Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(9)2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34067001

RESUMEN

Investigations into the mechanisms regulating obesity are frantic and novel translational approaches are needed. The raccoon dog (Nyctereutes procyonoides) is a canid species representing a promising model to study metabolic regulation in a species undergoing cycles of seasonal obesity and fasting. To understand the molecular mechanisms of metabolic regulation in seasonal adaptation, we analyzed key central nervous system and peripheral signals regulating food intake and metabolism from raccoon dogs after autumnal fattening and winter fasting. Expressions of neuropeptide Y (NPY), orexin-2 receptor (OX2R), pro-opiomelanocortin (POMC) and leptin receptor (ObRb) were analyzed as examples of orexigenic and anorexigenic signals using qRT-PCR from raccoon dog hypothalamus samples. Plasma metabolic profiles were measured with 1H NMR-spectroscopy and LC-MS. Circulating hormones and cytokines were determined with canine specific antibody assays. Surprisingly, NPY and POMC were not affected by the winter fasting nor autumn fattening and the metabolic profiles showed a remarkable equilibrium, indicating conserved homeostasis. However, OX2R and ObRb expression changes suggested seasonal regulation. Circulating cytokine levels were not increased, demonstrating that the autumn fattening did not induce subacute inflammation. Thus, the raccoon dog developed seasonal regulatory mechanisms to accommodate the autumnal fattening and prolonged fasting making the species unique in coping with the extreme environmental challenges.


Asunto(s)
Adiposidad , Ayuno/metabolismo , Metaboloma , Perros Mapache/metabolismo , Estaciones del Año , Tejido Adiposo/irrigación sanguínea , Tejido Adiposo/patología , Animales , Biomarcadores/metabolismo , Peso Corporal , Análisis Discriminante , Femenino , Hormonas/sangre , Hipotálamo/metabolismo , Inflamación/patología , Análisis de los Mínimos Cuadrados , Límite de Detección , Análisis Multivariante , Péptidos/genética , Péptidos/metabolismo , Espectroscopía de Protones por Resonancia Magnética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Perros Mapache/sangre , Receptores de Péptidos/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-26603554

RESUMEN

The raccoon dog (Nyctereutes procyonoides) is a canid with autumnal fattening and passive wintering strategy. We examined the effects of wintertime fasting and seasonality on AMP-activated protein kinase (AMPK), a regulator of metabolism, and its target, acetyl-CoA carboxylase (ACC) on the species. Twelve farmed raccoon dogs (eleven females/one male) were divided into two groups: half were fasted for ten weeks in December-March (winter fasted) and the others were fed ad libitum (winter fed). A third group (autumn fed, eight females) was fed ad libitum and sampled in December. Total AMPK, ACC and their phosphorylated forms (pAMPK, pACC) were measured from hypothalamus, liver, intra-abdominal (iWAT) and subcutaneous white adipose tissues (sWAT). The fasted animals lost 32% and the fed 20% of their body mass. Hypothalamic AMPK expression was lower and pACC levels higher in the winter groups compared to the autumn fed group. Liver pAMPK was lower in the winter fasted group, with consistently decreased ACC and pACC. AMPK and pAMPK were down-regulated in sWAT and iWAT of both winter groups, with a parallel decline in pACC in sWAT. The responses of AMPK and ACC to fasting were dissimilar to the effects observed previously in non-seasonal mammals and hibernators. Differences between the winter fed and autumn fed groups indicate that the functions of AMPK and ACC could be regulated in a season-dependent manner. Furthermore, the distinctive effects of prolonged fasting and seasonal adaptation on AMPK-ACC pathway could contribute to the wintering strategy of the raccoon dog.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Aclimatación/fisiología , Acetil-CoA Carboxilasa/metabolismo , Ayuno/metabolismo , Hibernación/fisiología , Perros Mapache/metabolismo , Adipoquinas/sangre , Tejido Adiposo/metabolismo , Animales , Metabolismo Energético/fisiología , Ayuno/sangre , Femenino , Hipotálamo/metabolismo , Insulina/sangre , Hígado/metabolismo , Masculino , Perros Mapache/sangre , Estaciones del Año
3.
Pomeranian J Life Sci ; 61(3): 315-8, 2015.
Artículo en Polaco | MEDLINE | ID: mdl-27443003

RESUMEN

INTRODUCTION: Stinging nettle (Urtica dioicd L.) is one of the most valuable plants used in phytotherapy. The herbal raw material is a herb (Urticae herba), leaves (Urticae folium), roots (Urticae radix) and seeds (Urticae semina). This plant is a good source of vitamins, minerals, fibre, protein and biologically active compounds with antioxidant properties. The literature provides limited information about the chemical composition and properties of the seed heads. No papers are available on the effect of extracts of this plant on catalase activity in human cells. The aim of this study was to investigate the impact of stinging nettle (Urtica dioica L.) extracts on the antioxidant activity of catalase in THP1 macrophages. MATERIAL AND METHODS: Two types of extracts: water and alcohol, at two different concentrations, were used in experiments. Nettle was collected in September and October in 2012 in the area of Szczecin. The collected plant material was frozen and lyophilized. After those procedures water and alcohol extracts of nettle were prepared and then added to THP1 cells. RESULTS AND CONCLUSIONS: The antioxidant activity of catalase was established with the spectrophotometric method. The study showed that both extracts (water and alcohol) significantly increased the antioxidant activity of catalase in THP1 cells. The increase in catalase was directly proportional to the concentration of the added alcohol extract.


Asunto(s)
Catalasa/metabolismo , Células Cultivadas/metabolismo , Macrófagos/enzimología , Monocitos/enzimología , Extractos Vegetales/metabolismo , Semillas/química , Urtica dioica/química , Animales , Perros/metabolismo , Femenino , Zorros/metabolismo , Humanos , Masculino , Extractos Vegetales/farmacología , Polonia , Perros Mapache/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA