Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros

Medicinas Tradicionales
Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 15737, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789032

RESUMEN

Artificial intelligence recommendations are sometimes erroneous and biased. In our research, we hypothesized that people who perform a (simulated) medical diagnostic task assisted by a biased AI system will reproduce the model's bias in their own decisions, even when they move to a context without AI support. In three experiments, participants completed a medical-themed classification task with or without the help of a biased AI system. The biased recommendations by the AI influenced participants' decisions. Moreover, when those participants, assisted by the AI, moved on to perform the task without assistance, they made the same errors as the AI had made during the previous phase. Thus, participants' responses mimicked AI bias even when the AI was no longer making suggestions. These results provide evidence of human inheritance of AI bias.


Asunto(s)
Inteligencia Artificial , Patrón de Herencia , Humanos , Sesgo , Sugestión
2.
Am J Hum Genet ; 108(7): 1204-1216, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34077762

RESUMEN

Cupping of the optic nerve head, a highly heritable trait, is a hallmark of glaucomatous optic neuropathy. Two key parameters are vertical cup-to-disc ratio (VCDR) and vertical disc diameter (VDD). However, manual assessment often suffers from poor accuracy and is time intensive. Here, we show convolutional neural network models can accurately estimate VCDR and VDD for 282,100 images from both UK Biobank and an independent study (Canadian Longitudinal Study on Aging), enabling cross-ancestry epidemiological studies and new genetic discovery for these optic nerve head parameters. Using the AI approach, we perform a systematic comparison of the distribution of VCDR and VDD and compare these with intraocular pressure and glaucoma diagnoses across various genetically determined ancestries, which provides an explanation for the high rates of normal tension glaucoma in East Asia. We then used the large number of AI gradings to conduct a more powerful genome-wide association study (GWAS) of optic nerve head parameters. Using the AI-based gradings increased estimates of heritability by ∼50% for VCDR and VDD. Our GWAS identified more than 200 loci associated with both VCDR and VDD (double the number of loci from previous studies) and uncovered dozens of biological pathways; many of the loci we discovered also confer risk for glaucoma.


Asunto(s)
Inteligencia Artificial , Glaucoma/genética , Disco Óptico/diagnóstico por imagen , Adulto , Anciano , Algoritmos , Femenino , Estudio de Asociación del Genoma Completo , Glaucoma/diagnóstico , Glaucoma/patología , Humanos , Procesamiento de Imagen Asistido por Computador , Patrón de Herencia , Presión Intraocular , Masculino , Persona de Mediana Edad , Red Nerviosa , Disco Óptico/patología , Fotograbar , Polimorfismo de Nucleótido Simple , Factores de Riesgo
3.
Nat Commun ; 11(1): 1467, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32193382

RESUMEN

Unhealthful dietary habits are leading risk factors for life-altering diseases and mortality. Large-scale biobanks now enable genetic analysis of traits with modest heritability, such as diet. We perform a genomewide association on 85 single food intake and 85 principal component-derived dietary patterns from food frequency questionnaires in UK Biobank. We identify 814 associated loci, including olfactory receptor associations with fruit and tea intake; 136 associations are only identified using dietary patterns. Mendelian randomization suggests our top healthful dietary pattern driven by wholemeal vs. white bread consumption is causally influenced by factors correlated with education but is not strongly causal for coronary artery disease or type 2 diabetes. Overall, we demonstrate the value in complementary phenotyping approaches to complex dietary datasets, and the utility of genomic analysis to understand the relationships between diet and human health.


Asunto(s)
Bancos de Muestras Biológicas , Conducta Alimentaria , Estudios de Asociación Genética , Genómica , Ingestión de Alimentos , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Patrón de Herencia/genética , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple/genética , Análisis de Componente Principal , Receptores Odorantes/metabolismo , Factores de Riesgo , Reino Unido
4.
Theor Appl Genet ; 133(4): 1123-1131, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31970451

RESUMEN

KEY MESSAGE: The yellow margin (ym) gene was mapped to a 30-kb genomic region in potato and the mutation of a pectate lyase gene led to this phenotype. The practice of clonally propagating potato (Solanum tuberosum L.), which has been lasted for thousands of years, has caused the accumulation of deleterious alleles. Despite yellow margin (ym) being a common cause of a detrimental weak-vigor phenotype and reduced yield in diploid potato, the underlying gene has eluded discovery to date. In this paper, we mapped the ym gene to a 30-kb region containing four annotated genes. Among them, PGSC0003DMG402023481 encodes a pectate lyase-like gene (StPLL) with lower expression in ym plants than in the wild-type plants. PCR amplification confirmed a 4.1-kb deletion in the mutant allele of StPLL. Knockout of StPLL in diploid potato resulted in a similar phenotype with the ym plants. This study not only characterizes the ym allele but also provides the molecular tools to select and purge it from populations, while also deepening our understanding of the morphogenesis in potato.


Asunto(s)
Genes de Plantas , Mutación/genética , Polisacárido Liasas/genética , Solanum tuberosum/enzimología , Solanum tuberosum/genética , Secuencia de Bases , Diploidia , Estudios de Asociación Genética , Patrón de Herencia/genética , Fenotipo , Mapeo Físico de Cromosoma , Hojas de la Planta/genética , Hojas de la Planta/ultraestructura
5.
Mol Psychiatry ; 25(5): 939-950, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-30356120

RESUMEN

Genetic factors do not fully account for the relatively high heritability of neurodevelopmental conditions, suggesting that non-genetic heritable factors contribute to their etiology. To evaluate the potential contribution of aberrant thyroid hormone status to the epigenetic inheritance of neurological phenotypes, we examined genetically normal F2 generation descendants of mice that were developmentally overexposed to thyroid hormone due to a Dio3 mutation. Hypothalamic gene expression profiling in postnatal day 15 F2 descendants on the paternal lineage of ancestral male and female T3-overexposed mice revealed, respectively, 1089 and 1549 differentially expressed genes. A large number of them, 675 genes, were common to both sets, suggesting comparable epigenetic effects of thyroid hormone on both the male and female ancestral germ lines. Oligodendrocyte- and neuron-specific genes were strongly overrepresented among genes showing, respectively, increased and decreased expression. Altered gene expression extended to other brain regions and was associated in adulthood with decreased anxiety-like behavior, increased marble burying and reduced physical activity. The sperm of T3-overexposed male ancestors revealed significant hypomethylation of CpG islands associated with the promoters of genes involved in the early development of the central nervous system. Some of them were candidates for neurodevelopmental disorders in humans including Nrg3, Nrxn1, Gabrb3, Gabra5, Apba2, Grik3, Reln, Nsd1, Pcdh8, En1, and Elavl2. Thus, developmental levels of thyroid hormone influence the epigenetic information of the germ line, disproportionately affecting genes with critical roles in early brain development, and leading in future generations to disease-relevant alterations in postnatal brain gene expression and adult behavior.


Asunto(s)
Conducta Animal/fisiología , Epigénesis Genética/fisiología , Expresión Génica/fisiología , Células Germinativas/fisiología , Hipotálamo/metabolismo , Patrón de Herencia/fisiología , Hormonas Tiroideas/fisiología , Animales , Encéfalo/crecimiento & desarrollo , Islas de CpG/genética , Metilación de ADN , Femenino , Yoduro Peroxidasa/genética , Masculino , Ratones , Mutación , Proteína Reelina
6.
Theor Appl Genet ; 133(1): 317-328, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31637460

RESUMEN

KEY MESSAGE: A DNA transposon was found in the gene encoding a bHLH transcription factor. Genotypes of the marker tagging this DNA transposon perfectly co-segregated with color phenotypes in large F2:3 populations A combined approach of bulked segregant analysis and RNA-Seq was used to isolate causal gene for C locus controlling white bulb color in onions (Allium cepa L.). A total of 114 contigs containing homozygous single nucleotide polymorphisms (SNPs) between white and yellow bulked RNAs were identified. Four of them showed high homologies with loci clustered in the middle of chromosome 5. SNPs in 34 contigs were confirmed by sequencing of PCR products. One of these contigs showed perfect linkage to the C locus in F2:3 populations consisting of 2491 individuals. However, genotypes of molecular marker tagging this contig were inconsistent with color phenotypes of diverse breeding lines. A total of 146 contigs showed differential expression between yellow and white bulks. Among them, transcription levels of B2 gene encoding a bHLH transcription factor were significantly reduced in white RNA bulk and F2:3 individuals, although there was no SNP in the coding region. Phylogenetic analysis showed that onion B2 was orthologous to bHLH-coding genes regulating anthocyanin biosynthesis pathway in other plant species. Promoter regions of B2 gene were obtained by genome walking and a 577-bp non-autonomous DNA transposon designated as AcWHITE was found in the white allele. Molecular marker tagging AcWHITE showed perfect linkage with the C locus. Marker genotypes of the white allele were detected in some white accessions. However, none of tested red or yellow onions contained AcWHITE insertion, implying that B2 gene was likely to be a casual gene for the C locus.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Elementos Transponibles de ADN/genética , Genes de Plantas , Cebollas/genética , Pigmentación/genética , Secuencia de Aminoácidos , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Cromosomas de las Plantas/genética , ADN de Plantas/genética , Dosificación de Gen , Ligamiento Genético , Sitios Genéticos , Marcadores Genéticos , Genotipo , Patrón de Herencia/genética , Filogenia , Polimorfismo de Nucleótido Simple/genética , ARN de Planta/genética , Transcripción Genética
7.
J Dairy Sci ; 102(12): 11225-11232, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31563306

RESUMEN

The main objective of this study was to assess the genetic background of colostrum yield and quality traits after calving in Holstein dairy cows. The secondary objective was to investigate genetic and phenotypic correlations among laboratory-based and on-farm-measured colostrum traits. The study was conducted in 10 commercial dairy herds located in northern Greece. A total of 1,074 healthy Holstein cows with detailed pedigree information were examined from February 2015 to September 2016. All cows were clinically examined on the day of calving and scored for body condition. All 4 quarters were machine-milked, and a representative and composite colostrum sample was collected and examined. Colostrum total solids (TS) content was determined on-farm using a digital Brix refractometer. Colostrum fat, protein, and lactose contents were determined using an infrared milk analyzer, and energy content was calculated using National Research Council (2001) equations. Dry period length (for cows of parity ≥2), milk yield of previous 305-d lactation (for cows of parity ≥2), age at calving, parity number, season of calving, time interval between calving and first colostrum milking, and milk yield were recorded. Each trait (colostrum yield and quality traits) was analyzed with a univariate mixed model, including fixed effects of previously mentioned factors and the random animal additive genetic effect. All available pedigrees were included in the analysis, bringing the total animal number to 5,662. Estimates of (co)variance components were used to calculate heritability for each trait. Correlations among colostrum traits were estimated with bivariate analysis using the same model. Mean percentage (±SD) colostrum TS, fat, protein, and lactose contents were 25.8 ± 4.7, 6.4 ± 3.3, 17.8 ± 4.0, and 2.2 ± 0.7%, respectively; mean energy content was 1.35 ± 0.3 Mcal/kg and mean colostrum yield was 6.18 ± 3.77 kg. Heritability estimates for the above colostrum traits were 0.27, 0.21, 0.19, 0.15, 0.22, and 0.04, respectively. Several significant genetic and phenotypic correlations were derived. The genetic correlation of TS content measured on-farm with colostrum protein was practically unity, whereas the correlation with energy content was moderate (0.61). Fat content had no genetic correlation with TS content; their phenotypic correlation was positive and low. Colostrum yield was not correlated genetically with any of the other traits. In conclusion, colostrum quality traits are heritable and can be amended with genetic selection.


Asunto(s)
Bovinos/genética , Calostro , Animales , Calostro/metabolismo , Femenino , Grecia , Patrón de Herencia , Lactancia/genética , Lactosa/metabolismo , Leche , Paridad , Embarazo , Estaciones del Año
8.
Annu Rev Genet ; 53: 347-372, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31505133

RESUMEN

The rule of Mendelian inheritance is remarkably robust, but deviations from the equal transmission of alternative alleles at a locus [a.k.a. transmission ratio distortion (TRD)] are also commonly observed in genetic mapping populations. Such TRD reveals locus-specific selection acting at some point between the diploid heterozygous parents and progeny genotyping and therefore can provide novel insight into otherwise-hidden genetic and evolutionary processes. Most of the classic selfish genetic elements were discovered through their biasing of transmission, but many unselfish evolutionary and developmental processes can also generate TRD. In this review, we describe methodologies for detecting TRD in mapping populations, detail the arenas and genetic interactions that shape TRD during plant and animal reproduction, and summarize patterns of TRD from across the genetic mapping literature. Finally, we point to new experimental approaches that can accelerate both detection of TRD and characterization of the underlying genetic mechanisms.


Asunto(s)
Genética de Población/métodos , Patrón de Herencia , Plantas/genética , Espermatozoides/fisiología , Animales , Quimera , Mapeo Cromosómico , Femenino , Células Germinativas/fisiología , Heterocigoto , Depresión Endogámica , Masculino , Meiosis , Polen/genética , Autoincompatibilidad en las Plantas con Flores/genética , Razón de Masculinidad , Vertebrados/genética , Cigoto
9.
Sci Rep ; 9(1): 10341, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31316115

RESUMEN

Isoflavones are a group of phytoestrogens, naturally-occurring substances important for their role in human health. Legumes, particularly soybeans (Glycine max (L.) Merr.), are the richest source of isoflavones in human diet. Since there is not much current data on genetics of isoflavones in soybean, particularly in the aglycone form, elucidation of the mode of inheritance is necessary in order to design an efficient breeding strategy for the development of high-isoflavone soybean genotypes. Based on the isoflavone content in 23 samples of soybeans from four different maturity groups (00, 0, I and II), three crosses were made in order to determine the inheritance pattern and increase the content of total isoflavones and their aglycone form. Genotype with the lowest total isoflavone content (NS-L-146) was crossed with the low- (NS Zenit), medium (NS Maximus), and high- (NS Virtus) isoflavone genotypes. There were no significant differences in the total isoflavone content (TIF) between F2 populations, and there was no transgression among genotypes within the populations. Each genotype within all three populations had a higher TIF value than the lower parent (NS-L-146), while genotypes with a higher TIF value than the better parent were found only in the NS-L-146 × NS Zenit cross. However, significant differences in the aglycone ratio (ratio of aglycone to glycone form of isoflavones) were found between the populations. The highest aglycone ratio was found in the NS-L-146 × NS Maximus cross. The results indicate that the genetic improvement for the trait is possible.


Asunto(s)
Glycine max/metabolismo , Isoflavonas/metabolismo , Cruzamientos Genéticos , Genotipo , Hibridación Genética , Patrón de Herencia , Isoflavonas/química , Fitoestrógenos/química , Fitoestrógenos/metabolismo , Fitomejoramiento , Semillas/genética , Semillas/metabolismo , Glycine max/genética
10.
Hum Genet ; 138(10): 1155-1169, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31342140

RESUMEN

Vitamin D inadequacy, assessed by 25-hydroxyvitamin D [25(OH)D], affects around 50% of adults in the United States and is associated with numerous adverse health outcomes. Blood 25(OH)D concentrations are influenced by genetic factors that may determine how much vitamin D intake is required to reach optimal 25(OH)D. Despite large genome-wide association studies (GWASs), only a small portion of the genetic factors contributing to differences in 25(OH)D has been discovered. Therefore, knowledge of a fuller set of genetic factors could be useful for risk prediction of 25(OH)D inadequacy, personalized vitamin D supplementation, and prevention of downstream morbidity and mortality. Using PRSice and weights from published African- and European-ancestry GWAS summary statistics, ancestry-specific polygenic scores (PGSs) were created to capture a more complete set of genetic factors in those of European (n = 9569) or African ancestry (n = 2761) from three cohort studies. The PGS for African ancestry was derived using all input SNPs (a p value cutoff of 1.0) and had an R2 of 0.3%; for European ancestry, the optimal PGS used a p value cutoff of 3.5 × 10-4 in the target/tuning dataset and had an R2 of 1.0% in the validation cohort. Those with highest genetic risk had 25(OH)D that was 2.8-3.0 ng/mL lower than those with lowest genetic risk (p = 0.0463-3.2 × 10-13), requiring an additional 467-500 IU of vitamin D intake to maintain equivalent 25(OH)D. PGSs are a powerful predictive tool that could be leveraged for personalized vitamin D supplementation to prevent the negative downstream effects of 25(OH)D inadequacy.


Asunto(s)
Población Negra/genética , Genética de Población , Patrón de Herencia , Herencia Multifactorial , Polimorfismo de Nucleótido Simple , Vitamina D/análogos & derivados , Población Blanca/genética , Estudios de Cohortes , Bases de Datos Genéticas , Suplementos Dietéticos , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Rayos Ultravioleta , Vitamina D/sangre
11.
New Phytol ; 223(3): 1489-1504, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31066055

RESUMEN

Terpenoid-based essential oils are economically important commodities, yet beyond their biosynthetic pathways, little is known about the genetic architecture of terpene oil yield from plants. Transport, storage, evaporative loss, transcriptional regulation and precursor competition may be important contributors to this complex trait. Here, we associate 2.39 million single nucleotide polymorphisms derived from shallow whole-genome sequencing of 468 Eucalyptus polybractea individuals with 12 traits related to the overall terpene yield, eight direct measures of terpene concentration and four biomass-related traits. Our results show that in addition to terpene biosynthesis, development of secretory cavities, where terpenes are both synthesized and stored, and transport of terpenes were important components of terpene yield. For sesquiterpene concentrations, the availability of precursors in the cytosol was important. Candidate terpene synthase genes for the production of 1,8-cineole and α-pinene, and ß-pinene (which comprised > 80% of the total terpenes) were functionally characterized as a 1,8-cineole synthase and a ß/α-pinene synthase. Our results provide novel insights into the genomic architecture of terpene yield and we provide candidate genes for breeding or engineering of crops for biofuels or the production of industrially valuable terpenes.


Asunto(s)
Eucalyptus/genética , Genoma de Planta , Estudio de Asociación del Genoma Completo , Aceites de Plantas/metabolismo , Terpenos/metabolismo , Transferasas Alquil y Aril/genética , Vías Biosintéticas , Genes de Plantas , Genotipo , Patrón de Herencia/genética , Análisis Multivariante , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Reproducibilidad de los Resultados , Terpenos/química
12.
Heredity (Edinb) ; 123(3): 318-336, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30911141

RESUMEN

Heterosis refers to the superior performance of F1 hybrids over their respective parental inbred lines. Although the genetic and expression basis of heterosis have been previously investigated, the metabolic basis for this phenomenon is poorly understood. In a preliminary morphological study in Brassica juncea, we observed significant heterosis at the 50% flowering stage, wherein both the growth and reproduction of F1 reciprocal hybrids were greater than that of their parents. To identify the possible metabolic causes or consequences of this heterosis, we carried out targeted LC-MS analysis of 48 primary (amino acids and sugars) and secondary metabolites (phytohormones, glucosinolates, flavonoids, and phenolic esters) in five developmental tissues at 50% flowering in hybrids and inbred parents. Principal component analysis (PCA) of metabolites clearly separated inbred lines from their hybrids, particularly in the bud tissues. In general, secondary metabolites displayed more negative heterosis values in comparison to primary metabolites. The tested primary and secondary metabolites displayed both additive and non-additive modes of inheritance in F1 hybrids, wherein the number of metabolites showing an additive mode of inheritance were higher in buds and siliques (52.77-97.14%) compared to leaf tissues (47.37-80%). Partial least regression (PLS) analysis further showed that primary metabolites, in general, displayed higher association with morphological parameters in F1 hybrids. Overall, our results are consistent with a resource-cost model for heterosis in B. juncea, where metabolite allocation in hybrids appears to favor growth, at the expense of secondary metabolism.


Asunto(s)
Quimera/metabolismo , Vigor Híbrido , Patrón de Herencia , Metaboloma , Planta de la Mostaza/metabolismo , Metabolismo Secundario/genética , Quimera/genética , Quimera/crecimiento & desarrollo , Productos Agrícolas , Flavonoides/biosíntesis , Flavonoides/química , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glucosinolatos/biosíntesis , Glucosinolatos/química , Planta de la Mostaza/genética , Planta de la Mostaza/crecimiento & desarrollo , Fenoles/química , Fenoles/metabolismo , Fitomejoramiento , Reguladores del Crecimiento de las Plantas/biosíntesis , Reguladores del Crecimiento de las Plantas/química , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Aceites de Plantas/metabolismo , Análisis de Componente Principal
13.
Transfus Apher Sci ; 57(6): 735-738, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30470664

RESUMEN

Patients with inherited bleeding disorders are predisposed to acute and chronic blood loss, which places them at high risk of iron deficiency anemia (IDA). The clinical effects of iron deficiency (ID) and IDA in the general population are significant and include low energy, reduced cardiovascular health, impaired cognition and reduced health-related quality of life. However, the incidence and impact of ID and IDA in patients with bleeding disorders is largely unknown. Here we review our approach to the diagnosis and management of iron deficiency in patients with inherited bleeding disorders. Given their risk of future iron losses, we propose more aggressive iron supplementation and higher target ferritin values in patients with ID and ongoing bleeding.


Asunto(s)
Anemia Ferropénica/complicaciones , Trastornos de la Coagulación Sanguínea/complicaciones , Trastornos de la Coagulación Sanguínea/genética , Patrón de Herencia/genética , Anemia Ferropénica/diagnóstico , Anemia Ferropénica/terapia , Humanos , Hierro/uso terapéutico , Factores de Riesgo
14.
Theor Appl Genet ; 131(8): 1605-1614, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29705915

RESUMEN

KEY MESSAGE: We report molecular mapping and inheritance of restoration of fertility (Rf) in A4 hybrid system in pigeonpea. We have also developed PCR-based markers amenable to low-cost genotyping to identify fertility restorer lines. Commercial hybrids in pigeonpea are based on A4 cytoplasmic male sterility (CMS) system, and their fertility restoration is one of the key prerequisites for breeding. In this context, an effort has been made to understand the genetics and identify quantitative trait loci (QTL) associated with restoration of fertility (Rf). One F2 population was developed by crossing CMS line (ICPA 2039) with fertility restorer line (ICPL 87119). Genetic analysis has shown involvement of two dominant genes in regulation of restoration of fertility. In parallel, the genotyping-by-sequencing (GBS) approach has generated ~ 33 Gb data on the F2 population. GBS data have provided 2457 single nucleotide polymorphism (SNPs) segregating across the mapping population. Based on these genotyping data, a genetic map has been developed with 306 SNPs covering a total length 981.9 cM. Further QTL analysis has provided the region flanked by S8_7664779 and S8_6474381 on CcLG08 harboured major QTL explained up to 28.5% phenotypic variation. Subsequently, sequence information within the major QTLs was compared between the maintainer and the restorer lines. From this sequence information, we have developed two PCR-based markers for identification of restorer lines from non-restorer lines and validated them on parental lines of hybrids as well as on another F2 mapping population. The results obtained in this study are expected to enhance the efficiency of selection for the identification of restorer lines in hybrid breeding and may reduce traditional time-consuming phenotyping activities.


Asunto(s)
Cajanus/genética , Mapeo Cromosómico , Genes Dominantes , Genes de Plantas , Infertilidad Vegetal/genética , Sitios de Carácter Cuantitativo , Cajanus/fisiología , Marcadores Genéticos , Genotipo , Patrón de Herencia , Fitomejoramiento , Polen/genética , Polen/fisiología , Polimorfismo de Nucleótido Simple
15.
Chemosphere ; 200: 358-365, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29494917

RESUMEN

As part of a study to explore the long-term effects of the Hebei Spirit oil spill accident, transgenerational toxicity and associated epigenetic changes were investigated in the nematode Caenorhabditis elegans. Under experimental conditions, worms were exposed to Iranian heavy crude oil (IHC) under three different scenarios: partial early-life exposure (PE), partial late-life exposure (PL), and whole-life exposure (WE). Growth, reproduction, and histone methylation were monitored in the exposed parental worms (P0) and in three consecutive unexposed offspring generations (F1-3). Reproductive potential in the exposed P0 generation in the WE treatment group was reduced; additionally, it was inhibited in the unexposed offspring generations of the P0 worms. This suggests that there was transgenerational inheritance of defective reproduction. Comparison of developmental periods of exposure showed that IHC-treated worms in the PL group had a greater reduction in reproductive capacity than those in the PE group. Decreased methylation of histone H3 (H3K9) was found in the IHC-exposed parental generation. A heritable reduction in reproductive capacity occurred in wildtype N2 but was not found in a H3K9 histone methyltransferase (HMT) mutant, met-2(n4256), suggesting a potential role for HMT in transgenerational toxicity. Our results suggest that the reproductive toxicity after IHC exposure could be heritable and that histone methylation is associated with the transmission of the inherited phenotype.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Metilación de ADN , Histonas/química , Patrón de Herencia , Petróleo/toxicidad , Reproducción/efectos de los fármacos , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Epigénesis Genética , Histonas/genética , Fenotipo
16.
Artículo en Inglés | WPRIM | ID: wpr-713704

RESUMEN

Primary distal renal tubular acidosis (dRTA) caused by mutations of the SLC4A1 gene, which encodes for erythroid and kidney isoforms of anion exchanger, shows marked difference in inheritance patterns and clinical features in different parts of the world. While the disease shows autosomal dominant inheritance without any red cell morphological abnormalities in the temperate countries, it is almost invariably recessive, and often accompanies red cell morphological abnormalities or hemolytic anemia in the tropics, especially in Southeast Asia. Here, we report three patients with autosomal recessive (AR) dRTA, presenting with typical findings of failure to thrive and rickets, from two unrelated Lao families. The mutational analyses revealed that all three patients harbored the same homozygous SLC4A1 mutation, p.Gly701Asp. Adequate supplementation of alkali and potassium resulted in remarkable improvement of growth retardation and skeletal deformities of the patients. This is the first case report of Lao patients with AR dRTA caused by SLC4A1 mutations.


Asunto(s)
Humanos , Acidosis Tubular Renal , Álcalis , Anemia Hemolítica , Asia Sudoriental , Anomalías Congénitas , Insuficiencia de Crecimiento , Patrón de Herencia , Riñón , Laos , Potasio , Isoformas de Proteínas , Raquitismo , Testamentos
17.
Tohoku J Exp Med ; 243(4): 227-235, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29199262

RESUMEN

Mitochondrial energy deficit is considered a key element of different clinical pathologies - from inherited disorders of energy metabolism to drug-induced mitochondrial toxicity, to cardiometabolic and neurodegenerative diseases. However, clinical manifestations of impaired bioenergetics are not easy to recognize, with patient-reported features usually include non-pathognomonic fatigue and weakness, or exercise intolerance, while specific lab tests are missing. Although it is not clear whether poor energetics is a primary deficit or a secondary consequence of specific disorders, improving mitochondrial viability remains a challenging task in both experimental and clinical medicine. In this review, biochemical and clinical evidence of energy deficits were reviewed, along with possible therapeutic options to tackle energy failure and restore bioenergetics.


Asunto(s)
Medicina Clínica , Metabolismo Energético , Humanos , Patrón de Herencia/genética , Enfermedades Mitocondriales/genética
18.
Sci Rep ; 7: 44913, 2017 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-28327669

RESUMEN

Gene flow is an important component in evolutionary biology; however, the role of gene flow in dispersal of herbicide-resistant alleles among weed populations is poorly understood. Field experiments were conducted at the University of Nebraska-Lincoln to quantify pollen-mediated gene flow (PMGF) from glyphosate-resistant (GR) to -susceptible (GS) common waterhemp using a concentric donor-receptor design. More than 130,000 common waterhemp plants were screened and 26,199 plants were confirmed resistant to glyphosate. Frequency of gene flow from all distances, directions, and years was estimated with a double exponential decay model using Generalized Nonlinear Model (package gnm) in R. PMGF declined by 50% at <3 m distance from the pollen source, whereas 90% reduction was found at 88 m (maximum) depending on the direction of the pollen-receptor blocks. Amplification of the target site gene, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), was identified as the mechanism of glyphosate resistance in parent biotype. The EPSPS gene amplification was heritable in common waterhemp and can be transferred via PMGF, and also correlated with glyphosate resistance in pseudo-F2 progeny. This is the first report of PMGF in GR common waterhemp and the results are critical in explaining the rapid dispersal of GR common waterhemp in Midwestern United States.


Asunto(s)
Amaranthus/efectos de los fármacos , Amaranthus/genética , Flujo Génico , Glicina/análogos & derivados , Resistencia a los Herbicidas/genética , Polen , Polinización , Glicina/farmacología , Herbicidas/farmacología , Patrón de Herencia , Modelos Teóricos , Fenotipo , Dispersión de las Plantas/genética , Malezas/genética , Glifosato
19.
Theor Appl Genet ; 130(4): 819-839, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28168408

RESUMEN

KEY MESSAGE: We report SSR-enriched genetic maps of bermudagrass that: (1) reveal partial residual polysomic inheritance in the tetraploid species, and (2) provide insights into the evolution of chloridoid genomes. This study describes genetic linkage maps of two bermudagrass species, Cynodon dactylon (T89) and Cynodon transvaalensis (T574), that integrate heterologous microsatellite markers from sugarcane into frameworks built with single-dose restriction fragments (SDRFs). A maximum likelihood approach was used to construct two separate parental maps from a population of 110 F1 progeny of a cross between the two parents. The T89 map is based on 291 loci on 34 cosegregating groups (CGs), with an average marker spacing of 12.5 cM. The T574 map is based on 125 loci on 14 CGs, with an average marker spacing of 10.7 cM. Six T89 and one T574 CG(s) deviated from disomic inheritance. Furthermore, marker segregation data and linkage phase analysis revealed partial residual polysomic inheritance in T89, suggesting that common bermudagrass is undergoing diploidization following whole genome duplication (WGD). Twenty-six T89 CGs were coalesced into 9 homo(eo)logous linkage groups (LGs), while 12 T574 CGs were assembled into 9 LGs, both putatively representing the basic chromosome complement (x = 9) of the species. Eight T89 and two T574 CGs remain unassigned. The marker composition of bermudagrass ancestral chromosomes was inferred by aligning T89 and T574 homologs, and used in comparisons to sorghum and rice genome sequences based on 108 and 91 significant blast hits, respectively. Two nested chromosome fusions (NCFs) shared by two other chloridoids (i.e., zoysiagrass and finger millet) and at least three independent translocation events were evident during chromosome number reduction from 14 in the polyploid common ancestor of Poaceae to 9 in Cynodon.


Asunto(s)
Mapeo Cromosómico , Cynodon/genética , Ligamiento Genético , Genoma de Planta , Cromosomas de las Plantas , ADN de Plantas/genética , Etiquetas de Secuencia Expresada , Patrón de Herencia , Funciones de Verosimilitud , Repeticiones de Microsatélite , Polimorfismo de Longitud del Fragmento de Restricción , Tetraploidía
20.
Alcohol ; 60: 179-189, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27817987

RESUMEN

Teenage binge drinking is a major health concern in the United States, with 21% of teenagers reporting binge-pattern drinking behavior in the previous 30 days. Recently, our lab showed that alcohol-naïve offspring of rats exposed to alcohol during adolescence exhibited altered gene expression profiles in the hypothalamus, a brain region involved in stress regulation. We employed Enhanced Reduced Representation Bisulfite Sequencing as an unbiased approach to test the hypothesis that parental exposure to binge-pattern alcohol during adolescence alters DNA methylation profiles in their alcohol-naïve offspring. Wistar rats were administered a repeated binge-ethanol exposure paradigm during early (postnatal day (PND) 37-44) and late (PND 67-74) adolescent development. Animals were mated 24 h after the last ethanol dose and subsequent offspring were produced. Analysis of male PND7 offspring revealed that offspring of alcohol-exposed parents exhibited differential DNA methylation patterns in the hypothalamus. The differentially methylated cytosines (DMCs) were distinct between offspring depending on which parent was exposed to ethanol. Moreover, novel DMCs were observed when both parents were exposed to ethanol and many DMCs from single parent ethanol exposure were not recapitulated with dual parent exposure. We also measured mRNA expression of several differentially methylated genes and some, but not all, showed correlative changes in expression. Importantly, methylation was not a direct predictor of expression levels, underscoring the complexity of transcriptional regulation. Overall, we demonstrate that adolescent binge ethanol exposure causes altered genome-wide DNA methylation patterns in the hypothalamus of alcohol-naïve offspring.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas/genética , Metilación de ADN/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Etanol/toxicidad , Hipotálamo/efectos de los fármacos , Patrón de Herencia , Consumo de Alcohol en Menores , Factores de Edad , Animales , Consumo Excesivo de Bebidas Alcohólicas/metabolismo , Femenino , Regulación de la Expresión Génica , Herencia , Hipotálamo/metabolismo , Masculino , Modelos Animales , Linaje , Embarazo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Wistar , Desarrollo Sexual , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA