química , Péptidos/farmacología , Animales , Antiinfecciosos/síntesis química , Antiparasitarios/síntesis química , Antiparasitarios/química , Antiparasitarios/farmacología , Bacterias/efectos de los fármacos , Adhesión Bacteriana/efectos de los fármacos , Pared Celular/efectos de los fármacos , Técnicas de Química Sintética , Hongos/efectos de los fármacos , Interacciones Huésped-Patógeno , Humanos , Péptidos/síntesis química , Proteolisis/efectos de los fármacos , Relación Estructura-Actividad , Virulencia/efectos de los fármacos , Factores de Virulencia , Virus/efectos de los fármacos
16.
J Microbiol Biotechnol ; 30(12): 1827-1834, 2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33148941

RESUMEN

Candida albicans is a major fungal pathogen in humans. In our previous study, we reported that an ethanol extract from Aucklandia lappa weakens C. albicans cell wall by inhibiting synthesis or assembly of both (1,3)-ß-D-glucan polymers and chitin. In the current study, we found that the extract is involved in permeabilization of C. albicans cell membranes. While uptake of ethidium bromide (EtBr) was 3.0% in control cells, it increased to 7.4% for 30 min in the presence of the A. lappa ethanol extract at its minimal inhibitory concentration (MIC), 0.78 mg/ml, compared to uptake by heat-killed cells. Besides, leakage of DNA and proteins was observed in A. lappa-treated C. albicans cells. The increased uptake of EtBr and leakage of cellular materials suggest that A. lappa ethanol extract induced functional changes in C. albicans cell membranes. Incorporation of diphenylhexatriene (DPH) into membranes in the A. lappa-treated C. albicans cells at its MIC decreased to 84.8%, after 60 min of incubation, compared with that of the controls, indicate that there was a change in membrane dynamics. Moreover, the anticandidal effect of the A. lappa ethanol extract was enhanced at a growth temperature of 40°C compared to that at 35°C. The above data suggest that the antifungal activity of the A. lappa ethanol extract against C. albicans is associated with synergistic action of membrane permeabilization due to changes in membrane dynamics and cell wall damage caused by reduced formation of (1,3)-ß-D-glucan and chitin.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Permeabilidad de la Membrana Celular/efectos de los fármacos , Saussurea/química , Candidiasis , Membrana Celular/efectos de los fármacos , Membrana Celular/microbiología , Pared Celular/efectos de los fármacos , Quitina/metabolismo , Glucanos/metabolismo , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/farmacología , Temperatura
17.
Molecules ; 25(19)2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32998304

RESUMEN

Pollinators, the cornerstones of our terrestrial ecosystem, have been at the very core of our anxiety. This is because we can nowadays observe a dangerous decline in the number of insects. With the numbers of pollinators dramatically declining worldwide, the scientific community has been growing more and more concerned about the future of insects as fundamental elements of most terrestrial ecosystems. Trying to address this issue, we looked for substances that might increase bee resistance. To this end, we checked the effects of plant-based adaptogens on honeybees in laboratory tests and during field studies on 30 honeybee colonies during two seasons. In this study, we have tested extracts obtained from: Eleutherococcus senticosus, Garcinia cambogia, Panax ginseng, Ginkgo biloba, Schisandra chinensis, and Camellia sinensis. The 75% ethanol E. senticosus root extract proved to be the most effective, both as a cure and in the prophylaxis of nosemosis. Therefore, Eleutherococcus senticosus, and its active compounds, eleutherosides, are considered the most powerful adaptogens, in the pool of all extracts that were selected for screening, for supporting immunity and improving resistance of honeybees. The optimum effective concentration of 0.4 mg/mL E. senticosus extract responded to c.a. 5.76, 2.56 and 0.07 µg/mL of eleutheroside B, eleutheroside E and naringenin, respectively. The effect of E. senticosus extracts on honeybees involved a similar adaptogenic response as on other animals, including humans. In this research, we show for the first time such an adaptogenic impact on invertebrates, i.e., the effect on honeybees stressed by nosemosis. We additionally hypothesised that these adaptogenic properties were connected with eleutherosides-secondary metabolites found exclusively in the Eleutherococcus genus and undetected in other studied extracts. As was indicated in this study, eleutherosides are very stable chemically and can be found in extracts in similar amounts even after two years from extraction. Considering the role bees play in nature, we may conclude that demonstrating the adaptogenic properties which plant extracts have in insects is the most significant finding resulting from this research. This knowledge might bring to fruition numerous economic and ecological benefits.


Asunto(s)
Abejas/microbiología , Eleutherococcus/química , Nosema/fisiología , Extractos Vegetales/farmacología , Raíces de Plantas/química , Animales , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Pared Celular/ultraestructura , Flavanonas/farmacología , Miel , Nosema/efectos de los fármacos , Fitoquímicos/farmacología , Extractos Vegetales/química , Esporas Fúngicas/citología , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/ultraestructura
18.
Appl Environ Microbiol ; 86(24)2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33036992

RESUMEN

Gaeumannomyces graminis var. tritici is a soilborne pathogen that causes "take-all" disease, affecting cereal roots. In wheat, G. graminis var. tritici is the most important biotic factor, causing around 30 to 50% losses of yield. Chemical control of this fungal disease is difficult because G. graminis var. tritici is able to reside for a long time in soils. Therefore, the development of environmentally friendly biotechnological strategies to diminish the incidence of soilborne diseases is highly desirable. Natural products are a promising strategy for biocontrol of plant pathogens. A special emphasis is on medicinal plants due to their reported fungitoxic effects. Drimys winteri (canelo) is a medicinal plant that is widely used by the Mapuche ethnic group from Chile due to its anti-inflammatory activity. In addition, inhibitory effects of canelo against phytopathogenic fungi and pest insects have been reported. In this study, we isolated, purified, and identified six drimane sesquiterpenoid compounds from canelo (drimenin, drimenol, polygodial, isodrimeninol, valdiviolide, and drimendiol). Then, we evaluated their antimicrobial effects against G. graminis var. tritici. Compounds were identified by comparing Fourier-transform infrared spectroscopy (FTIR) data and the retention time in thin-layer chromatography (TLC) with those of pure standards. The putative antagonistic effects were confirmed by assessing hyphal cell wall damage using confocal microscopy and lipid peroxidation. Here, we reported the high potential of drimane sesquiterpenoids as natural antifungals against G. graminis var. tritici. Polygodial and isodrimeninol were the most effective, with 50% lethal concentrations (LC50s) between 7 and 10 µg ml-1 and higher levels of fungal lipid peroxidation seen. Accordingly, natural sesquiterpenoids purified from canelo are biologically active against G. graminis var. tritici and could be used as natural biofungicides for sustainable agriculture.IMPORTANCE More than two billion tons of pesticides are used every year worldwide. An interesting sustainable alternative to control plant pathogens is the use of natural products obtained from plants, mainly medicinal plants that offer secondary metabolites important to human/animal health. In this study, we isolated and identified six pure drimane sesquiterpenoids obtained from the bark of Drimys winteri Additionally, we evaluated their antifungal activities against Gaeumannomyces graminis (the main biotic factor affecting cereal production, especially wheat) by assessing fungal cell wall damage and lipid peroxidation. The compounds obtained showed important antifungal properties against G. graminis var. tritici, mainly isodrimenol, which was the second-most-active compound after polygodial, with an LC50 against G. graminis var. tritici of around 9.5 µg ml-1 This information could be useful for the development of new natural or hemisynthetic antifungal agents against soilborne phytopathogens that could be used in green agriculture.


Asunto(s)
Antifúngicos/farmacología , Ascomicetos/efectos de los fármacos , Drimys/química , Corteza de la Planta/química , Sesquiterpenos/farmacología , Pared Celular/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Sesquiterpenos Policíclicos/farmacología
19.
Int J Mol Sci ; 21(14)2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32650624

RESUMEN

Although cell wall dynamics, particularly modification of homogalacturonan (HGA, a major component of pectin) during pollen tube growth, have been extensively studied in dicot plants, little is known about how modification of the pollen tube cell wall regulates growth in monocot plants. In this study, we assessed the role of HGA modification during elongation of the rice pollen tube by adding a pectin methylesterase (PME) enzyme or a PME-inhibiting catechin extract (Polyphenon 60) to in vitro germination medium. Both treatments led to a severe decrease in the pollen germination rate and elongation. Furthermore, using monoclonal antibodies toward methyl-esterified and de-esterified HGA epitopes, it was found that exogenous treatment of PME and Polyphenon 60 resulted in the disruption of the distribution patterns of low- and high-methylesterified pectins upon pollen germination and during pollen tube elongation. Eleven PMEs and 13 PME inhibitors (PMEIs) were identified by publicly available transcriptome datasets and their specific expression was validated by qRT-PCR. Enzyme activity assays and subcellular localization using a heterologous expression system in tobacco leaves demonstrated that some of the pollen-specific PMEs and PMEIs possessed distinct enzymatic activities and targeted either the cell wall or other compartments. Taken together, our findings are the first line of evidence showing the essentiality of HGA methyl-esterification status during the germination and elongation of pollen tubes in rice, which is primarily governed by the fine-tuning of PME and PMEI activities.


Asunto(s)
Oryza/genética , Pectinas/genética , Proteínas de Plantas/genética , Tubo Polínico/genética , Hidrolasas de Éster Carboxílico/genética , Pared Celular/efectos de los fármacos , Pared Celular/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Germinación/efectos de los fármacos , Germinación/genética , Oryza/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Tubo Polínico/efectos de los fármacos , Polifenoles/farmacología , Nicotiana/efectos de los fármacos , Nicotiana/genética , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
20.
Carbohydr Polym ; 242: 116427, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32564850

RESUMEN

Longan (Dimocarpus longan Lour.) is prone to pulp softening and pulp breakdown, leading to a loss of its nutrients including polysaccharides. ROS is one main factor affecting fruit quality. This work intended to explicate the influences of hydrogen peroxide, acting as a ROS, on pulp softening, pulp breakdown, and cell wall polysaccharides metabolism in longan fruit during storage. Contrasted to the control group, hydrogen peroxide-treated samples exhibited lower firmness, lower amounts of CWM, ISP, CSP, hemicellulose and cellulose, but higher breakdown index, WSP amount, expression levels of DlPG, DlPE, Dlß-Gal, DlCx and DlXET and activities of their corresponding enzymes (PG, PE, ß-Gal, Cx, XET). These results suggested that hydrogen peroxide reduced longan pulp firmness due to the increased gene expression levels and enzymes activities related to cell wall polysaccharide degradation to boost their decomposition, thereby led to the accelerated pulp softening and the expedited pulp breakdown of harvested longans.


Asunto(s)
Pared Celular/efectos de los fármacos , Frutas/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Polisacáridos/metabolismo , Sapindaceae/efectos de los fármacos , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Pared Celular/metabolismo , Almacenamiento de Alimentos , Frutas/metabolismo , Sapindaceae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA