Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.750
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
J Hazard Mater ; 470: 134234, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608584

RESUMEN

Agricultural waste management poses a significant challenge in circular economy strategies. Olive mill wastes (OMW) contain valuable biomolecules, especially phenolic compounds, with significant agricultural potential. Our study evaluate the effects of phenolic extract (PE) derived from olive mill solid wastes (OMSW) on pomegranate agro-physiological and biochemical responses, as well as soil-related attributes. Pomegranate plants were treated with PE at doses of 100 ppm and 200 ppm via foliar spray (L100 and L200) and soil application (S100 and S200). Results showed increased biomass with PE treatments, especially with soil application (S100 and S200). Proline and soluble sugar accumulation in leaves suggested plant adaptation to PE with low-level stress. Additionally, PE application reduced malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents. Higher doses of PE (S200) significantly improved net photosynthesis (Pn), transpiration rate (E), water use efficiency (WUEi), and photosynthetic efficiency (fv/fm and PIabs). Furthermore, PE treatments enhanced levels of chlorophylls, carotenoids, polyphenols, flavonoids, and antioxidant activity. Soil application of PE also increased soil enzyme activities and microbial population. Our findings suggest the beneficial impact of PE application on pomegranate agro-physiological responses, laying the groundwork for further research across various plant species and soil types to introduce nutrient-enriched PE as an eco-friendly biostimulant.


Asunto(s)
Olea , Fenoles , Granada (Fruta) , Granada (Fruta)/química , Fenoles/análisis , Olea/química , Suelo/química , Residuos Industriales , Residuos Sólidos , Rizosfera , Fotosíntesis/efectos de los fármacos , Antioxidantes/metabolismo , Antioxidantes/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Microbiología del Suelo , Peróxido de Hidrógeno/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/química , Agricultura
2.
Mol Med Rep ; 29(6)2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38639187

RESUMEN

Knee osteoarthritis (KOA) is a chronic degenerative disease that affects the quality of life of middle­aged and elderly individuals, and is one of the major factors leading to disability. Rongjin Niantong Fang (RJNTF) can alleviate the clinical symptoms of patients with KOA, but the molecular mechanism underlying its beneficial effects on KOA remains unknown. Using pharmacological analysis and in vitro experiments, the active components of RJNTF were analyzed to explore their potential therapeutic targets and mechanisms in KOA. The potential targets and core signaling pathways by which RJNTF exerts its effects on KOA were obtained from databases such as Gene Expression Omnibus, Traditional Chinese Medicine Systems Pharmacology and Analysis Platform. Subsequently, chondrocyte apoptosis was modeled using hydrogen peroxide (H2O2). Cell Counting Kit­8 assay involving a poly [ADP­ribose] polymerase­1 (PARP1) inhibitor, DAPI staining, reverse transcription­quantitative PCR, Annexin V­FITC/PI staining and flow cytometry, western blotting and co­immunoprecipitation analysis were used to determine the therapeutic efficacy of RJNTF on KOA and to uncover the molecular mechanism. It was found that PARP1­knockdown lentivirus, incubation with PARP1 inhibitor PJ34, medium and high doses of RJNTF significantly reduced H2O2­induced chondrocyte apoptosis. Medium and high doses of RJNTF downregulated the expression of cleaved caspase­3, cleaved PARP1 and PAR total proteins, as well as nucleus proteins of apoptosis­inducing factor (AIF) and migration inhibitory factor (MIF), and upregulated the expression of caspase­3, PARP1 total protein, as well as the cytoplasmic expression of AIF and MIF, suggesting that RJNTF may inhibit chondrocyte apoptosis through the PARP1/AIF signaling pathway.


Asunto(s)
Condrocitos , Osteoartritis de la Rodilla , Anciano , Persona de Mediana Edad , Humanos , Condrocitos/metabolismo , Osteoartritis de la Rodilla/tratamiento farmacológico , Osteoartritis de la Rodilla/genética , Osteoartritis de la Rodilla/metabolismo , Caspasa 3/metabolismo , Farmacología en Red , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Calidad de Vida , Apoptosis
3.
PLoS One ; 19(4): e0302403, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38662754

RESUMEN

With aging, men develop testosterone-deficiency syndrome (TDS). The development is closely associated with age-related mitochondrial dysfunction of Leydig cell and oxidative stress-induced reactive oxygen species (ROS). Testosterone-replacement therapy (TRT) is used to improve the symptoms of TDS. However, due to its various side effects, research on functional ingredients derived from natural products that do not have side effects is urgently needed. In this study, using the mitochondrial dysfunction TM3 (mouse Leydig) cells, in which testosterone biosynthesis is reduced by H2O2, we evaluated the effects of elderberry extract and monosaccharide-amino acid (fructose-leucine; FL) on mRNA and protein levels related to steroidogenesis-related enzymes steroidogenic acute regulatory protein (StAR), cytochrome P450 11A1(CYP11A1, cytochrome P450 17A1(CYP17A1), cytochrome P450 19A1(CYP19A1, aromatase), 3ß-hydroxysteroid dehydrogenase (3ß-HSD), and 17ß-hydroxysteroid dehydrogenase(17ß-HSD). We analyzed elderberry extract and extract-derived FL for changes in ROS scavenging activity and testosterone secretion. Elderberry extract and FL significantly reduced H2O2-induced intracellular ROS levels, improved testosterone secretion, and increased the mRNA and protein expression levels of steroidogenesis-related enzymes (StAR, 3b-HSD, 17b-HSD, CYP11A1, CYp17A1). However, the conversion of testosterone to estradiol was inhibited by elderberry extract and extract-derived FL, which reduced the mRNA and protein expression of CYP19A1. In conclusion, elderberry extract and FL are predicted to have value as novel functional ingredients that may contribute to the prevention of TDS by ameliorating reduced steroidogenesis.


Asunto(s)
Peróxido de Hidrógeno , Células Intersticiales del Testículo , Extractos Vegetales , Testosterona , Animales , Células Intersticiales del Testículo/metabolismo , Células Intersticiales del Testículo/efectos de los fármacos , Ratones , Peróxido de Hidrógeno/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Masculino , Línea Celular , Aminoácidos/metabolismo , Monosacáridos , Sambucus/química , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosfoproteínas/metabolismo , Fosfoproteínas/genética
4.
Aging (Albany NY) ; 16(5): 4541-4562, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38428403

RESUMEN

Ningxin-Tongyu-Zishen formula (NTZF) is a clinical experience formula for the treatment of premature ovarian insufficiency (POI) in traditional Chinese medicine (TCM), and the potential mechanism is unknown. For in vivo experiments, POI mouse models (C57BL/6 mice), were constructed by subcutaneous injection of D-galactose (D-gal, 200 mg/kg). After treatment of NTZF (10.14, 20.27, 40.54 g/kg;) or estradiol valerate (0.15 mg/kg), ovarian function, oxidative stress (OS) and protein expression of Sirt1/p53 were evaluated. For in vitro experiments, H2O2 (200 µM) was used to treat KGN to construct ovarian granulosa cells (OGCs) cell senescence model. Pretreatment with NTZF (1.06 mg/mL) or p53 inhibitor (Pifithrin-α, 1 µM) was performed before induction of senescence, and further evaluated the cell senescence, OS, mRNA and protein expression of Sirt1/p53. In vivo, NTZF improved ovarian function, alleviated OS and Sirt1/p53 signaling abnormalities in POI mice. In vitro experiments showed that NTZF reduced the level of OS and alleviated the senescence of H2O2-induced KGN. In addition, NTZF activated the protein expression of Sirt1, inhibited the mRNA transcription and protein expression of p53 and p21. Alleviating OGCs senescence and protecting ovarian function through Sirt1/p53 is one of the potential mechanisms of NTZF in the treatment of POI.


Asunto(s)
Galactosa , Insuficiencia Ovárica Primaria , Humanos , Femenino , Ratones , Animales , Galactosa/toxicidad , Sirtuina 1/genética , Sirtuina 1/metabolismo , Peróxido de Hidrógeno/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ratones Endogámicos C57BL , Insuficiencia Ovárica Primaria/inducido químicamente , Insuficiencia Ovárica Primaria/tratamiento farmacológico , Insuficiencia Ovárica Primaria/genética , Células de la Granulosa/metabolismo , Senescencia Celular , ARN Mensajero/metabolismo
5.
Nutrients ; 16(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542755

RESUMEN

During ageing, the permeability of the intestinal barrier increases, the integrity of the intestinal barrier decreases, and the physiology of intestinal cells changes. Furthermore, intestinal inflammation and excessive oxidative stress are both likely to cause systemic diseases. Ginseng oligopeptides have a positive significant effect in terms of improving human health and delaying ageing, but their role in the ageing of the intestine has not been studied much. In our experiment, we constructed a gut-on-a-chip model and induced senescence of the chip with H2O2 so as to explore the effects of ginseng oligopeptides on the senescent intestine. The experimental results showed that ginseng oligopeptides had no obvious effects on the integrity of the intestine, including the TEER value and the expression of tight junction proteins. However, ginseng oligopeptides might have other positive effects, such as inhibiting excessive cell proliferation, promoting mucin secretion, and increasing the antioxidant capacity of the intestine, to improve intestinal health.


Asunto(s)
Antioxidantes , Panax , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Panax/metabolismo , Peróxido de Hidrógeno/metabolismo , Oligopéptidos/farmacología , Oligopéptidos/metabolismo , Dispositivos Laboratorio en un Chip , Mucosa Intestinal/metabolismo , Uniones Estrechas/metabolismo
6.
Nutrients ; 16(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542762

RESUMEN

The parenteral nutrition (PN) received by premature newborns is contaminated with peroxides that induce global DNA hypermethylation via oxidative stress. Exposure to peroxides could be an important factor in the induction of chronic diseases such as those observed in adults who were born preterm. As endogenous H2O2 is a major regulator of glucose-lipid metabolism, our hypothesis was that early exposure to PN induces permanent epigenetic changes in H2O2 metabolism. Three-day-old guinea pigs were fed orally (ON), PN or glutathione-enriched PN (PN+GSSG). GSSG promotes endogenous peroxide detoxification. After 4 days, half the animals were sacrificed, and the other half were fed ON until 16 weeks of age. The liver was harvested. DNA methylation and mRNA levels were determined for the SOD2, GPx1, GCLC, GSase, Nrf2 and Keap1 genes. PN induced GPx1 hypermethylation and decreased GPx1, GCLC and GSase mRNA. These findings were not observed in PN+GSSG. PN+GSSG induced Nrf2 hypomethylation and increased Nrf2 and SOD2 mRNA. These observations were independent of age. In conclusion, in neonatal guinea pigs, PN induces epigenetic changes, affecting the expression of H2O2 metabolism genes. These changes persist for at least 15 weeks after PN. This disruption may signify a permanent reduction in the capacity to detoxify peroxides.


Asunto(s)
Peróxido de Hidrógeno , Factor 2 Relacionado con NF-E2 , Animales , Cobayas , Peróxido de Hidrógeno/metabolismo , Disulfuro de Glutatión/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Animales Recién Nacidos , Nutrición Parenteral/efectos adversos , Glutatión/metabolismo , Peróxidos/metabolismo , Suplementos Dietéticos , Epigénesis Genética , ARN Mensajero/genética
7.
J Agric Food Chem ; 72(13): 7266-7278, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38523338

RESUMEN

Ginseng oligopeptides are naturally occurring small-molecule peptides extracted from ginseng that exhibit positive effects on health and longevity. However, the current industrial production of ginseng oligopeptides primarily relies on plant extraction and chemical synthesis. In this study, we proposed a novel genetic engineering approach to produce active ginseng peptides through multicopy tandem insertion (5 and 15 times). The recombinant ginseng peptides were successfully produced from engineered Bacillus subtilis with an increasing yield from 356.55 to 2900 mg/L as the repeats multiple. Additionally, an oxidative stress-induced aging model caused by H2O2 was established to evaluate whether the recombinant ginseng peptides, without enzymatic hydrolysis into individual peptides, also have positive effects on antiaging. The results demonstrated that all two kinds of recombinant ginseng peptides could also delay cellular aging through various mechanisms, such as inhibiting cell cycle arrest, suppressing the expression of pro-inflammatory factors, and enhancing cellular antioxidant capacity.


Asunto(s)
Bacillus subtilis , Panax , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Panax/química , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo , Oligopéptidos/genética , Oligopéptidos/farmacología , Oligopéptidos/metabolismo
8.
Ecotoxicol Environ Saf ; 274: 116232, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38493701

RESUMEN

Fine particulate matter (PM2.5) exposure is strongly associated with vascular endothelial senescence, a process implicated in cardiovascular diseases. While there is existing knowledge on the impact of Lycium barbarum polysaccharide (LBP) on vascular endothelial damage, the protective mechanism of LBP against PM2.5-induced vascular endothelial senescence remains unclear. In this study, we investigated the impact of PM2.5 exposure on vascular endothelial senescence and explored the intervention effects of LBP in human umbilical vein endothelial cells (HUVECs). We found that PM2.5 exposure dose-dependently reduced cell viability and proliferation in HUVECs while increasing the production of reactive oxygen species (ROS), malondialdehyde (MDA), and hydrogen peroxide (H2O2). Additionally, PM2.5 exposure inhibited the activity of superoxide dismutase (SOD). Notably, PM2.5 exposure induced autophagy impairments and cellular senescence. However, LBP mitigated PM2.5-induced cell damage. Further studies demonstrated that correcting autophagy impairment in HUVECs reduced the expression of the senescence markers P16 and P21 induced by PM2.5. This suggests the regulatory role of autophagy in cellular senescence and the potential of LBP in improving HUVECs senescence. These findings provide novel insights into the mechanisms underlying PM2.5-induced cardiovascular toxicity and highlight the potential of LBP as a therapeutic agent for improving vascular endothelial health.


Asunto(s)
Medicamentos Herbarios Chinos , Peróxido de Hidrógeno , Lycium , Humanos , Células Endoteliales de la Vena Umbilical Humana , Peróxido de Hidrógeno/metabolismo , Material Particulado/metabolismo , Senescencia Celular
9.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38474153

RESUMEN

Cell fate instability is a crucial characteristic of aging and appears to contribute to various age-related pathologies. Exploring the connection between bioactive substances and cell fate stability may offer valuable insights into longevity. Therefore, the objective of this study was to investigate the potential beneficial effects of ginseng oligopeptides (GOPs) isolated from Panax ginseng C. A. Meyer at the cellular level. Disruption of homeostasis of human umbilical vein endothelial cells (HUVECs) and PC-12 was achieved by culturing them in the growth medium supplemented with 200 µM of H2O2, and 25, 50, and 100 µg/mL GOPs for 4 h. Then, they were cultured in a H2O2-free growth medium containing different concentration of GOPs. We found that GOP administration retards the oxidative stress-induced cell instability in HUVECs by increasing cell viability, inhibiting the cell cycle arrest, enhancing telomerase (TE) activity, suppressing oxidative stress and an inflammatory attack, and protecting mitochondrial function. Furthermore, we hypothesized that GOPs may promote mitochondrial biosynthesis by upregulating PGC-1α expression. Similarly, GOPs positively regulated cell stability in PC-12; notably, the protective effect of GOPs on PC-12 mainly occurred through the inhibition of autophagic cell death of neuronal cells, while the protective effect on mitochondria was weak. In conclusion, it is evident that GOPs demonstrate potential beneficial effects in maintaining cell fate stability, thereby potentially contributing to an enhanced health span and overall well-being.


Asunto(s)
Antioxidantes , Panax , Humanos , Antioxidantes/farmacología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Panax/química , Peróxido de Hidrógeno/metabolismo , Extractos Vegetales/farmacología , Estrés Oxidativo , Oligopéptidos/farmacología
10.
Harmful Algae ; 133: 102587, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38485437

RESUMEN

Hydrogen peroxide has gained popularity as an environmentally friendly treatment for cyanobacterial harmful algal blooms (cHABs) that takes advantage of oxidative stress sensitivity in cyanobacteria at controlled concentrations. Higher concentrations of hydrogen peroxide treatments may seem appealing for more severe cHABs but there is currently little understanding of the environmental impacts of this approach. Of specific concern is the associated microbial community, which may play key roles in the succession/recovery process post-treatment. To better understand impacts of a high concentration treatment on non-target microbial communities, we applied a hydrogen peroxide spray equating to a total volume concentration of 14 mM (473 mg/L, 0.04%) to 250 L mesocosms containing Microcystis bloom biomass, monitoring treatment and control mesocosms for 4 days. Cyanobacteria dominated control mesocosms throughout the experiment while treatment mesocosms experienced a 99% reduction, as determined by bacterial amplicon sequencing, and a 92% reduction in bacterial cell density within 1 day post-treatment. Only the bacterial community exhibited signs of regrowth, with a fold change of 9.2 bacterial cell density from day 1 to day 2. Recovery consisted of succession by Planctomycetota (47%) and Gammaproteobacteria (17%), which were likely resilient due to passive cell component compartmentalization and rapid upregulation of dnaK and groEL oxidative stress genes, respectively. The altered microbiome retained beneficial functionality of microcystin degradation through a currently recognized but unidentified pathway in Gammaproteobacteria, resulting in a 70% reduction coinciding with bacterial regrowth. There was also an 81% reduction of both total nitrogen and phosphorus, as compared to 91 and 93% in the control, respectively, due to high expressions of genes related to nitrogen (argH, carB, glts, glnA) and phosphorus (pntAB, phoB, pstSCB) cycling. Overall, we found a portion of the bacterial community was resilient to the high-concentration hydrogen peroxide treatment, resulting in Planctomycetota and Gammaproteobacteria dominance. This high-concentration treatment may be suitable to rapidly end cHABs which have already negatively impacted the aquatic environment rather than allow them to persist.


Asunto(s)
Cianobacterias , Microcystis , Microcystis/genética , Peróxido de Hidrógeno/metabolismo , Cianobacterias/genética , Nitrógeno/metabolismo , Fósforo/metabolismo
11.
Plant Physiol Biochem ; 209: 108533, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38520967

RESUMEN

Selenium (Se) toxicity is an emerging contaminant of global concern. It is known to cause oxidative stress, affecting plant growth and yield. Plantago ovata, a major cash crop known for its medicinal properties, is often cultivated in Se-contaminated soil. Thus, the aim of this study was to evaluate the use of methyl jasmonate (MeJA) seed priming technique to mitigate Se-induced phytotoxicity. The results demonstrated that Se stress inhibited P. ovata growth, biomass and lowered chlorophyll content in a dose-dependent manner. Treatment with 1 µM MeJA enhanced the antioxidant defence system via ROS signalling and upregulated key enzymes of phenylpropanoid pathway, PAL (1.9 times) and CHI (5.4 times) in comparison to control. Caffeic acid, Vanillic acid, Chlorogenic acid, Coumaric acid and Luteoloside were the most abundant polyphenols. Enzymatic antioxidants involved in ROS scavenging, such as CAT (up to 1.3 times) and GPOX (up to 1.4 times) were raised, while SOD (by 0.6 times) was reduced. There was an upregulation of growth-inducible hormones, IAA (up to 2.1 fold) and GA (up to 1.5 fold) whereas, the stress-responsive hormones ABA (by 0.6 fold) and SA (by 0.5 fold) were downregulated. The alleviation of Se toxicity was also evident from the decrease in H2O2 and MDA contents under MeJA treatment. These findings suggest that MeJA can effectively improve Se tolerance and nutraceutical value in P. ovata by modulating the phytohormone regulatory network, redox homeostasis and elicits accumulation of polyphenols. Therefore, MeJA seed priming could be an efficient way to enhance stress resilience and sustainable crop production.


Asunto(s)
Acetatos , Ciclopentanos , Oxilipinas , Plantago , Selenio , Selenio/farmacología , Selenio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Plantago/metabolismo , Peróxido de Hidrógeno/metabolismo , Antioxidantes/metabolismo , Polifenoles/metabolismo , Hormonas/metabolismo
12.
Biosci Biotechnol Biochem ; 88(5): 529-537, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38509025

RESUMEN

Four ethanol fractionated crude extracts (EFCEs [A-D]) purified from the leaves of Cinnamomum macrostemon Hayata were screened for antioxidative effects and mitochondrial function in HaCaT cells. The higher cell viability indicated that EFCE C was mildly toxic. Under the treatment of 50 ng/mL EFCE C, the hydrogen peroxide (H2O2)-induced cytosolic and mitochondrial reactive oxygen species levels were reduced as well as the H2O2-impaired cell viability, mitochondrial membrane potential (MMP), ATP production, and mitochondrial mass. The conversion of globular mitochondria to tubular mitochondria is coincident with EFCE C-restored mitochondrial function. The mitophagy activator rapamycin showed similar effects to EFCE C in recovering the H2O2-impaired cell viability, MMP, ATP production, mitochondrial mass, and also mitophagic proteins such as PINK1, Parkin, LC3 II, and biogenesis protein PGC-1α. We thereby propose the application of EFCE C in the prevention of oxidative stress in skin cells.


Asunto(s)
Supervivencia Celular , Cinnamomum , Peróxido de Hidrógeno , Queratinocitos , Potencial de la Membrana Mitocondrial , Mitocondrias , Mitofagia , Estrés Oxidativo , Extractos Vegetales , Especies Reactivas de Oxígeno , Humanos , Mitofagia/efectos de los fármacos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Queratinocitos/citología , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Supervivencia Celular/efectos de los fármacos , Cinnamomum/química , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Hojas de la Planta/química , Antioxidantes/farmacología , Ubiquitina-Proteína Ligasas/metabolismo , Sirolimus/farmacología , Células HaCaT , Proteínas Quinasas/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética
13.
Environ Sci Pollut Res Int ; 31(13): 19871-19885, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38368297

RESUMEN

This study aimed to access the impact of soil polluted with petroleum (5, 10 g petroleum kg-1 soil) on Bermuda grass (Cynodon dactylon L.) with and without applied bacterial inoculants (Arthrobacter oxydans ITRH49 and Pseudomonas sp. MixRI75). Both soil and seed were given bacterial inoculation. The evaluated morphological parameters of Bermuda grass were fresh and dry weight. The results demonstrated that applied bacterial inoculants enhanced 5.4%, 20%, 28% and 6.4%, 21%, and 29% shoot and root fresh/dry weights in Bermuda grass under controlled environment. The biochemical analysis of shoot and root was affected deleteriously by the 10 g petroleum kg-1 soil pollution. Microbial inoculants enhanced the activities of enzymatic (catalase, peroxidase, glutathione reductase, ascorbate peroxidase, superoxide dismutase) and non-enzymatic (ɑ-tocopherols, proline, reduced glutathione, ascorbic acid) antioxidant to mitigate the toxic effects of ROS (H2O2) under hydrocarbon stressed condition. The maximum hydrocarbon degradation (75%) was recorded by Bermuda grass at 5 g petroleum kg-1 soil contamination. Moreover, bacterial persistence and alkane hydroxylase gene (alkB) abundance and expression were observed more in the root interior than in the rhizosphere and shoot interior of Bermuda grass. Subsequently, the microbe used a biological tool to propose that the application of plant growth-promoting bacteria would be the most favorable choice in petroleum hydrocarbon polluted soil to conquer the abiotic stress in plants and the effective removal of polyaromatic hydrocarbons in polluted soil.


Asunto(s)
Inoculantes Agrícolas , Petróleo , Contaminantes del Suelo , Cynodon , Peróxido de Hidrógeno/metabolismo , Biodegradación Ambiental , Hidrocarburos/metabolismo , Bacterias/metabolismo , Petróleo/análisis , Inoculantes Agrícolas/metabolismo , Suelo , Expresión Génica , Contaminantes del Suelo/análisis
14.
J Ethnopharmacol ; 326: 117918, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38382654

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The efficacy of clinical treatments for various liver diseases is intricately tied to the liver's regenerative capacity. Insufficient or failed liver regeneration is a direct cause of mortality following fulminant hepatic failure and extensive hepatectomy. Si-Ni-San (SNS), a renowned traditional Chinese medicine prescription for harmonizing liver and spleen functions, has shown clinical efficacy in the alleviation of liver injury for thousands of years. However, the precise molecular pharmacological mechanisms underlying its effects remain unclear. AIMS OF THE STUDY: This study aimed to investigate the effects of SNS on liver regeneration and elucidate the underlying mechanisms. MATERIALS AND METHODS: A mouse model of 70% partial hepatectomy (PHx) was used to analyze the effects of SNS on liver regeneration. Aquaporin-9 knockout mice (AQP9-/-) were used to demonstrate that SNS-mediated enhancement of liver regeneration was AQP9-targeted. A tandem dimer-Tomato-tagged AQP9 transgenic mouse line (AQP9-RFP) was utilized to determine the expression pattern of AQP9 protein in hepatocytes. Immunoblotting, quantitative real-time PCR, staining techniques, and biochemical assays were used to further explore the underlying mechanisms of SNS. RESULTS: SNS treatment significantly enhanced liver regeneration and increased AQP9 protein expression in hepatocytes of wild-type mice (AQP9+/+) post 70% PHx, but had no significant effects on AQP9-/- mice. Following 70% PHx, SNS helped maintain hepatic oxidative equilibrium by increasing the levels of reactive oxygen species scavengers glutathione and superoxide dismutase and reducing the levels of oxidative stress molecules H2O2 and malondialdehyde in liver tissues, thereby preserving this crucial process for hepatocyte proliferation. Simultaneously, SNS augmented glycerol uptake by hepatocytes, stimulated gluconeogenesis, and maintained glucose/lipid metabolism homeostasis, ensuring the energy supply required for liver regeneration. CONCLUSIONS: This study provides the first evidence that SNS maintains liver oxidative equilibrium and glucose/lipid metabolism homeostasis by upregulating AQP9 expression in hepatocytes, thereby promoting liver regeneration. These findings offer novel insights into the molecular pharmacological mechanisms of SNS in promoting liver regeneration and provide guidance for its clinical application and optimization in liver disease treatment.


Asunto(s)
Medicamentos Herbarios Chinos , Peróxido de Hidrógeno , Regeneración Hepática , Ratones , Animales , Peróxido de Hidrógeno/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Hepatocitos , Glucosa/metabolismo , Homeostasis
15.
J Ethnopharmacol ; 326: 117938, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395178

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The reactive oxygen species (ROS) surge in the chronic wound tissue of diabetic ulcers (DUs) aggravates the inflammatory response. The oxidative stress state during inflammation will exacerbate inflammation and cause tissue damage, resulting in prolonged wound healing. Shengjihuayu Formula (SJHYF) is a renowned Chinese medicine prescription for treating chronic wounds in diabetic ulcers. Growing clinical evidence has demonstrated that SJHYF exhibits superior therapeutic efficacy and has a favorable safety profile. However, the underlying mechanisms by which SJHYF ameliorates oxidative damage under pathological conditions of DUs remain unclear. OBJECTIVE: To investigate the cytoprotective properties of SJHYF on hydrogen peroxide (H2O2)-induced cell damage in human HaCaT keratinocytes and to explore its potential targets and molecular pathways in treating DUs using RNA-seq. METHODS: HaCaT cells were incubated with H2O2 for 24 h to construct an oxidative stress cell model. Cell viability and proliferation were measured using the MTT and EdU assays, respectively. Cell migration was assessed using the scratch assay, and the fluorescence intensity of ROS was measured using the DCFH-DA probe. The chemical components of SJHYF were analyzed by UPLC-Q-TOF/MS, while the therapeutic effects of SJHYF on H2O2-induced HaCaT cells were analyzed using RNA-Seq. The potential target genes were validated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). At the same time, the pathway phenotype expression of SJHYF on the protection of H2O2-induced HaCaT cells was explored using Western Blot. RESULTS: The application of SJHY at a concentration of 0.25 mg/mL promoted cell proliferation, cell migration, and reduced ROS production. In addition, SJHYF was detected to have a total of 93 active compounds, including key components such as Galloyl-beta-D-glucose, Danshensu, Procyanidin B2, Catechin, and Alkannin. The RNA-seq analysis identified several core targets namely KRT17, TGM1, JUNB, PRDX5, TXNIP, PRDX1, HSP90AA1, HSP90AB1, HSPA8, and TNF-α. Western blot revealed the presence of the JNK/c-Jun/MMPs pathway and its related transcription factors. CONCLUSION: SJHYF displays significant protective effects on H2O2-induced oxidative cell damage in HaCaT cells via blocking the JNK/c-Jun/MMPs pathway.


Asunto(s)
Diabetes Mellitus , Glucosa , Peróxido de Hidrógeno , Humanos , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Úlcera , Estrés Oxidativo , Queratinocitos , Sistema de Señalización de MAP Quinasas , Inflamación/metabolismo , Diabetes Mellitus/metabolismo , Apoptosis
16.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38338758

RESUMEN

Catalases (CATs) play crucial roles in scavenging H2O2 from reactive oxygen species, controlling the growth and development of plants. So far, genome-wide identification and characterization of CAT genes in oil palm have not been reported. In the present study, five EgCAT genes were obtained through a genome-wide identification approach. Phylogenetic analysis divided them into two subfamilies, with closer genes sharing similar structures. Gene structure and conserved motif analysis demonstrated the conserved nature of intron/exon organization and motifs among the EgCAT genes. Several cis-acting elements related to hormone, stress, and defense responses were identified in the promoter regions of EgCATs. Tissue-specific expression of EgCAT genes in five different tissues of oil palm was also revealed by heatmap analysis using the available transcriptome data. Stress-responsive expression analysis showed that five EgCAT genes were significantly expressed under cold, drought, and salinity stress conditions. Collectively, this study provided valuable information on the oil palm CAT gene family and the validated EgCAT genes can be used as potential candidates for improving abiotic stress tolerance in oil palm and other related crops.


Asunto(s)
Arecaceae , Peróxido de Hidrógeno , Catalasa/metabolismo , Filogenia , Peróxido de Hidrógeno/metabolismo , Transcriptoma , Arecaceae/genética , Arecaceae/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Aceite de Palma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Int J Mol Sci ; 25(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38339001

RESUMEN

UV-B radiation induces sunburn, and neutrophils are pivotal in this inflammation. In this study, we examined the potential involvement of neutrophil extracellular traps (NETs) in ultraviolet B (UVB)-induced skin inflammation, correlating the skin inflammation-mitigating effects of Hochu-ekki-to on UV-B irradiation and NETs. To elucidate NET distribution in the dorsal skin, male ICR mice, exposed to UVB irradiation, were immunohistologically analyzed to detect citrullinated histone H3 (citH3) and peptidylarginine deiminase 4 (PAD4). Reactive oxygen species (ROS) production in the bloodstream was analyzed. To establish the involvement of NET-released DNA in this inflammatory response, mice were UV-B irradiated following the intraperitoneal administration of DNase I. In vitro experiments were performed to scrutinize the impact of Hochu-ekki-to on A23187-induced NETs in neutrophil-like HL-60 cells. UV-B irradiation induced dorsal skin inflammation, coinciding with a significant increase in citH3 and PAD4 expression. Administration of DNase I attenuated UV-B-induced skin inflammation, whereas Hochu-ekki-to administration considerably suppressed the inflammation, correlating with diminished levels of citH3 and PAD4 in the dorsal skin. UV-B irradiation conspicuously augmented ROS and hydrogen peroxide (H2O2) production in the blood. Hochu-ekki-to significantly inhibited ROS and H2O2 generation. In vitro experiments demonstrated that Hochu-ekki-to notably inhibited A23187-induced NETs in differentiated neutrophil-like cells. Hence, NETs have been implicated in UV-B-induced skin inflammation, and their inhibition reduces cutaneous inflammation. Additionally, Hochu-ekki-to mitigated skin inflammation by impeding neutrophil infiltration and NETs in the dorsal skin of mice.


Asunto(s)
Desoxirribonucleasa I , Medicamentos Herbarios Chinos , Trampas Extracelulares , Rayos Ultravioleta , Animales , Masculino , Ratones , Calcimicina/farmacología , Desoxirribonucleasa I/farmacología , Desoxirribonucleasa I/metabolismo , Trampas Extracelulares/efectos de los fármacos , Trampas Extracelulares/efectos de la radiación , Histonas/metabolismo , Peróxido de Hidrógeno/metabolismo , Inflamación/metabolismo , Ratones Endogámicos ICR , Neutrófilos/metabolismo , Desiminasas de la Arginina Proteica/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Rayos Ultravioleta/efectos adversos
18.
Tissue Cell ; 87: 102321, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38350206

RESUMEN

The prevalent use of abamectin (ABM) has latterly raised safety attention as it has different toxicities to non-target living organisms. Citrus fruits are widely renowned for their nutritional and health-promoting qualities, and their peels are full of phenolic constituents. The purpose of the current study was to evaluate the modulatory effectiveness of Citrus reticulata peel extract (CPE) against abamectin-induced hepatotoxicity and oxidative injury. Rats were distributed into 4 groups as follows: control, CPE (400 mg/kg bw orally for 14 days), ABM (2 mg/kg bw for 5 days), and CPE + ABM at the doses mentioned above. Results revealed that GC-MS analysis of CPE has 19 identified components with significant total phenolic and flavonoid contents. Treatment with ABM in rats displayed significant variations in enzymatic and non-enzymatic antioxidants, oxidative stress markers (MDA, H2O2, PCC), liver and kidney function biomarkers, hematological parameters, lipids, and protein profile as well as histopathological abnormalities, inflammation and apoptosis (TNF-α, Caspase-3, NF-κB, and Bcl-2 genes) in rats' liver. Supplementation of CPE solo dramatically improved the antioxidant state and reduced oxidative stress. C. reticulata peel extract pretreatment alleviated ABM toxicity by modulating most of the tested parameters compared to the ABM group. Conclusively, CPE had potent antioxidant activity and could be used in the modulation of ABM hepatotoxicity presumably due to its antioxidant, anti-inflammatory, and gene-regulating capabilities.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Citrus , Ivermectina/análogos & derivados , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo , Hígado/patología , Citrus/metabolismo , Extractos Vegetales/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo
19.
Plant Physiol Biochem ; 207: 108390, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38373369

RESUMEN

Agricultural land contaminated with heavy metals such as non-biodegradable arsenic (As) has become a serious global problem as it adversely affects agricultural productivity, food security and human health. Therefore, in this study, we investigated how the administration of N-acetyl-cysteine (NAC), regulates the physio-biochemical and gene expression level to reduce As toxicity in lettuce. According to our results, different NAC levels (125, 250 and 500 µM) significantly alleviated the growth inhibition and toxicity induced by As stress (20 mg/L). Shoot fresh weight, root fresh weight, shoot dry weight and root dry weight (33.05%, 55.34%, 17.97% and 46.20%, respectively) were decreased in plants grown in As-contaminated soils compared to lettuce plants grown in soils without the addition of As. However, NAC applications together with As stress increased these growth parameters. While the highest increase in shoot fresh and dry weight (58.31% and 37.85%, respectively) was observed in 250 µM NAC application, the highest increase in root fresh and dry weight (75.97% and 63.07%, respectively) was observed in 125 µM NAC application in plants grown in As-polluted soils. NAC application decreased the amount of ROS, MDA and H2O2 that increased with As stress, and decreased oxidative damage by regulating hormone levels, antioxidant and enzymes involved in nitrogen metabolism. According to gene expression profiles, LsHIPP28 and LsABC3 genes have shown important roles in reducing As toxicity in leaves. This study will provide insight for future studies on how NAC applications develop resistance to As stress in lettuce.


Asunto(s)
Acetilcisteína , Arsénico , Humanos , Acetilcisteína/farmacología , Arsénico/toxicidad , Lactuca , Peróxido de Hidrógeno/metabolismo , Antioxidantes/metabolismo , Suelo
20.
Sci Total Environ ; 914: 169923, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38199344

RESUMEN

Applying selenium (Se) fertilizer is the only way to alleviate soil Se deficiency. Although effects of nanoselenium foliar application on plant growth and stress resistance have been extensively investigated, soil application of nanoselenium on soil microorganisms and their relationship with crop quality and soil health remains unclear. In this study, a steady-state homogeneous nanoparticle of epigallocatechin gallate Se (ESe) was synthesized, and a pot experiment was conducted applying ESe at five concentrations (0, 1, 10, 50, and 100 mg kg-1) to the tea planattion soil. The study revealed a significant increase in Se concentration in soil and tea with ESe application and identified 2.43-7.8 mg kg-1 as the safe and optimal range for soil application. Specifically, the moderate dose of ESe improved the tea quality [reduced tea polyphenols (TP), increased free amino acids (AA), and reduced TP/AA] and soil quality index (SQI). Besides, in marure tea leaves, antioxidant enzyme activities [promote catalase (CAT) superoxide dismutase (SOD), and peroxidase (POD)] increased, while level of oxidative stress [malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide anion (O2-)] decreased with ESe application. The 16S rRNA of the soil bacteria showed that ESe application significantly changed the community structure of soil bacteria but did not alter the diversity of the bacteria and the abundance of dominant taxa (phylum and genus levels). Statistical analysis of the taxonomic and functional profiles (STAMP) detected 21 differential taxa (genus level), mainly low-abundance ones, under the ESe application. Linear regression and random forest (RF) modeling revealed that the low-abundance bacterial taxa were significantly correlated with SQI (R2 = 0.28, p < 0.01) and tea quality (R2 = 0.23-0.37, p < 0.01). Thus, the study's findings suggest that ESe application affects soil and tea quality by modulating the low-abundance taxa in soil. The study also highlights the crucial role of low-abundance bacterial taxa of the rhizosphere in regulating soil functions under the ESe application.


Asunto(s)
Camellia sinensis , Catequina/análogos & derivados , Selenio , Suelo/química , Peróxido de Hidrógeno/metabolismo , ARN Ribosómico 16S , Antioxidantes/metabolismo , Bacterias , Selenio/metabolismo , Polifenoles/metabolismo , Té/química , Té/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA