Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Front Public Health ; 10: 972136, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159249

RESUMEN

The articles published as part of the Frontiers in Public Health research topic, "Investigating exposures and respiratory health in coffee workers" present research findings that better characterize exposures to diacetyl and 2,3-pentanedione and inform our understanding of the health risks posed by these exposures. Although various research groups and organizations have conducted risk assessments to derive occupational exposure limits (OELs) for diacetyl, differences in the data used and assumptions made in these efforts have resulted in a wide range of recommended OELs designed to protect human health. The primary drivers of these differences include the decision to use data from human or animal studies in conducting a quantitative risk assessment, and the application of uncertainty factors (UF) to derive an OEL. This Perspectives paper will discuss the practical implications of these decisions, and present additional commentary on the potential role that the recent investigation of human exposures to relatively low concentrations of α-diketones, specifically diacetyl and 2,3-pentanedione, may play in supporting qualitative or quantitative human health risk assessments.


Asunto(s)
Café , Diacetil , Animales , Diacetil/análisis , Humanos , Cetonas , Pentanonas/análisis , Medición de Riesgo
2.
Front Public Health ; 10: 750289, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35664098

RESUMEN

Exposure to elevated levels of diacetyl in flavoring and microwave popcorn production has been associated with respiratory impairment among workers including from a severe lung disease known as obliterative bronchiolitis. Laboratory studies demonstrate damage to the respiratory tract in rodents exposed to either diacetyl or the related alpha-diketone 2,3-pentanedione. Respiratory tract damage includes the development of obliterative bronchiolitis-like changes in the lungs of rats repeatedly inhaling either diacetyl or 2,3-pentanedione. In one flavored coffee processing facility, current workers who spent time in higher diacetyl and 2,3-pentanedione areas had lower lung function values, while five former flavoring room workers were diagnosed with obliterative bronchiolitis. In that and other coffee roasting and packaging facilities, grinding roasted coffee beans has been identified as contributing to elevated levels of diacetyl and 2,3-pentanedione. To reduce worker exposures, employers can take various actions to control exposures according to the hierarchy of controls. Because elimination or substitution is not applicable to coffee production facilities not using flavorings, use of engineering controls to control exposures at their source is especially important. This work demonstrates the use of temporary ventilated enclosures around grinding equipment in a single coffee roasting and packaging facility to mitigate diacetyl and 2,3-pentanedione emissions from grinding equipment to the main production space. Concentrations of diacetyl and 2,3-pentanedione were measured in various locations throughout the main production space as well as inside and outside of ventilated enclosures to evaluate the effect of the enclosures on exposures. Diacetyl and 2,3-pentanedione concentrations outside one grinder enclosure decreased by 95 and 92%, respectively, despite ground coffee production increasing by 12%, after the enclosure was installed. Outside a second enclosure, diacetyl and 2,3-pentanedione concentrations both decreased 84%, greater than the 33% decrease in ground coffee production after installation. Temporary ventilated enclosures used as engineering control measures in this study effectively reduced emissions of diacetyl and 2,3-pentanedione at the source in this facility. These findings motivated management to explore options with a grinding equipment manufacturer to permanently ventilate their grinders to reduce emissions of diacetyl and 2,3-pentanedione.


Asunto(s)
Bronquiolitis , Exposición Profesional , Animales , Café , Diacetil/análisis , Aromatizantes/análisis , Exposición Profesional/análisis , Exposición Profesional/prevención & control , Pentanonas , Ratas
3.
Front Public Health ; 10: 878907, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35757620

RESUMEN

Coffee production workers can be exposed to inhalational hazards including alpha-diketones such as diacetyl and 2,3-pentanedione. Exposure to diacetyl is associated with the development of occupational lung disease, including obliterative bronchiolitis, a rare and irreversible lung disease. We aimed to identify determinants contributing to task-based exposures to diacetyl and 2,3-pentanedione at 17 U.S. coffee production facilities. We collected 606 personal short-term task-based samples including roasting (n = 189), grinding (n = 74), packaging (n = 203), quality control (QC, n = 44), flavoring (n = 15), and miscellaneous production/café tasks (n = 81), and analyzed for diacetyl and 2,3-pentanedione in accordance with the modified OSHA Method 1013/1016. We also collected instantaneous activity-based (n = 296) and source (n = 312) samples using evacuated canisters. Information on sample-level and process-level determinants relating to production scale, sources of alpha-diketones, and engineering controls was collected. Bayesian mixed-effect regression models accounting for censored data were fit for overall data (all tasks) and specific tasks. Notable determinants identified in univariate analyses were used to fit all plausible models in multiple regression analysis which were summarized using a Bayesian model averaging method. Grinding, flavoring, packaging, and production tasks with ground coffee were associated with the highest short-term and instantaneous-activity exposures for both analytes. Highest instantaneous-sources of diacetyl and 2,3-pentanedione included ground coffee, flavored coffee, liquid flavorings, and off-gassing coffee bins or packages. Determinants contributing to higher exposures to both analytes in all task models included sum of all open storage sources and average percent of coffee production as ground coffee. Additionally, flavoring ground coffee and flavoring during survey contributed to notably higher exposures for both analytes in most, but not all task groups. Alternatively, general exhaust ventilation contributed to lower exposures in all but two models. Additionally, among facilities that flavored, local exhaust ventilation during flavoring processes contributed to lower 2,3-pentanedione exposures during grinding and packaging tasks. Coffee production facilities can consider implementing additional exposure controls for processes, sources, and task-based determinants associated with higher exposures to diacetyl and 2,3-pentanedione, such as isolating, enclosing, and directly exhausting grinders, flavoring mixers, and open storage of off-gassing whole bean and ground coffee, to reduce exposures and minimize risks for lung disease among workers.


Asunto(s)
Café , Diacetil , Enfermedades Pulmonares , Exposición Profesional , Pentanonas , Teorema de Bayes , Diacetil/análisis , Aromatizantes/análisis , Humanos , Exposición Profesional/análisis , Pentanonas/análisis
4.
Front Public Health ; 10: 786924, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35400070

RESUMEN

Roasted coffee emits hazardous volatile organic compounds including diacetyl and 2,3-pentanedione. Workers in non-flavored coffee roasting and packaging facilities might inhale diacetyl and 2,3-pentanedione from roasted coffee above occupational exposure limits depending on their work activities and proximity to the source of emissions. Objectives of this laboratory study were to: (1) investigate factors affecting specific emission rates (SERs) of diacetyl and 2,3-pentanedione from freshly roasted coffee, (2) explore the effect of time on SERs of coffee stored in sealed bags for 10-days, and (3) predict exposures to workers in hypothetical workplace scenarios. Two roast levels (light and dark) and three physical forms (whole bean, coarse ground, and fine ground) were investigated. Particle size for whole bean and ground coffee were analyzed using geometric mean of Feret diameter. Emitted chemicals were collected on thermal desorption tubes and quantified using mass spectrometry analysis. SERs developed here coupled with information from previous field surveys provided model input to estimate worker exposures during various activities using a probabilistic, near-field/far-field model. For freshly roasted coffee, mean SER of diacetyl and 2,3-pentantedione increased with decreasing particle size of the physical form (whole bean < coarse ground < fine ground) but was not consistent with roast levels. SERs from freshly roasted coffee increased with roast level for diacetyl but did not change for 2,3-pentanedione. Mean SERs were greatest for diacetyl at 3.60 mg kg-1 h-1 for dark, fine ground and for 2,3-pentanedione at 3.88 mg kg-1 h-1 for light, fine ground. For storage, SERs of whole bean remained constant while SERs of dark roast ground coffee decreased and light roast ground coffee increased. Modeling demonstrated that near-field exposures depend on proximity to the source, duration of exposure, and air velocities in the near-field further supporting previously reported chemical air measurements in coffee roasting and packaging facilities. Control of source emissions using local exhaust ventilation especially around grinding activities as well as modification of work practices could be used to reduce exposures in this workforce.


Asunto(s)
Diacetil , Exposición Profesional , Café , Diacetil/análisis , Humanos , Exposición Profesional/análisis , Pentanonas/análisis
5.
Molecules ; 26(15)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34361724

RESUMEN

Orchids are rich treasure troves of various important phytomolecules. Among the various medicinal orchids, Ansellia africana stands out prominently in the preparing of various herbal medicines due to its high therapeutic importance. The nodal explants of A. africana were sampled from asymbiotically germinated seedlings on basal Murashige and Skoog (MS) medium and were micropropagated in MS medium supplemented with 3% sucrose and 10 µM meta topolin (mT) + 5 µM naphthalene acetic acid (NAA) +15 µM indole butyric acid (IBA) + 30 µM phloroglucinol (PG). In the present study, the essential oil was extracted by hydrodistillation and the oleoresins by the solvent extraction method from the micropropagated A. africana. The essential oil and the oleoresins were analysed by Gas Chromatography (GC) and GC/MS (Mass spectrometry). A total of 84 compounds were identified. The most predominant components among them were linoleic acid (18.42%), l-ascorbyl 2,6-dipalmitate (11.50%), linolenic acid (10.98%) and p-cresol (9.99%) in the essential oil; and eicosane (26.34%), n-butyl acetate (21.13%), heptadecane (16.48%) and 2-pentanone, 4-hydroxy-4-methyl (11.13%) were detected in the acetone extract; heptadecane (9.40%), heneicosane (9.45%), eicosane (6.40%), n-butyl acetate (14.34%) and styrene (22.20%) were identified and quantified in the ethyl acetate extract. The cytotoxic activity of essential oil and oleoresins of micropropagated A. africana was evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide) assay on Vero cells compared to the standard drug doxorubicin chloride. The present research contains primary information about the therapeutic utility of the essential oil and oleoresins of A. africana with a promising future research potential of qualitative and quantitative improvement through synchronised use of biotechnological techniques.


Asunto(s)
Citotoxinas/aislamiento & purificación , Aceites Volátiles/aislamiento & purificación , Orchidaceae/química , Extractos Vegetales/aislamiento & purificación , Plantones/química , Acrilatos/aislamiento & purificación , Alcanos/aislamiento & purificación , Animales , Ácido Ascórbico/aislamiento & purificación , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Cresoles/aislamiento & purificación , Medios de Cultivo/química , Medios de Cultivo/farmacología , Citotoxinas/farmacología , Cromatografía de Gases y Espectrometría de Masas , Hidroponía/métodos , Ácido Linoleico/aislamiento & purificación , Extracción Líquido-Líquido/métodos , Aceites Volátiles/farmacología , Orchidaceae/metabolismo , Palmitatos/aislamiento & purificación , Pentanoles/aislamiento & purificación , Pentanonas/aislamiento & purificación , Extractos Vegetales/farmacología , Plantas Medicinales , Plantones/metabolismo , Sudáfrica , Estireno/aislamiento & purificación , Células Vero , Ácido alfa-Linolénico/aislamiento & purificación
6.
Int J Mol Sci ; 22(14)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34299015

RESUMEN

Synthetic cathinones have gained popularity among young drug users and are widely used in the clandestine market. While the cathinone-induced behavioral profile has been extensively investigated, information on their neuroplastic effects is still rather fragmentary. Accordingly, we have exposed male mice to a single injection of MDPV and α-PVP and sacrificed the animals at different time points (i.e., 30 min, 2 h, and 24 h) to have a rapid readout of the effect of these psychostimulants on neuroplasticity in the frontal lobe and hippocampus, two reward-related brain regions. We found that a single, low dose of MDPV or α-PVP is sufficient to alter the expression of neuroplastic markers in the adult mouse brain. In particular, we found increased expression of the transcription factor Npas4, increased ratio between the vesicular GABA transporter and the vesicular glutamate transporter together with changes in the expression of the neurotrophin Bdnf, confirming the widespread impact of these cathinones on brain plasticity. To sum up, exposure to low dose of cathinones can impair cortical and hippocampal homeostasis, suggesting that abuse of these cathinones at much higher doses, as it occurs in humans, could have an even more profound impact on neuroplasticity.


Asunto(s)
Alcaloides/farmacología , Lóbulo Frontal/efectos de los fármacos , Hipocampo/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Benzodioxoles/farmacología , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Estimulantes del Sistema Nervioso Central/farmacología , Inhibidores de Captación de Dopamina/farmacología , Lóbulo Frontal/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Pentanonas/farmacología , Pirrolidinas/farmacología , Ácido gamma-Aminobutírico/metabolismo , Cathinona Sintética
7.
Front Public Health ; 8: 561740, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072698

RESUMEN

Roasted coffee and many coffee flavorings emit volatile organic compounds (VOCs) including diacetyl and 2,3-pentanedione. Exposures to VOCs during roasting, packaging, grinding, and flavoring coffee can negatively impact the respiratory health of workers. Inhalational exposures to diacetyl and 2,3-pentanedione can cause obliterative bronchiolitis. This study summarizes exposures to and emissions of VOCs in 17 coffee roasting and packaging facilities that included 10 cafés. We collected 415 personal and 760 area full-shift, and 606 personal task-based air samples for diacetyl, 2,3-pentanedione, 2,3-hexanedione, and acetoin using silica gel tubes. We also collected 296 instantaneous activity and 312 instantaneous source air measurements for 18 VOCs using evacuated canisters. The highest personal full-shift exposure in part per billion (ppb) to diacetyl [geometric mean (GM) 21 ppb; 95th percentile (P95) 79 ppb] and 2,3-pentanedione (GM 15 ppb; P95 52 ppb) were measured for production workers in flavored coffee production areas. These workers also had the highest percentage of measurements above the NIOSH Recommended Exposure Limit (REL) for diacetyl (95%) and 2,3-pentanedione (77%). Personal exposures to diacetyl (GM 0.9 ppb; P95 6.0 ppb) and 2,3-pentanedione (GM 0.7 ppb; P95 4.4 ppb) were the lowest for non-production workers of facilities that did not flavor coffee. Job groups with the highest personal full-shift exposures to diacetyl and 2,3-pentanedione were flavoring workers (GM 34 and 38 ppb), packaging workers (GM 27 and 19 ppb) and grinder operator (GM 26 and 22 ppb), respectively, in flavored coffee facilities, and packaging workers (GM 8.0 and 4.4 ppb) and production workers (GM 6.3 and 4.6 ppb) in non-flavored coffee facilities. Baristas in cafés had mean full-shift exposures below the RELs (GM 4.1 ppb diacetyl; GM 4.6 ppb 2,3-pentanedione). The tasks, activities, and sources associated with flavoring in flavored coffee facilities and grinding in non-flavored coffee facilities, had some of the highest GM and P95 estimates for both diacetyl and 2,3-pentanedione. Controlling emissions at grinding machines and flavoring areas and isolating higher exposure areas (e.g., flavoring, grinding, and packaging areas) from the main production space and from administrative or non-production spaces is essential for maintaining exposure control.


Asunto(s)
Exposición Profesional , Compuestos Orgánicos Volátiles , Café/efectos adversos , Diacetil/efectos adversos , Humanos , Exposición Profesional/análisis , Pentanonas , Estados Unidos , Compuestos Orgánicos Volátiles/análisis
8.
ACS Appl Mater Interfaces ; 12(1): 217-226, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31804796

RESUMEN

Magnetic nanoparticles are critical to a broad range of applications from medical diagnostics and therapeutics to biotechnological processes and single-molecule manipulation. To advance these applications, facile and robust routes to synthesize highly magnetic nanoparticles over a wide size range are needed. Here, we demonstrate that changing the degassing temperature of thermal decomposition of metal acetylacetonate precursors from 90 to 25 °C tunes the size of ferrimagnetic ZnxFe3-xO4 nanocubes from 25 to 100 nm, respectively. We show that degassing at 90 °C nearly entirely removes acetylacetone ligands from the reaction, which results in an early formation of monomers and a reaction-controlled growth following LaMer's model toward small nanocubes. In contrast, degassing at 25 °C only partially dissociates acetylacetone ligands from the metal center and triggers a delayed formation of monomers, which leads to intermediate assembled structures made of tiny irregular crystallites and an eventual formation of large nanocubes via a diffusion-controlled growth mechanism. Using complementary techniques, we determine the substitution fraction x of Zn2+ to be in the range of 0.35-0.37. Our method reduces the complexity of the thermal decomposition method by narrowing the synthesis parameter space to a single physical parameter and enables fabrication of highly magnetic and uniform zinc ferrite nanocubes over a broad size range. The resulting particles are promising for a range of applications from magnetic fluid hyperthermia to actuation of macromolecules.


Asunto(s)
Compuestos Férricos/química , Hidroxibutiratos/química , Nanoestructuras/química , Pentanonas/química , Compuestos de Zinc/química , Ligandos
9.
Behav Brain Res ; 376: 112211, 2019 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-31493431

RESUMEN

Synthetic cathinones are used for their stimulant-like properties. Stimulant-induced neurochemical changes are thought to occur at different times in different brain regions and neurotransmitter systems. This study sought to examine the behavioral and neurochemical effects of α-pyrrolidinopentiophenone (α-PVP) and mephedrone (4MMC) in female rats. Methods probed the chronology of effects of synthetic cathinone exposure. Female rats were trained to self-administer α-PVP, 4MMC, or saline. Drug exposure ceased after 7 days of autoshaping for half of each drug group; the other half self-administered for another 21 days. Amygdala, hippocampus, hypothalamus, PFC, striatum, and thalamus were extracted, and tissue was analyzed with electrochemical detection and liquid chromatography mass spectrometry. Responding was minimal during autoshaping; thus, most infusions were delivered noncontingently in the autoshaping phase. Rats acquired self-administration of α-PVP and 4MMC. Synthetic cathinone administration, and duration of exposure produced several effects on neurotransmitters. α-PVP primarily increased serotonin, 5-hydroxy-3-acetic acid (5-HIAA), norepinephrine, and glutamate in hypothalamus. In contrast, 4MMC decreased serotonin and 5-HIAA in several brain regions. Longer durations of exposure to both synthetic cathinones increased 5-HIAA, norepinephrine, and glutamate in multiple brain regions compared to the short exposure during autoshaping. Notably, both α-PVP and 4MMC produced minimal changes in dopamine levels, suggesting that the dopaminergic effects of these synthetic cathinones are transient. These alterations in neurotransmitter levels indicate that synthetic cathinone use may produce differential neurochemical changes during the transition from use to abuse.


Asunto(s)
Alcaloides/farmacología , Conducta Adictiva/tratamiento farmacológico , Neurotransmisores/metabolismo , Alcaloides/metabolismo , Animales , Conducta Adictiva/metabolismo , Encéfalo/efectos de los fármacos , Estimulantes del Sistema Nervioso Central/farmacología , Dopamina/metabolismo , Femenino , Hipotálamo/efectos de los fármacos , Metanfetamina/análogos & derivados , Metanfetamina/farmacología , Neurotransmisores/farmacología , Pentanonas/farmacología , Pirrolidinas/farmacología , Ratas , Ratas Sprague-Dawley , Refuerzo en Psicología , Autoadministración , Serotonina/metabolismo
10.
Ann Work Expo Health ; 63(4): 415-425, 2019 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-30893419

RESUMEN

Diacetyl is a potentially harmful chemical that is used as an artificial flavouring in the food industry and may also be generated during processing of some natural products including coffee. In Europe, an 8-h time weighted average occupational exposure limit (TWA-OEL) of 20 ppb has been adopted for diacetyl, together with a short-term exposure limit (STEL) of 100 ppb. A new measurement method involving sampling on thermal desorption tubes and analysis by gas chromatography-mass spectrometry has been used to investigate potential exposure to diacetyl, and the related compound 2,3-pentanedione, at eight companies involved in the coffee industry including large- and small-scale manufacturers and coffee shops. A total of 124 static and personal samples were collected. In the majority of personal samples airborne concentrations of diacetyl were <5 ppb, with those at coffee shops generally <1 ppb. However, diacetyl concentrations in ~40% of the long-term personal samples, mainly originating from one site, were found to be in excess of the newly adopted European TWA-OEL of 20 ppb. Diacetyl concentrations up to 400 ppb were detected on the static samples, with the highest values occurring during grinding of roasted coffee beans. 2,3-Pentanedione was also detected in most of the samples at airborne concentrations around half of those for diacetyl. A significant number of other volatile organic compounds (VOCs) were also detected at sub-ppm concentrations, including acetoin, aliphatic carboxylic acids, aldehydes, ketones and esters, methylfuran, furfural and furfuryl-based alcohols and ketones, and nitrogen containing compounds, such as pyridines and pyrazines. In laboratory tests, diacetyl emissions generated during heating of whole beans were found to be significantly lower than those from heating the same beans after grinding. Diacetyl emissions from both ground and whole beans were also found to be significantly dependent on temperature.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Diacetil/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Exposición Profesional/análisis , Pentanonas/análisis , Compuestos Orgánicos Volátiles/análisis , Café , Aromatizantes/análisis , Industria de Alimentos , Humanos
11.
J Agric Food Chem ; 66(42): 11083-11091, 2018 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-30240205

RESUMEN

1-Penten-3-one with its fresh and pungent smell at a very low odor threshold of 0.94 µg/L water has been characterized as impact aroma compound in many foods, such as grapefruit, orange juice, black tea, olive oil, or tomatoes. While its importance to the fresh sensation of unstored not-from-concentrate (NFC) orange juice was recently confirmed by aroma recombinates, a total loss was determined already after 4 weeks in NFC orange juice stored at 0 °C. Until now, the degradation pathway of this compound has not been clarified. Systematic model studies resulted in the identification of 1-hydroxy-3-pentanone and 4-hydroxy-3,8-decanedione as degradation products as well as S-(3-oxopentyl)-l-cysteine in the presence of the amino acid. In orange juice samples, it was found that the elevated content of 1-hydroxy-3-pentanone indicates a thermal processing, while S-(3-oxopentyl)-l-cysteine showed a significant increase during cold storage. Additionally, both compounds were identified in other food samples, such as commercial orange juices, pickled olives and olive oil, fresh tomatoes and commercial tomato juice, and black tea.


Asunto(s)
Citrus sinensis/química , Jugos de Frutas y Vegetales/análisis , Odorantes/análisis , Pentanonas/química , Cisteína/química , Manipulación de Alimentos/métodos , Almacenamiento de Alimentos , Estructura Molecular , Aceite de Oliva/química , Té/química , Temperatura
12.
Molecules ; 23(8)2018 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-30065213

RESUMEN

Elephant dung coffee (Black Ivory Coffee) is a unique Thai coffee produced from Arabica coffee cherries consumed by Asian elephants and collected from their feces. In this work, elephant dung coffee and controls were analyzed using static headspace gas chromatography hyphenated with mass spectrometry (SHS GC-MS), and chemometric approaches were applied for multivariate analysis and the selection of marker compounds that are characteristic of the coffee. Seventy-eight volatile compounds belonging to 13 chemical classes were tentatively identified, including six alcohols, five aldehydes, one carboxylic acid, three esters, 17 furans, one furanone, 13 ketones, two oxazoles, four phenolic compounds, 14 pyrazines, one pyridine, eight pyrroles and three sulfur-containing compounds. Moreover, four potential discriminant markers of elephant dung coffee, including 3-methyl-1-butanol, 2-methyl-1-butanol, 2-furfurylfuran and 3-penten-2-one were established. The proposed method may be useful for elephant dung coffee authentication and quality control.


Asunto(s)
Coffea/química , Heces/química , Furanos/análisis , Pentanoles/análisis , Pentanonas/análisis , Animales , Biomarcadores/análisis , Café/química , Elefantes/fisiología , Conducta Alimentaria , Frutas/química , Cromatografía de Gases y Espectrometría de Masas , Odorantes/análisis , Control de Calidad , Compuestos Orgánicos Volátiles/análisis
13.
J Agric Food Chem ; 65(11): 2364-2372, 2017 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-28245644

RESUMEN

A stable isotope dilution assay was developed for quantitation of 4-methyl-4-sulfanylpentan-2-one (4MSP) in hops. The approach included the use of 4-(13C)methyl-4-sulfanyl(1,3,5-13C3)pentan-2-one as internal standard, selective isolation of hop thiols by mercurated agarose, and GC×GC-TOFMS analysis. Application of the method to 53 different hop samples revealed 4MSP concentrations between <1 and 114 µg/kg. Notably high concentrations were associated with United States varieties such as Citra, Eureka, Simcoe, and Apollo, whereas 4MSP was absent from traditional German and English varieties. Further experiments showed that besides the variety, also harvest year and storage vitally influenced 4MSP concentrations, whereas the impact of provenance was less pronounced. Hop processing such as drying and pelletizing had only a minor impact on 4MSP concentrations. Like the majority of other hop volatiles, 4MSP is predominantly located in the lupulin glands.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Humulus/química , Técnicas de Dilución del Indicador , Pentanonas/química , Extractos Vegetales/química , Compuestos de Sulfhidrilo/química , Humulus/clasificación , Humulus/crecimiento & desarrollo , Humulus/metabolismo , Pentanonas/metabolismo , Extractos Vegetales/metabolismo , Compuestos de Sulfhidrilo/metabolismo
14.
J Chromatogr A ; 1489: 18-28, 2017 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-28190595

RESUMEN

Recent technological advances in dynamic headspace sampling (D-HS) and the possibility to automate this sampling method have lead to a marked improvement in its the performance, a strong renewal of interest in it, and have extended its fields of application. The introduction of in-parallel and in-series automatic multi-sampling and of new trapping materials, plus the possibility to design an effective sampling process by correctly applying the breakthrough volume theory, have make profiling more representative, and have enhanced selectivity, and flexibility, also offering the possibility of fractionated enrichment in particular for high-volatility compounds. This study deals with fractionated D-HS ability to produce a sample representative of the volatile fraction of solid or liquid matrices. Experiments were carried out on a model equimolar (0.5mM) EtOH/water solution, comprising 16 compounds with different polarities and volatilities, structures ranging from C5 to C15 and vapor pressures from 4.15kPa (2,3-pentandione) to 0.004kPa (t-ß-caryophyllene), and on an Arabica roasted coffee powder. Three trapping materials were considered: Tenax TA™ (TX), Polydimethylsiloxane foam (PDMS), and a three-carbon cartridge Carbopack B/Carbopack C/Carbosieve S-III™ (CBS). The influence of several parameters on the design of successful fractionated D-HS sampling. Including the physical and chemical characteristics of analytes and matrix, trapping material, analyte breakthrough, purge gas volumes, and sampling temperature, were investigated. The results show that, by appropriately choosing sampling conditions, fractionated D-HS sampling, based on component volatility, can produce a fast and representative profile of the matrix volatile fraction, with total recoveries comparable to those obtained by full evaporation D-HS for liquid samples, and very high concentration factors for solid samples.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Verduras/química , Café/química , Pentanonas/análisis , Pentanonas/aislamiento & purificación , Sesquiterpenos Policíclicos , Sesquiterpenos/análisis , Sesquiterpenos/aislamiento & purificación , Temperatura , Presión de Vapor , Volatilización
15.
Exp Parasitol ; 175: 51-58, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28188731

RESUMEN

The polyphenolic compound curcumin has been reported for its antimalarial properties in various scientific studies. Plasmodium falciparum ATP6, the parasite orthologue of mammalian sarcoplasmic Ca2+ ATPase (SERCA) has been identified as a key molecular target of both artemisinin and curcumin. The work was thereby undertaken to study the anti-malarial properties of two different series of curcumin analogues based on their docking interactions with PfATP6 and correlating the results with their anti-malarial activity. The compounds were designed retaining similar functional groups as that of the parent curcumin nucleus while incorporating changes in the carbon chain length, unsaturated groups and the number of ketone groups. The compounds (1E, 4E)-1,5-bis(4-methylphenyl)penta-1,4-dien-3-one (CD-9), (1E, 4E)-1,5-bis(4-methoxyphenyl)penta-1,4-dien-3-one (CD-8) and (E)-1,3-bis(4-hydroxylphenyl)prop-2-en-1-one (CD-1) showed IC50 values of 1.642 µM, 1.764 µM and 2.59 µM in 3D7 strain and 3.039 µM, 7.40 µM and 11.3 µM in RKL-2 strain respectively. Detailed structure-activity relationship studies of the compounds showed that CD-9 and CD-8 had a common hydrophobic interaction with the residue Leu268 of the PfATP6 protein and has been postulated through our study to be the reason for their antimalarial activity as seen after corroborating the results with the in vitro study. The study provided valuable insight about the ligand-protein interaction of the various functional groups of curcumin and its analogues against the PfATP6 protein and their importance in imparting antimalarial action.


Asunto(s)
Antimaláricos/farmacología , Curcumina/análogos & derivados , Curcumina/farmacología , Plasmodium falciparum/efectos de los fármacos , Acetofenonas/química , Antígenos CD1/metabolismo , Benzaldehídos/química , Antígenos CD8/metabolismo , Chalcona/análogos & derivados , Evaluación Preclínica de Medicamentos , Concentración 50 Inhibidora , Ligandos , Simulación del Acoplamiento Molecular , Pentanonas/química , Tetraspanina 29/metabolismo
16.
J Occup Environ Hyg ; 13(10): 770-81, 2016 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-27105025

RESUMEN

Obliterative bronchiolitis in five former coffee processing employees at a single workplace prompted an exposure study of current workers. Exposure characterization was performed by observing processes, assessing the ventilation system and pressure relationships, analyzing headspace of flavoring samples, and collecting and analyzing personal breathing zone and area air samples for diacetyl and 2,3-pentanedione vapors and total inhalable dust by work area and job title. Mean airborne concentrations were calculated using the minimum variance unbiased estimator of the arithmetic mean. Workers in the grinding/packaging area for unflavored coffee had the highest mean diacetyl exposures, with personal concentrations averaging 93 parts per billion (ppb). This area was under positive pressure with respect to flavored coffee production (mean personal diacetyl levels of 80 ppb). The 2,3-pentanedione exposures were highest in the flavoring room with mean personal exposures of 122 ppb, followed by exposures in the unflavored coffee grinding/packaging area (53 ppb). Peak 15-min airborne concentrations of 14,300 ppb diacetyl and 13,800 ppb 2,3-pentanedione were measured at a small open hatch in the lid of a hopper containing ground unflavored coffee on the mezzanine over the grinding/packaging area. Three out of the four bulk coffee flavorings tested had at least a factor of two higher 2,3-pentanedione than diacetyl headspace measurements. At a coffee processing facility producing both unflavored and flavored coffee, we found the grinding and packaging of unflavored coffee generate simultaneous exposures to diacetyl and 2,3-pentanedione that were well in excess of the NIOSH proposed RELs and similar in magnitude to those in the areas using a flavoring substitute for diacetyl. These findings require physicians to be alert for obliterative bronchiolitis and employers, government, and public health consultants to assess the similarities and differences across the industry to motivate preventive intervention where indicated by exposures above the proposed RELs for diacetyl and 2,3-pentanedione.


Asunto(s)
Contaminantes Ocupacionales del Aire , Café , Diacetil/análisis , Exposición Profesional/análisis , Pentanonas/análisis , Contaminantes Ocupacionales del Aire/análisis , Bronquiolitis Obliterante/prevención & control , Polvo/análisis , Aromatizantes/análisis , Industria de Procesamiento de Alimentos/métodos , Humanos
17.
Am J Ind Med ; 58(12): 1235-45, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26523478

RESUMEN

RATIONALE: Obliterative bronchiolitis in former coffee workers prompted a cross-sectional study of current workers. Diacetyl and 2,3-pentanedione levels were highest in areas for flavoring and grinding/packaging unflavored coffee. METHODS: We interviewed 75 (88%) workers, measured lung function, and created exposure groups based on work history. We calculated standardized morbidity ratios (SMRs) for symptoms and spirometric abnormalities. We examined health outcomes by exposure groups. RESULTS: SMRs were elevated 1.6-fold for dyspnea and 2.7-fold for obstruction. The exposure group working in both coffee flavoring and grinding/packaging of unflavored coffee areas had significantly lower mean ratio of forced expiratory volume in 1 s to forced vital capacity and percent predicted mid-expiratory flow than workers without such exposure. CONCLUSION: Current workers have occupational lung morbidity associated with high diacetyl and 2,3-pentanedione exposures, which were not limited to flavoring areas.


Asunto(s)
Bronquiolitis Obliterante/inducido químicamente , Café/química , Industria de Procesamiento de Alimentos , Enfermedades Profesionales/inducido químicamente , Exposición Profesional/efectos adversos , Adulto , Obstrucción de las Vías Aéreas/inducido químicamente , Bronquiolitis Obliterante/epidemiología , Bronquiolitis Obliterante/fisiopatología , Estudios Transversales , Diacetil/análisis , Diacetil/toxicidad , Disnea/inducido químicamente , Femenino , Aromatizantes/análisis , Volumen Espiratorio Forzado , Humanos , Pulmón/fisiopatología , Masculino , Enfermedades Profesionales/epidemiología , Enfermedades Profesionales/fisiopatología , Exposición Profesional/análisis , Pentanonas/análisis , Pentanonas/toxicidad , Respiración , Espirometría , Capacidad Vital , Lugar de Trabajo
18.
Anal Chim Acta ; 895: 45-53, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26454458

RESUMEN

Gold nanoparticle-enhanced target (AuNPET) was used for detailed investigation of various materials of biological origin - human fingerprint, onion bulb and chicken liver. Analysis of these objects was focused on toxic and harmful compounds - designer drug containing pentedrone, diphenylamine in onion and potentially cancerogenic metronidazole antibiotic in liver. Detection of large quantity of endogenous compounds from mentioned objects is also shown. Most of analyzed compounds were also localized with MS imaging and relationship between their function and location was discussed. Detected compounds belong to a very wide range of chemical compounds such as saccharides, ionic and non-ionic glycerides, amino acids, fatty acids, sulfides, sulfoxides, phenols etc. Fingerprint experiments demonstrate application of AuNPET for detection, structure confirmation and also co-localization of drug with ridge patterns proving person-drug contact.


Asunto(s)
Dermatoglifia , Oro/química , Sustancias Peligrosas/análisis , Hígado/química , Espectrometría de Masas , Nanopartículas del Metal/química , Cebollas/química , Animales , Antibacterianos/análisis , Difenilamina/análisis , Humanos , Metilaminas/análisis , Metronidazol/análisis , Pentanonas/análisis
19.
J Agric Food Chem ; 61(20): 4728-36, 2013 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-23662795

RESUMEN

The profiles of volatile constituents of berry fruit of two Aronia melanocarpa genotypes were evaluated by headspace-solid-phase microextraction (HS-SPME), simultaneous distillation and extraction (SDE), and gas chromatography-olfactometry (GC-O). In total, 74 volatile compounds were identified in chokeberry juice, 3-penten-2-one, 3,9-epoxy-p-menth-1-ene, and benzaldehyde being the most abundant constituents; however, their percentage concentrations were remarkably different in the HS-SPME and SDE profiles. Twenty two aroma-active compounds were detected and characterized by the trained panelists in HS-SPME using GC-O detection frequency analysis. Olfactometry revealed that ethyl-2-methyl butanoate, ethyl-3-methyl butanoate, ethyl decanoate ("fruity" aroma notes), nonanal ("green" notes), unidentified compound possessing "moldy" odor, and some other volatiles may be very important constituents in formation of chokeberry aroma of both analyzed plant cultivars.


Asunto(s)
Cromatografía de Gases/métodos , Photinia/química , Olfato , Microextracción en Fase Sólida/métodos , Compuestos Orgánicos Volátiles/análisis , Benzaldehídos/análisis , Bebidas/análisis , Destilación , Frutas/química , Humanos , Odorantes/análisis , Olfatometría , Pentanonas/análisis , Extractos Vegetales/química , Terpenos/análisis , Compuestos Orgánicos Volátiles/química
20.
Appl Microbiol Biotechnol ; 97(15): 6919-30, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23677441

RESUMEN

Undesirable butter-tasting vicinal diketones are produced as by-products of valine and isoleucine biosynthesis during wort fermentation. One promising method of decreasing diacetyl production is through control of wort valine content since valine is involved in feedback inhibition of enzymes controlling the formation of diacetyl precursors. Here, the influence of valine supplementation, wort amino acid profile and free amino nitrogen content on diacetyl formation during wort fermentation with the lager yeast Saccharomyces pastorianus was investigated. Valine supplementation (100 to 300 mg L(-1)) resulted in decreased maximum diacetyl concentrations (up to 37 % lower) and diacetyl concentrations at the end of fermentation (up to 33 % lower) in all trials. Composition of the amino acid spectrum of the wort also had an impact on diacetyl and 2,3-pentanedione production during fermentation. No direct correlation between the wort amino acid concentrations and diacetyl production was found, but rather a negative correlation between the uptake rate of valine (and also other branched-chain amino acids) and diacetyl production. Fermentation performance and yeast growth were unaffected by supplementations. Amino acid addition had a minor effect on higher alcohol and ester composition, suggesting that high levels of supplementation could affect the flavour profile of the beer. Modifying amino acid profile of wort, especially with respect to valine and the other branched-chain amino acids, may be an effective way of decreasing the amount of diacetyl formed during fermentation.


Asunto(s)
Aminoácidos/farmacología , Diacetil/metabolismo , Fermentación , Pentanonas/metabolismo , Saccharomyces/efectos de los fármacos , Valina/farmacología , Saccharomyces/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA